
CT3536 Games Programming

Section 7
2D games in Unity

2D Games in Unity
● When you start a

new project, you
can select 2D or
3D

● The main difference is that the Main Camera is set to
Orthographic (rather than Perspective) for 2D games

The Size property
(referred to as
orthographicSize in
script) defines the
space you want to
display across the
screen.. i.e. making the
number smaller will
zoom the camera in

Sprites Assets and the SpriteRenderer Component
● Any png/jpg files you bring into

your project are available as sprites,
for display using the
SpriteRenderer component

● To make a new GameObject which
will display a sprite, right click in
the hierarchy and choose 2D Object
> Sprite

● Note: this is a Game Object in the
world, rather than in a Canvas (not
the same thing, different coordinate
systems, no RectTransform)

Movement only makes sense on the x and y axes
Rotation (typically) only makes sense on the z axis

https://docs.unity3d.com/560/Documentation/Manual/cl
ass-SpriteRenderer.html

https://docs.unity3d.com/560/Documentation/Manual/class-SpriteRenderer.html

2D Physics
https://docs.unity3d.com/560/Documentation/Manual/Physics2DReference.h
tml

2D games typically use Physics2D, Rigidbody2D, and
Collider2D rather than the normal 3D versions

Collider types include BoxCollider2D, CircleCollider2D,
PolygonCollider2D, and EdgeCollider2D

Unity uses a completely different physics engine for this,
optimized for 2D

https://docs.unity3d.com/560/Documentation/Manual/Physics2DReference.html

Example (see Zombies2D project on
Blackboard)

Spawning some crates (and a player)
public class GameManager : MonoBehaviour {

// inspector settings
public GameObject playerPrefab, zombiePrefab, cratePrefab;

// reference to the runtime-instantiated player object
public static GameObject thePlayer;

void Start () {
// spawn the player and some crates
thePlayer = Instantiate(playerPrefab);
thePlayer.transform.position = FindSpawnPosition(0.5f);

for (int i=0; i<20; i++) {
GameObject go = Instantiate(cratePrefab);
Vector2 pos = FindSpawnPosition(0.7f);
go.transform.position = pos; // .z gets set to 0 when Vector2 is assigned to Vector3
go.transform.rotation = Quaternion.AngleAxis(Random.Range(0f,360f), new Vector3(0f,0f,1f));

}
}

private Vector2 FindSpawnPosition(float spaceNeeded) {
Vector2 pos = Vector2.zero;
Vector2 testBoxSize = new Vector2(spaceNeeded,spaceNeeded);
do {

pos.x = Random.Range(-5.5f, 5.5f);
pos.y = Random.Range(-3.5f, 3.5f);

} // Physics2D.OverlapBox returns the first overlapping collider found (if any)
while (Physics2D.OverlapBox(pos, testBoxSize, 0f)!=null);

return pos;
}

}

Making the player move.
public class Player : MonoBehaviour {

// inspector settings
public Rigidbody2D rigid;

void FixedUpdate () {
// turn left/right with arrow keys
if (Input.GetKey(KeyCode.LeftArrow))
rigid.AddTorque(Time.fixedDeltaTime*20f);

else if (Input.GetKey(KeyCode.RightArrow))
rigid.AddTorque(-Time.fixedDeltaTime*20f);

// move forward with up arrow key
if (Input.GetKey(KeyCode.UpArrow))
rigid.AddForce(Time.fixedDeltaTime*100f*transform.right);

}
}

Note: the player's Rigidbody2D linear drag is 1 and angular drag is 5
Note: for Rigidbody2D, AddTorque takes just a scalar as its argument

Spawning some zombies
Add to the GameManager's Start() method:

// start spawning zombies
StartCoroutine(SpawnZombies());

Add a new method to GameManager.cs:

private IEnumerator SpawnZombies() {
for (int i=0; i<30; i++) {
yield return new WaitForSeconds(3f);
GameObject go = Instantiate(zombiePrefab);
Vector3 pos = FindSpawnPosition(0.5f);
while ((pos-thePlayer.transform.position).magnitude<2f)
pos = FindSpawnPosition(0.5f);

go.transform.position = pos;
go.transform.rotation =

Quaternion.AngleAxis(Random.Range(0f,360f), new Vector3(0f,0f,1f));
}

}

Create 3 layers and assign the Player, Zombie, and
Crates to them

Movement code for Zombies
public class Zombie : MonoBehaviour {
// inspector settings
public Rigidbody2D rigid;

void FixedUpdate () {
Vector3 playerPos = GameManager.thePlayer.transform.position;
Vector3 vecToPlayer = playerPos - transform.position;
Vector2 dirToPlayer = vecToPlayer.normalized;
float distToPlayer = vecToPlayer.magnitude;

// Facing within approx 45 degrees of the player?
float dot = Vector2.Dot(dirToPlayer, transform.right);
if (dot>0.707f) {
// Can see the player? (blocked by crates)
int cratesMask = LayerMask.GetMask("Crates");
if (!Physics2D.Raycast(transform.position, dirToPlayer, distToPlayer,

cratesMask)) {
// face the player
float turnToAngle = Mathf.Atan2(vecToPlayer.y, vecToPlayer.x);
rigid.rotation = turnToAngle*Mathf.Rad2Deg; // change radians to degrees
// move forwards
rigid.AddForce(Time.fixedDeltaTime*50f*transform.right);

}
}

}
}

