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1 Introduction

1.1 Assessment

* Exam: 60%.

* 2 projects: 20% each.

1.2 Introduction to Artificial Intelligence

The field of Artificial Intelligence has evolved & changed many times over the years, with changes focussing both on the
problems & approaches in the field; many problems that were considered typical Al problems are now often considered
to belong in different fields. There are also many difficulties in defining intelligence: the Turing test attempts to give
an objective notion of intelligence and abstracts away from any notions of representation, awareness, etc. It attempts to
eliminate bias in favour of living beings by focusing solely on content of questions & answers. There are many criticisms
of the Turing test:

* Bias towards symbolic problem-solving criticisms;
* Doesn’t test many aspects of human intelligence;

* Possibly constrains notions of intelligence.

1.2.1 Approaches to Al
* Classical AI uses predicate calculus (& others) and logical inference to infer or find new information. It is a

powerful approach for many domains, but issues arise when dealing with noise or contradictory data.

* Machine learning learns from data and uses a distributed representation of learned information. It is typified
by neural networks & deep learning approaches.

* Agent-based systems view intelligence as a collective emergent behaviour from a large number of simple
interacting individuals or agents. Social systems provide another metaphor for intelligence in that they exhibit
global behaviours that enable them to solve problems that would prove impossible for any of the individual
members. Properties of agent-based systems / artificial life include:

— Agents are autonomous or semi-autonomous;
— Agents are situated;

— Agents are interactional;

— Society is structured;

— Intelligence is emergent.

2 Search

Many problems can be viewed as a search problem; consider designing an algorithm to solve a sudoku puzzle: in every
step, we are effectively searching for a move (an action) that takes us to a correct legal state. To complete the game, we are
iteratively searching for an action that brings us to legal board and so forth until completion. Other examples include
searching for a path in a maze, word ladders, chess, & checkers. The problem statement can be formalised as follows:

* The problem can be in various states.
* We start in an initial state.

* There is a set of actions available.

* Each action changes the state.

¢ Each action has an associated cost.
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* We want to reach some goal while minimising cost.
More formally:
* There is a set of (possible/legal) states .S
* There is some start state sg € .5}
* There is a set of actions A and action rules a(s) — s's
* There is some goal test g(s) — {0, 1} that tests if we have satisfied our goal;
* There is some cost function C'(s, a, s’) — R that associates a cost with each action;
* Search can be defined by the S-tuple (S, s, a, g, C).

We can then state the problem as follows: find a sequence of actions a1 . . . a,, and corresponding states sg . . . 55, such
that:

* g(sn) =1

while minimising the overall cost Y ;- | ¢(a;).

The problem of solving a sudoku puzzle can be re-stated as:
* Sudoku states: all legal sudoku boards.
* Start state: a particular, partially filled-in, board.
* Actions: inserting a valid number into the board.
* Goal test: all cells filled with no collisions.
* Cost function: 1 per move.

We can conceptualise this search as a search tree: a node represents a state, and the edges from a state represent the
possible actions from that state, with the edge pointing to the new resulting state from the action. Important factors of
a search tree include:

* The breadth of the tree (branching factor).

* The depth of the tree.

* The minimum solution depth.

* The size of the tree O(b%).

* The frontier: the set of unexplored nodes that are reachable from any currently explored node.

* Choosing which node to explore next is the key in search algorithms.
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2.1 Uninformed Search

In uninformed search, no information is known (or used) about solutions in the tree. Possible approaches include
expanding the deepest node (depth-first search) or expanding the closest node (breadth-first search). Properties that
must be considered for uninformed search include completeness, optimality, time complexity (the total number of
nodes visited), & space complexity (the size of the frontier).

visited = {};
frontier = {sSg};
goal found = False;

while (not goal found):
node = frontier.next();
frontier.delete(node);

if (g(node)):
goal found = True;
else
visited.add(node);
for child in node.children():
if (not visited.contains(child)):
frontier.add(child);

Listing 1: Pseudocode for an uninformed search

The manner in which we expand the node is key to how the search progresses. The way in which we implement
frontier.next() determines the type of search; otherwise the basic approach remains unchanged.

Depth-first search is good regarding memory cost, but produces suboptimal solutions:
* Space: O(bd).
* Time: O(b?).
* Completeness: only for finite trees.
* Optimality: no.
Breadth-first search produces an optimal solution, but is expensive with regards to memory cost:

* Space: O(b™ 1), where m is the depth of the solution in the tree.
* Time: O(b™).
¢ Completeness: yes.

* Optimality: yes (assuming constant costs).

Iterative deepening search attempts to overcome some of the issues of both breadth-first and depth-first search. It
works by running depth-first search to a fixed depth of z by starting at d = 1 and if no solution is found, incrementing
d and re-running.

* Low memory requirements (equal to depth-first search).
* Not many more nodes expanded than breadth-first search.

* Note that the leaf level will have more nodes than the previous layers.

Thus far, we have assumed each edge has a fixed cost; consider the case where the costs are not uniform: neither
depth-first search or breadth-first search are guaranteed to find the least-cost path in the case where action costs are not
uniform. One approach is to choose the node with the lowest cost: order the nodes in the frontier by cost-so-far (cost
of the path from the start state to the current node) and explore the next node with the smallest cost-so-far, which gives
an optimal and complete solution (given all positive costs).
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2.2 Informed Search

Thus far, we have assumed we know nothing about the search space; what should we do if we know something about
the search space? We know the cost of getting to the current node: the remaining cost of finding the solution is the
cost from the current node to the goal state; therefore, the total cost is the cost of getting from the start state to the
current node, plus the cost of getting from the current node to the goal state. We can use a (problem-specific) heuristic
h(s) to estimate the remaining cost: h(s) = 0is sisagoal. A good heuristic is fast to compute and close to the real costs.

Given that g(s) is the cost of the path so far, the A* algorithm expands the node s to minimise g(s) + h(s). The
frontier nodes are managed as a priority queue. If h never overestimates the cost, the A* algorithm will find the optimal
solution.

2.3 Adversarial Search

The typical game setting is as follows:
* 2 player;
* Alternating turns;
* Zero-sum (gain for one, loss for another);
* Perfect information.
A game is said to be solved if an optimal strategy is known.
* A strong solved game is one which is solved for all positions;
* A weak solved game is one which is solved for some (start) positions.
A game has the following properties:
* Asetof possible states;
o A start state;
¢ A set of actions;
* A set of end states (many);
* An objective function;
* Control over actions alternates.

The minimax algorithm computes a value for each node, going backwards from the end-nodes. The max player
selects actions to maximise return, while the min player selects actions to minimise return. The algorithm assumes
perfect play from both players. For optimal play, the agent has to evaluate the entire game tree. Issues to consider
include:

* Noise / randomness;
* Efficiency - size of the tree;
* Many game trees are too deep;

* Many game trees are too broad.
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Alpha-beta pruning is a means to reduce the search space wherein sibling nodes can be pruned based on previously
found values. Alpha represents the best maximum value found so far (for the maximising player), and beta represents
the best minimum value found so far (for the minimising player). If a node’s value proves irrelevant (based on the
alpha & beta values), its entire subtree can be discarded. In reality, for many search scenarios in games, even with
alpha-beta pruning, the space is much too large to get to all end states. Instead, we use an evaluation function
which is effectively a heuristic to estimate the value of a state (the probability of a win or a loss). The search is ran to a
fixed depth and all states are evaluated at that depth. Look-ahead is performed from the best states to another fixed depth.

Horizon effects refer to the limitations that arise when the algorithm evaluates a position based on a finite search depth
(the horizon):

* What if something interesting / unusual / unexpected occurs at horizon + 1?
* How do you identify that?
* When to generate and explore more nodes?

* Deceptive problems.
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