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Feature Detection and Matching
Module 2



Edge detection
•Goal:  Identify sudden changes 
(discontinuities) in an image
• Intuitively, most semantic and shape 

information from the image can be 
encoded in the edges

•More compact than pixels

•Ideal: artist’s line drawing (but artist is 
also using object-level knowledge)

Adapted from James Hays slides

Adapted from James Hays slides
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Origin of Edges

•Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz

Adapted from James Hays slides



Closeup of edges

Source: D. Hoiem

Adapted from James Hays slides



Closeup of edges

Source: D. Hoiem

Adapted from James Hays slides



Intensity profile

Source: D. Hoiem

Adapted from James Hays slides



Perception of Edges in Humans



Applying Masks to Images

•Convolution Operation

•Mask
•Set of pixel positions and weights

•Origin of mask
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Applying Masks to Images

•I1  mask = I2

•Convention: I2 is the same size as I1

•Mask Application:
•For each pixel
•Place mask origin on top of pixel
•Multiply each weight with pixel under it
•Sum the result and put in location of the pixel



Applying Masks to Images
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Applying Masks to Images

•Overall effect of this 
mask?

•Smoothing filter
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What about corner pixels

•Expand image with virtual pixels

•Options

•Fill with a particular value, e.g. zeros

•Fill with nearest pixel value

•Or just ignore them



Edge Detection

Input Output



Choice of Mask?

•Should give a zero on 
smooth output

•Should give a high value 
on non-smooth regions
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Finding Edges

•Edges are locations where intensity variation is high

•OR rate of change of intensity is high

•How do we find rate of change of intensity?

•DIFFERENTIATION

•Continuous form

•Discrete form
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Discrete Derivatives
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Derivative Masks
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•Sobel Operator

•Robert’s Operator
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Characterizing edges

•An edge is a place of rapid change in the image intensity 
function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

Adapted from James Hays slides



Intensity profile

Source: D. Hoiem

Adapted from James Hays slides



With a little Gaussian noise

Gradient

Source: D. Hoiem

Adapted from James Hays slides



Effects of noise
•Consider a single row or column of the image
•Plotting intensity as a function of position gives a signal

Where is the edge? Source: S. Seitz

Adapted from James Hays slides



Effects of noise

•Difference filters respond strongly to noise
• Image noise results in pixels that look very different from their 

neighbors

•Generally, the larger the noise the stronger the response

•What can we do about it?

Source: D. Forsyth

Adapted from James Hays slides



Solution: smooth first

• To find edges, look for peaks in )( gf
dx

d


f

g
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Source: S. Seitz

Adapted from James Hays slides



Derivative theorem of convolution

•Differentiation is convolution, and convolution is 
associative:

•This saves us one operation:

g
dx

d
fgf

dx

d
= )(

g
dx

d
f 

f

g
dx

d

Source: S. Seitz

Adapted from James Hays slides



Derivative of Gaussian filter

* [1 -1] = 

Adapted from James Hays slides



Tradeoff between smoothing and localization

•Smoothed derivative removes noise, but blurs edge. Also 
finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Source: D. Forsyth

Adapted from James Hays slides



Implementation issues

•The gradient magnitude is large along a thick “trail” or “ridge,” 
so how do we identify the actual edge points?

•How do we link the edge points to form curves?

Source: D. Forsyth

Adapted from James Hays slides



Application of 2-D Masks

•If fx is derivative in x-direction, fy is derivative 
in y-direction

•Gradient Magnitude

•Gradient Direction
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Gradient Magnitude



Gradient Magnitude

Log of M to 
enhance 
visibility



T = 10

Gradient Magnitude – Thresholding T==10



T = 20

Gradient Magnitude – Thresholding T==20



T = 40

Gradient Magnitude – Thresholding T==40



What about Gradient Direction?

•Gradient Direction is always perpendicular to edge

•Direction of most change of gray levels

•Thick edges can be eliminated using gradient direction

•Weak edges also captured in this manner



Image Gradient

•Gradient vector

 where

•Gradient vector points in the direction of maximum increase



Image Gradient

•Example

(Black represents higher value of function)

https://en.wikipedia.org/wiki/Gradient



Image Gradient

•Example

https://en.wikipedia.org/wiki/Gradient



Image Gradient

•Example
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Image Gradient

•Derivatives are sensitive to noise
so we can smooth before differentiating
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Image Gradient

•But convolution is associative operation.

is equivalent to
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Image Gradient



Image Gradient

•Computing Derivatives



Image Gradient

•Gradient magnitude



Image Gradient

•Effect 
of σ



Image Gradient

•Effect 
of σ



Image Gradient

•Gradient 
Vectors



Image Gradient

•Gradient Direction

Gradient Direction at all locations at locations of significant magnitude only



Line Detection



Line Detection

•We can use binary edge mask to detect lines in images

Gradient Magnitude Gradient Magnitude 
Thresholded 

Output of State of Art 
Line Detector



Problems in Finding Lines

Missing Data Noisy Data Multiple Lines



Parameter Optimization:
Least Squared Error Solutions
•Fitting a line to a set of data points…

•Equation of best fit line ?

x            y         
          1.3          5.7
          2.4          7.3
          3.4         10.5
          4.6         11.8
          5.3         13.9
          6.6         16.3
          6.4         15.3
          8.0         17.9
          8.9         20.8
          9.2         20.9



Line Fitting: Least Squared Error Solution

•Step 1: Identify the model 
•Equation of line: y = mx + c

•Step 2: Set up an error term which will give the goodness of 
every point with respect to the (unknown) model
•Error induced by ith point: 

•    ei = mxi + c - yi

•Error for whole data:  E = i ei
2

•    E = i (mxi + c – yi)
2

•Step 3: Differentiate Error w.r.t. parameters, put equal to zero 
and solve for minimum point



Line Fitting: Least Squared Error Solution
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x            y         
          1.3          5.7
          2.4          7.3
          3.4         10.5
          4.6         11.8
          5.3         13.9
          6.6         16.3
          6.4         15.3
          8.0         17.9
          8.9         20.8
          9.2         20.9

380.63         56.1
         56.1           10

m
c

=
914.68

 140.4

Solution: m = 1.9274   c = 3.227



Line Fitting: Least Squared Error Solution



Least Squared Error Solution

•Disadvantages?
•Multiple Lines…

•Not robust to noise

•Example



Another Approach to Line Fitting

•RANSAC (RANdom SAmple Consensus)

•Very robust to outliers

http://en.wikipedia.org/wiki/RANSAC



RANSAC… General Approach

•Select minimum number of random points from data needed 
to estimate the model

•Estimate the model from selected random points

•Check how many other points are consistent with the fitted 
model (Consistent Set)
• If consistent set is large enough, estimate model from all points in 

the consistent set

• If the consistent set is larger than the previous best model, make 
the current model as the best model

•Repeat a number of times



RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Adapted from James Hays slides



RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

Adapted from James Hays slides



RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

6=IN

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Adapted from James Hays slides





RANSAC

14=IN
Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)
2.  Solve for model parameters using samples 
3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Adapted from James Hays slides



RANSAC conclusions
Good
•Robust to outliers
•Applicable for larger number of objective function parameters
•Optimization parameters are easier to choose than other 
approaches

Bad
•Computational time grows quickly with fraction of outliers and 
number of parameters 
•Needs to be adapted further to allow multiple fits

Common applications
•Computing a homography (e.g., image stitching)
•Estimating fundamental matrix (relating two views)

Adapted from James Hays slides



Line Segment Detector (LSD)
http://www.ipol.im/pub/art/2012/gjmr-lsd/



Image Features



What are Image Features?

•A feature is some piece of information about an image or 
about a portion of an image.

•Features are statistics of an image or a portion of it

•Global Features: Statistic of the image as a whole

•Regional Features: Statistic of a portion of an image

•Local Features: Statistic of a point, often based on a small 
neighborhood around it



Local Image Features
Interest Points and Corners



Why?

•Essential for making panoramas

Image Credit: David Lowe



Why?

•Structure from Motion

Adapted from James Hays slides



Why?

•Stereo Matching between two views

Adapted from James Hays slides



Applications  
•Feature points are used for:

•Image alignment 

•3D reconstruction

•Motion tracking

•Robot navigation

•Indexing and database retrieval

•Object recognition

Adapted from James Hays slides



Panorama Stitching

•We have two images – how do we combine them?

Adapted from James Hays slides



Local features: main components

1) Detection: Identify the interest 
points

2) Description: Extract vector feature 
descriptor surrounding each interest 
point.

3) Matching: Determine 
correspondence between descriptors 
in two views

],,[ )1()1(

11 dxx =x

],,[ )2()2(

12 dxx =x

Kristen Grauman

Adapted from James Hays slides



Characteristics of good local features

•Repeatability
• The same feature can be found in several images despite geometric and 

photometric transformations 

•Saliency
• Each feature is distinctive

•Locality
• A feature occupies a relatively small area of the image; robust to clutter and 

occlusion

Adapted from James Hays slides



Goal: interest operator repeatability

•We want to detect (at least some of) the same points in both 
images.

•Yet we have to be able to run the detection procedure 
independently per image.

No chance to find true matches!

Kristen Grauman

Adapted from James Hays slides



?

Kristen Grauman

Goal: descriptor distinctiveness

•We want to be able to reliably determine which point goes 
with which.

•Must provide some invariance to geometric and photometric 
differences between the two views.

Adapted from James Hays slides



Detecting Local Features (Corners)



Corners

•How do we define a corner?

•Qs: How does a corner differ from an edge?

•A corner may be interpreted as an intersection of two edges, 
or as a region where strong derivatives exist in more than 
one direction



What Is a Corner?

•Corners are local image features characterized by locations where 
variations of intensity function f(x, y) in both X and Y directions are high

• Intersection points between two or more edge segments

www.cse.cuhk.edu.hk/~lyu/seminar/05fall/Wyman.ppt



Corner Detection: Basic Idea

•We should easily recognize the point by looking through a 
small window

•Shifting a window in any direction should give a large 
change in intensity

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Source: A. Efros



Richard Szeliski



Building a Simple Corner Detector

•How would the gradient vectors 
look like in the vicinity of a corner?

•Gradient at smooth region is close 
to zero

•Gradient vectors at edge are all 
pointed in one direction

•Gradient vectors at corner are in 
more than one direction

•Hence, the nature of variation of 
gradient vectors in a small 
neighborhood about a point can 
be an indicator of ‘cornerness’ of 
that point



Building a Simple Corner Detector

•The nature of variations in gradient in a small window is an 
indicator of “cornerness” at a point

•How can we measure “variations” of gradient vector?

•For a one dimensional entity, variation can be measured by 
variance

•This is mathematically equal to

•But Gradient is a two-dimensional vector entity

•How can we talk about the variation of a vector entity?



Building a Simple Corner Detector

•Variation of a vector entity can be described by its covariance 
matrix

•What is likely to be the mean of a gradient vector

•For zero-mean vectors, covariance can be written as

•Hence, covariance of gradient vector is given by

For a zero-mean gradient vector at each pixel, where we assume that 
the mean of the gradients within a local neighborhood is zero



Building a Simple Corner Detector

•This matrix tells us about the variation of gradient vectors in 
a window

For a zero-mean gradient vector at each pixel, where we 
assume that the mean of the gradients within a local 
neighborhood is zero



Building a Simple Corner Detector

What form will                              take in each case?

Can we somehow distinguish between the covariance matrices of these two cases?



Some Properties of this Covariance Matrix
• Is positive-semidefinite
• Consequently, its eigen values will not be 

negative

• If the x values do not tell me anything about 
the y values, then the off-diagonal terms are 
zero

• Rotation of the image by R changes 
covariance A by RART

Proof:  Before rotation, covariance

After rotation covariance 



Some Properties of this Covariance Matrix
•Consider the eigenvectors of A

•Both equations can be combined as

     
where
     is an orthonormal matrix of eigenvectors
     

    is a diagonal matrix of eigenvalues

•From (1)

•Implies: rotating the image by        diagonalizes covariance



Building a Simple Corner Detector

•Hence, we do not need to rotate the image in any case

•We just need to find the eigen values of A, which, when 
arranged as Λ give us the covariance of the rotated image!

•This leads us to the KLT corner detector algorithm



KLT Corner Detector

•Let 1 , 2 be eigenvalues of 
the gradient covariance 
matrix

•For a smooth patch: 
1 = 2 = 0

•Edge
1 > 0, 2 = 0

•Corner 
1 > 0, 2 > 0

•KLT Criterion
min[1 , 2 ] > T



Corner
Both 1 and 2 are large

Flat 
region

Both 1 and 
2 are small

Edge
2 >> 1

Edge
1 >> 2

1

2



Results























KLT Corner Detector - Properties

•Invariant to intensity shift I' = I + b
•Because only gradient vectors are used, not actual intensity values

•  Relatively invariant to intensity scaling I' = aI
•Because comparison of eigenvalues is used

•Therefore it is invariant to affine intensity changes 
I' = aI + b



KLT Corner Detector - Properties

•But it is not invariant to image scale



The problem of Scale



The Problem of Scale



Non-Local Features
Features computed over a larger region or over the whole image



Histogram of Oriented Gradients - 
HOG



Histogram of Oriented Gradients (HoG)



Histogram of Oriented Gradients (HOG)

•HOG is not a local feature, 
computed as a descriptor of a 
point. Its purpose is not to aid 
in homography estimation or 
point-by-point image matching

•Instead, it is motivated by the 
object detection problem

•The original HOG paper was 
focused on the pedestrian 
detection problem

https://i.ytimg.com/vi/aHxs7JlXCkw/hqdefault.jpg

http://www.svcl.ucsd.edu/~ehsan/figs/Pedestrian_detection.jpg



Histogram of Oriented Gradients (HOG) 

•HOG Descriptor works on fixed size window (64x128 pixels)

•It is used in a sliding window fashion over the image, to 
compute this descriptor at all locations

•Image is resized at different scales, so that persons of different 
sizes can be extracted

•The computed feature vector is passed to a classifier to decide 
whether it is a person or not.

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Adapted from James Hays slides



Steps to Calculate HOG Descriptor

•Image Loading and Preprocessing:
•Convert the input image to grayscale (if it's colored) and resize it to 

a standard dimension.

•Apply gamma normalization to standardize brightness and contrast.

•Calculate Gradients:
•Use the Sobel filter to calculate horizontal (Gx) and vertical (Gy) 

gradients for each pixel.

•Compute the gradient magnitude (edge strength) and orientation 
(edge direction) from Gx and Gy.



centered

Slides by Pete Barnum

Adapted from James Hays slides

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Steps to Calculate HOG Descriptor

•Construct Cell Histograms:
•Divide the image into non-overlapping 4x4 pixel cells.

•For each cell, create a histogram with 9 orientation bins (spanning 
0° to 180°).

•Populate each bin by summing the magnitudes of pixels whose 
gradient orientations fall within the bin’s range, capturing the cell’s 
main edge directions.

•Normalize in Blocks:
•Group cells into 2x2 cell blocks (covering 8x8 pixels) to improve 

robustness to contrast and lighting variations.

•Concatenate the histograms of the 4 cells in each block and 
normalize the resulting vector.



•Histogram of gradient orientations

•Votes weighted by magnitude

Orientation: 9 bins 

(for unsigned angles 

0 -180)

Histograms in 

k x k pixel cells

Slides by Pete Barnum

Adapted from James Hays slides

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Steps to Calculate HOG Descriptor

•Form the HOG Descriptor:
•Gather all normalized block histograms into a single feature vector, 

forming the final HOG descriptor, which represents the image’s 
texture and shape.



Normalize with respect to 

surrounding cells

Slides by Pete Barnum

Adapted from James Hays slides

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



X=

Slides by Pete Barnum

# features = 15 x 7 x 9 x 4 = 3780 

# cells

# orientations

# normalizations by 

neighboring cells

Original Formulation

Adapted from James Hays slides

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Histogram of Oriented Gradients (HOG)

Original Image HOG Descriptor HOG Descriptor 
weighted by +ve 
SVM weights

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Histogram of Oriented 
Gradients (HOG)

HOGgles: http://carlvondrick.com/ihog/



Histogram of Oriented Gradients (HOG)

Sulman Baig: https://www.youtube.com/watch?v=b_DSTuxdGDw



HOG Features

•Are suitable for ‘learning’ the overall shape of an object

•They describe the spatial distribution of image gradients of a 
shape

•Given lots of examples of a particular object (e.g. 
pedestrians), we can learn the similarity between their HOG 
features

•This is an example of a regional or global feature, which are 
used for object detection

•General Strategy: 
Find appropriate features + train a classifier



Features Computed by Linear Basis 
Transformation



Linear Basis

•We are going to consider 
images as vectors

16 2 3 13
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4 14 15 1
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Vector Basis

•A vector is defined as a linear combination of basis vectors

x

y
(a,b)T

a

b

Basis Vectors

Any vector is written as a linear 
combination of basis vectors



Vector basis

•A set of vectors (v1, ..., vk) forms a basis in some vector 
space W if:

  (1) (v1, ..., vk) are linearly independent

  (2) (v1, ..., vk) span W

•The identity matrix is taken to be the standard basis

https://www.cse.unr.edu/~bebis/CS485/Lectures/Vectors.ppt



Change of Basis

•I can represent my vector on some other basis

x

y New Basis Vectors

(a,b)T

New coordinates



Optimal Basis

•Given a data set of images, I1, I2, … In as vectors

•Compute the mean image vector μI

•Let A be a matrix that contains each image as a column vector

•Form covariance matrix L = AAT – μI μI
T

•Find eigenvectors of L, arranged as a matrix Φ

•Project data onto the basis Φ i.e. rotate by ΦT

•This will be the most compact representation of data

•Typically, a lot of eigenvalues will be close to zero and can be 
discarded

•This transformation is called Karhunen-Loève Transform, and 
the process is called Principal Component Analysis 



Basic Face Recognition Example



Face Recognition

•10 different images of 40 different subjects
•Taken at different times, varying lighting, facial expressions, open / 

closed eyes, smiling / not smiling) and facial details (glasses / no 
glasses)

ORL face database: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html



Face Recognition by 
Principal Component Analysis
•Training Concept
•Treat each image as a vector

•Project vectors into a low-dimensional subspace, by taking 
only the most significant eigenvectors of the covariance 
matrix

•The vector of coefficients for each image are its features

•Recognition Concept
•Find the mean vector of each person in this low-dimensional 
subspace

•For every unknown image, use a nearest mean classifier



Eigen Vectors of Covariance Matrix

•There are 10 images of each person. We will use 9 for 
training, and then test face recognition performance on the 
10th (unseen) image.

•Each image is 112 x 92 pixels. Arrange it into a vector (size 
10304 x 1);

1. Arrange all 9 training images of each of 40 persons as 
columns into a matrix A. Size of A will be 10304 x 360



Eigenvectors of Covariance Matrix

1. Find the mean image of all training images

2. Subtract mean from all vectors, to make A zero mean

•Lets check mean of A now in the column direction

 >> norm(mean(A')', 2)

 ans =

    2.5633e-12



Eigenvectors of Covariance Matrix

•Now we need to find the eigenvalues and eigenvectors of 
L = AAT

•Size of L: 10304 x 10304

•Smart Computation Trick: Instead of computing eigenvectors 
of L = AAT, let’s consider the eigenvectors of 
C = ATA

•Claim: Let νi be an eigenvector of C. Then ϕi=Aνi is an 
eigenvector of L

•Proof: If νi is an eigenvector of C, then 



Eigenvectors of Covariance Matrix

4. Compute the 
eigenvectors C

5. Compute eigenvectors 
of L from eigenvectors 
of C

Top 20 eigenvectors of L



Projection and Reconstruction

•Finding Coefficients
•The i th coefficient is computed by taking the projection of 
the original vector on the i th eigenvector

•Reconstruction
•Each face image can be regenerated by a linear 
combination of eigenvectors weighted by coefficients



Projection

•Consider one face image

•Convert to column vector

•Project onto first K eigenvectors (e.g. 20)

•Subscript K denotes first K rows of ΦT

•We now have a compact representation of this 
image, given only by K numbers

1e6 x   

       177.98

       222.63

      -2.0764

      -27.749

       40.304

       14.775

       19.308

      -14.086

       26.112

      -4.9478

      -21.023

      0.61836

       5.8531

       2.5611

     -0.66498

      -3.1729

     -0.58037

       1.9752

       3.0335

      -3.4609



Reconstruction

•Image can be reconstructed by multiplying 
coefficients with eigenvectors

1e6 x   

       177.98

       222.63

      -2.0764

      -27.749

       40.304

       14.775

       19.308

      -14.086

       26.112

      -4.9478

      -21.023

      0.61836

       5.8531

       2.5611

     -0.66498

      -3.1729

     -0.58037

       1.9752

       3.0335

      -3.4609



Face Recognition by 
Principal Component Analysis
•Training Concept
•Treat each image as a vector

•Project vectors into a low-dimensional subspace, by taking 
only the most significant eigenvectors of the covariance 
matrix

•The vector of coefficients for each image are its features

•Recognition Concept
•Find the mean vector of each person in this low-dimensional 
subspace

•For every unknown image, use a nearest mean classifier



Face Recognition

Training

•Arrange training images in matrix A

•Compute C from A as C = ATA

•Compute eigenvectors of C

•Compute eigenvectors of L from 
eigenvectors of C

• Select few most significant 
eigenvectors of L

•Compute coefficients of vectors 
corresponding to each training 
image

• For each person, coefficients 
vectors should form a cluster. Find 
mean of this vector as a 
representation of that person

Recognition

•Create a vector of the image to be 
recognized

•Compute coefficients of this 
vector by projecting it onto the 
selected eigenvectors

•Decide which person this image 
belongs to based on the distance 
from the nearest mean vector of 
persons in training data



Dr Waqar Shahid Qureshi
Waqarshahid.qureshi@universityofgalway.ie

Thanks
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