
L E C T U R E 5

T H R O W I N G & H A N D L I N G E X C E P T I O N S

D R A D R I A N C L E A R
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Objectives for today
• Understand the uses of exceptions in Java
• See how to create your own exceptions
• Demonstrate how to throw and catch exceptions

Uses of exception handling
• When method cannot complete its task
• Process exceptions from program components
• Uniformity in documenting, detecting, and recovering from

errors
• Useful for understanding error-processing code in large projects

Exception Handling Should Be Used!

Other Error-Handling Techniques
• Using no error-handling
• Not for mission critical applications

• Exit application on error
• Program must return resources

Basics of Java Exception Handling
• A method detects an error and throws an exception
• Exception handler processes the error

• The error is considered caught and handled in this model

• Code that could generate errors put in try blocks
• Code for error handling enclosed in a catch block
• The finally always executes with or without an error

• Keyword throws specifies exceptions a method might throw if
a problem occurs

• Termination model of exception handling
• The block in which the exception occurs expires

try Blocks
• The try block structure
try {
 statements that may throw an exception
}
catch (ExceptionType exceptionReference) {
 statements to process an exception
}

• A try is followed by any number of catch blocks

Throwing an Exception
• The throw statement
• Indicates an exception has occurred
• Operand is any class derived from Throwable

• Subclasses of Throwable
• Class Exception

• Problems that should be caught
• Class Error

• Serious exception should not be caught

• Control moves from try block to catch block

Catching an Exception
• Handler catches exception
• Executes code in catch block
• Should only catch Exceptions

• Program terminates if no appropriate handler
• Single catch can handle multiple exceptions
• Many ways to write exception handlers
• Rethrow exception if catch cannot handle it

throws Clause
• Lists the exceptions thrown by a method
int functionName(paramterList)
 throws ExceptionType1, ExceptionType2,…
{
 // method body
}

• RuntimeExceptions occur during execution
• ArrayIndexOutOfBoundsException
• NullPointerException

• Declare exceptions a method throws

Checked and unchecked exceptions
• Unchecked exceptions (or runtime exceptions) represent

unrecoverable errors that occur during the execution of a
program
• subclasses of RuntimeException (e.g. NullPointerException)
• Not necessary to add a throws declaration
• Not necessary to handle

• Checked exceptions are caught at compile time
• All exceptions other than subclasses of RuntimeException (e.g.
FileNotFoundException)

• Predictable and recoverable
• must be handled in the method body, either with a try/catch statement or

by re-throwing.
• Checked exceptions need throws declaration.

Finalizers, and Exception Handling
• Throw exception if constructor causes error
• Finalize called when object garbage collected
• Inheritance of exception classes
• Allows polymorphic processing of related exceptions

finally Block
• Resource leak
• Caused when resources are not released by a program

• The finally block
• Appears after catch blocks
• Always executes
• Use to release resources

Ó Prentice Hall.
All rights reserved.

1 // Fig. 14.9: UsingExceptions.java
2 // Demonstration of the try-catch-finally
3 // exception handling mechanism.
4 public class UsingExceptions {
5
6 // execute application
7 public static void main(String args[])
8 {
9 // call method throwException
10 try {
11 throwException();
12 }
13
14 // catch Exceptions thrown by method throwException
15 catch (Exception exception)
16 {
17 System.err.println("Exception handled in main");
18 }
19
20 doesNotThrowException();
21 }
22
23 // demonstrate try/catch/finally
24 public static void throwException() throws Exception
25 {
26 // throw an exception and immediately catch it
27 try {
28 System.out.println("Method throwException");
29 throw new Exception(); // generate exception
30 }
31

Method main
immediately enters

try block

Calls method
throwException

Handle exception
thrown by

throwException

Call method
doesNotThrow-

Exception

Method throws new
Exception

Ó Prentice Hall.
All rights reserved.

32 // catch exception thrown in try block
33 catch (Exception exception)
34 {
35 System.err.println(
36 "Exception handled in method throwException");
37 throw exception; // rethrow for further processing
38
39 // any code here would not be reached
40 }
41
42 // this block executes regardless of what occurs in
43 // try/catch
44 finally {
45 System.err.println(
46 "Finally executed in throwException");
47 }
48
49 // any code here would not be reached
50 }
51
52 // demonstrate finally when no exception occurs
53 public static void doesNotThrowException()
54 {
55 // try block does not throw an exception
56 try {
57 System.out.println("Method doesNotThrowException");
58 }
59
60 // catch does not execute, because no exception thrown
61 catch(Exception exception)
62 {
63 System.err.println(exception.toString());
64 }
65

Catch Exception

Rethrow Exception

The finally block
executes, even though
Exception thrown

Skip catch block
since no Exception

thrown

Ó Prentice Hall.
All rights reserved.

66 // this block executes regardless of what occurs in
67 // try/catch
68 finally {
69 System.err.println(
70 "Finally executed in doesNotThrowException");
71 }
72
73 System.out.println(
74 "End of method doesNotThrowException");
75 }
76
77 } // end class UsingExceptions

Method throwException
Exception handled in method throwException
Finally executed in throwException
Exception handled in main
Method doesNotThrowException
Finally executed in doesNotThrowException
End of method doesNotThrowException !

The finally block
always executes

14.14 Using printStackTrace and
getMessage
• Method printStackTrace
• Prints the method call stack

• Throwable class
• Method getMessage retrieves informationString

Ó Prentice Hall.
All rights reserved.

1 // Fig. 14.11: UsingExceptions.java
2 // Demonstrating the getMessage and printStackTrace
3 // methods inherited into all exception classes.
4 public class UsingExceptions {
5
6 // execute application
7 public static void main(String args[])
8 {
9 // call method1
10 try {
11 method1();
12 }
13
14 // catch Exceptions thrown from method1
15 catch (Exception exception) {
16 System.err.println(exception.getMessage() + "\n");
17 exception.printStackTrace();
18 }
19 }
20
21 // call method2; throw exceptions back to main
22 public static void method1() throws Exception
23 {
24 method2();
25 }
26
27 // call method3; throw exceptions back to method1
28 public static void method2() throws Exception
29 {
30 method3();
31 }
32

Error information
generated by

getMessage and
printStackTrace

Ó Prentice Hall.
All rights reserved.

33 // throw Exception back to method2
34 public static void method3() throws Exception
35 {
36 throw new Exception("Exception thrown in method3");
37 }
38
39 } // end class Using Exceptions

Exception thrown in method3

java.lang.Exception: Exception thrown in method3
 at UsingExceptions.method3(UsingExceptions.java:36)
 at UsingExceptions.method2(UsingExceptions.java:30)
 at UsingExceptions.method1(UsingExceptions.java:24)
 at UsingExceptions.main(UsingExceptions.java:11))

Throw an Exception
that propagates back to

main

In-class demonstration

Account
• Let’s refactor our code so that the setting of the balance is

done by a separate private method, setBalance
• setBalance should throw a LessThanZeroException if

the balance is negative
• Refactor the makeWithdrawal method so that it uses
setBalance

Next time…
• Handling Strings in Java

