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2 WHAT IS MACHINE LEARNING?

1 Introduction

1.1

Lecturer Contact Details

¢ Dr. Frank Glavin.

® frank.glavin@universityofgalway.ie

1.2

Grading

* Continuous Assessment: 30% (2 assignments, worth 15% each).

* Written Exam: 70% (Last 2 year’s exam papers most relevant).

1.3

Module Overview

Machine Learning (ML) allows computer programs to improve their performance with experience (i.e., data). This
module is targeted at learners with no prior ML experience, but with university experience of mathematics & statistics
and strong programming skills. The focus of this module is on practical applications of commonly used ML algorithms,
including deep learning applied to computer vision. Students will learn to use modern ML frameworks (e.g., scikit-learn,

Tensorflow / Keras) to train & evaluate models for common categories of ML task including classification, clustering, &

regression.

1.3.1 Learning Objectives

On successful completion, a student should be able to:

1.

2.

Explain the details of commonly used Machine Learning algorithms.

Apply modern frameworks to develop models for common categories of Machine Learning task, including
classification, clustering, & regression.

Understand how Deep Learning can be applied to computer vision tasks.

Pre-process datasets for Machine Learning tasks using techniques such as normalisation & feature selection.

. Select appropriate algorithms & evaluation metrics for a given dataset & task.

. Choose appropriate hyperparameters for a range of Machine Learning algorithms.

Evaluate & interpret the results produced by Machine Learning models.
Diagnose & address commonly encountered problems with Machine Learning models.

Discuss ethical issues & emerging trends in Machine Learning.

2 What is Machine Learning?

There are many possible definitions for “machine learning”:

* Samuel, 1959: “Field of study that gives computers the ability to learn without being explicitly programmed”.

¢ Witten & Frank, 1999: “Learning is changing behaviour in a way that makes performance better in the future”.

* Mitchelll, 1997: “Improvement with experience at some task”. A well-defined ML problem will improve over

task 1" with regards to performance measure P, based on experience £.

* Artificial Intelligence # Machine Learning # Deep Learning.

* Artificial Intelligence 2 Machine Learning ;2 Deep Learning.
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2 WHAT IS MACHINE LEARNING?

Machine Learning techniques include:

* Supervised learning.

* Unsupervised learning.

* Semi-Supervised learning.

* Reinforcement learning.
Major types of ML task include:

1. Classification.

2. Regression.

3. Clustering.

4. Co-Training.

5. Relationship discovery.

6. Reinforcement learning.
Techniques for these tasks include:

1. Supervised learning:

¢ Classification: decision trees, SVMs.

* Regression: linear regression, neural nets, -NN (good for classification too).
2. Unsupervised learning:

* Clustering: k-Means, EM-clustering.

* Relationship discovery: association rules, bayesian nets.
3. Semi-Supervised learning:

* Learning from part-labelled data: co-training, transductive learning (combines ideas from clustering &
classification).

4. Reward-Based:
* Reinforcement learning: Q-learning, SARSA.

In all cases, the machine searches for a hypothesis that best describes the data presented to it. Choices to be made
include:

* How is the hypothesis expressed? e.g., mathematical equation, logic rules, diagrammatic form, table, parameters
of amodel (e.g. weights of an ANN), etc.

* How is search carried out? e.g., systematic (breadth-first or depth-first) or heuristic (most promising first).
* How do we measure the quality of a hypothesis?
* What is an appropriate format for the data?
* How much data is required?
To apply ML, we need to know:

* How to formulate a problem.
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* How to prepare the data.
* How to select an appropriate algorithm.
* How to interpret the results.
To evaluate results & compare methods, we need to know:
* The separation between training, testing, & validation.
* DPerformance measures such as simple metrics, statistical tests, & graphical methods.
* How to improve performance.
* Ensemble methods.

* Theoretical bounds on performance.

2.1 Data Mining

Data Mining is the process of extracting interesting knowledge from large, unstructured datasets. This knowledge is
typically non-obvious, comprehensible, meaningful, & useful.

The storage “law” states that storage capacity doubles every year, faster than Moore’s “law”, which may results in
write-only “data tombs”. Therefore, developments in ML may be essential to be able to process & exploit this lost data.

2.2 Big Data

Big Data consists of datasets of scale & complexity such that they can be difficult to process using current standard
methods. The data scale dimensions are affected by one or more of the “3 Vs”:

* Volume: terabytes & up.

* Velocity: from batch to streaming data.

* Variety: numeric, video, sensor, unstructured text, etc.
It is also fashionable to add more “Vs” that are not key:

* Veracity: quality & uncertainty associated with items.

* Variability: change / inconsistency over time.

* Value: for the organisation.

Key techniques for handling big data include: sampling, inductive learning, clustering, associations, & distributed
programming methods.

3 Introduction to Python

Python is a general-purpose high-level programming language, first created by Guido van Rossum in 1991. Python
programs are interpreted by an interpreter, e.g. CPython — the reference implementation supported by the Python
Software Foundation. CPython is both a compiler and an interpreter as it first compiles Python code into bytecode
before interpreting it.

Python interpreters are available for a wide variety of operating systems & platforms. Python supports multiple
programming paradigms, including procedural programming, object-oriented programming, & functional program-
ming. Python is dynamically typed, unlike languages such as C, C++, & Java which are statically typed, meaning that
many common error checks are deferred until runtime in Python, whereas in a statically typed language like Java these
checks are performed during compilation.
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Python uses garbage collection, meaning that memory management is handled automatically and there is no need for
the programmer to manually allocate & de-allocate chunks of memory.

Python is used for all kinds of computational tasks, including:
* Scientific computing.
* Data analytics.
* Artificial Intelligence & Machine Learning.
* Computer vision.
* Web development / web apps.
* Mobile applications.
* Desktop GUI applications.

While having relatively simple syntax and being easy to learn for beginners, Python also has very advanced functionality.
It is one of the most widely used programming languages, being both open source & freely available. Python programs
will run almost anywhere that there is an installation of the Python interpreter. In contrast, many languages such as C
or C++ have separate binaries that must be compiled for each specific platform & operating system.

Python has a wide array of libraries available, most of which are free & open source. Python programs are usually much
shorter than the equivalent Java or C++ code, meaning less code to write and faster development times for experienced
Python developers. Its brevity also means that the code is easier to maintain, debug, & refactor as much less source code
is required to be read for these tasks. Python code can also be run without the need for ahead-of-time compilation (as
in C or C++), allowing for faster iterations over code versions & faster testing. Python can also be easily extended &
integrated with software written in many other programming languages.

Drawbacks of using Python include:

* Efficiency: Program execution speed in Python is typically a lot slower than more low-level languages such as C
or C++. The relative execution speed of Python compared to C or C++ depends a lot on coding practices and
the specific application being considered.

* Memory Management in Python is less efficient than well-written C or C++ code although these efficiency
concerns are not usually a major issues, as compute power & memory are now relatively cheap on desktop,
laptop, & server systems. Python is used in the backend of large web services such as Spotify & Instagram,
and performs adequately. However, these performance concerns may mean that Python is unsuitable for some
performance-critical applications, e.g. resource-intensive scientific computing, embedded devices, automotive,
etc. Faster alternative Python implementations such as PyPy are also available, with PyPy providing an average
of a four-fold speedup by implementing advanced compilation techniques. It’s also possible to call code that is
implemented in C within Python to speed up performance-critical sections of your program.

* Dynamic typing can make code more difficult to write & debug compared to statically-typed languages, wherein
the compiler checks that all variable types match before the code is executed.

¢ Python2 vs Python3: There are two major version of Python in widespread use that are not compatible with
each other due to several changes that were made when Python3 was introduced. This means that some libraries
that were originally written in Python2 have not been ported over to Python3. Python2 is now mostly used only
in legacy business applications, while most new development is in Python3. Python2 is no longer supported or
receives updates as of 2020.
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3.1 Running Python Programs

Python programs can be executed in a variety of different ways:
* through the Python interactive shell on your local machine.
* through remote Python interactive shells that are accessible through web browsers.
* by using the console of your operating system to launch a standalone Python script (. py file).
* by using an IDE to launch a . py file.
* as GUI applications using libraries such as Tkinter PyQt.

* as web applications that provide services to other computers, e.g. by using the Flask framework to create a web
server with content that can be accessed using web browsers.

¢ through Jupyter / JupyterLab notebooks, either hosted locally on your machine or cloud-based Jupyter notebook
execution environments such as Google Colab, Microsoft Azure Notebooks, Binder, etc.

3.2 Hello World

The following programs writes “Hello World!” to the screen.

print("Hello World!")

Listing 1: helloworld.py

3.3 PEP 8 Style Guide

PEPs (Python Enhancement Proposals) describe & document the way in which the Python language evolves over time,
e.g. addition of new features. Backwards compatibility policy etc. PEPSs can be proposed, then accepted or rejected.
The full list is available at https: //www.python.org/dev/peps/. PEP 8 gives coding conventions for the Python code
comprising the standard library in the main Python distribution. See: https://www.python.org/dev/peps/pep-0008/.
It contains conventions for the user-defined names (e.g., variables, functions, packages), as well as code layout, line
length, use of blank lines, style of comments, etc.

Many professional Python developers & companies adhere to (at least some of) the PEP8 conventions. It is important to
learn to follow these conventions from the start, especially if you want to work with other programmers, as experienced
Python developers will often flag violations of the PEP 8 conventions during code reviews. Of course, many companies
& open-source software projects have defined their own internal coding style guidelines which take precedence over
PEP 8 in the case of conflicts. Following PEP 8 conventions is relatively easy if you are using a good IDE, e.g. PyCharm
automatically finds & alerts you to violations of the PEP 8 conventions.

3.3.1 Variable Naming Conventions

According to PEP 8, variable names “should be lowercase, with words separated by underscores as necessary to improve
readability”, i.e. snake_case. “Never use the characters 1, 0, or I as single-character variable names. In some fonts, these
characters are indistinguishable from the numerals one & zero. When tempted to use 1, use L instead”. According
to PEP 8, different naming conventions are used for different identifiers, e.g.: “Class names should normally use the
CapWords convention”. This helps programmers to quickly & easily distinguish which category an identifier name
represents.

3.3.2 Whitespace in Python

A key difference between Python and other languages such as C is that whitespace has meaning in Python. The PEP 8
style guidelines say to “Use 4 spaces per indentation level”, not 2 spaces, and not a tab character. This applies to all
indented code blocks.
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3.4 Dynamic Typing

In Python, variable names can point to objects of any type. Built-in data types in python include str, int, float, etc.
Each type can hold a different type of data. Because variables in Python are simply pointers to objects, the variable
names themselves do not have any attached type information. Types are linked not to the variable names but to the
objects themselves.

X =4

print(type(x)) # prints "<class 'int's" to the console

x = "Hello World!"

print(type(x)) # prints "<class 'str's" to the console

X = 3.14159

print(type(x)) # prints "<class 'float'>" to the console

Listing 2: Dynamic Typing Example

Note that type() is a built-in function that returns the type of any object that is passed to it as an argument. It returns
a type object.

Because the type of object referred to by a variable is not known until runtime, we say that Python is a dynami-
cally typed language. In statically typed languages, we must declare the type of a variable before it is used: the type
of every variable is known before runtime.

Another important difference between Python and statically typed languages is that we do not need to declare variables
before we use them. Assigning a value to a previously undeclared variable name is fine in Python.

3.5 Modules, Packages, & Virtual Environments
3.5.1 Modules

A module is an object that serves as an organisational unit of Python code. Modules have a namespace containing
arbitrary Python objects and are loaded into Python by the process of importing. A module is essentially a file containing
Python definitions & statements.

Modules can be run either as standalone scripts or they can be imported into other modules so that their built-
in variables, functions, classes, etc. can be used. Typically, modules group together statements, functions, classes, etc.
with related functionality. When developing larger programs, it is convenient to split the source code up into separate
modules. As well as creating our own modules to break up our source code into smaller units, we can also import
built-in modules that come with Python, as well as modules developed by third parties.

Python provides a comprehensive set of built-in modules for commonly used functionality, e.g. mathematical functions,
date & tie, error handling, random number generation, handling command-line arguments, parallel processing, net-
working, sending email messages, etc. Examples of modules that are built-in to Python include math, string, argparse,
calendar, etc. The math module is one of the most commonly used modules in Python, although the functions in the
math module do not support complex numbers; if you require complex number support, you can use the cmath module.
A full list of built-in modules is available at/https://docs.python.org/3/py-modindex.html.

3.5.2 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”: for example, the
module name A.B designates a submodule named B in a package A. Just like the use of modules saves the authors of
different modules from having to worry about each other’s global variable names, the use of dotted module names saves
the authors of multi-module packages like NumPy or Pillow from having to worry about each other’s module names.
Individual modules can be imported from a package: import sound.effects.echo.

PEP 8 states that “Modules should have short, all-lowercase names. Underscores can be used in the module name if it
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improves readability. Python packages should also have short, all-lowercase names, although the use of underscores is
discouraged.”

3.5.3 Managing Packages with pip

pip can be used to install, upgrade, & remove packages and is supplied by default with your Python installation. By
default, pip will install packages from the Python Package Index (PyPI) https://pypi.org. You can browse the Python
Package Index by visiting it in your web browser. To install packages from PyPI:

python -m pip install projectname

To upgrade a package to the latest version:

python -m pip install --upgrade projectname

3.5.4 Virtual Environments

Python applications will often use packages & modules that don’t come as part of the standard library. Applications will
sometimes need a specific version of a library, because the application may require that a particular bug has been fixed or
the application may have been written using an obsolete version of the library’s interface. This means that it may not
be possible for one Python installation to meet the requirements of every application. If application A needs version
1.0 of a particular module but application B needs version 2.0, then the requirements are in conflict and installing
either version 1.0 or 2.0 will leave one application unable to run. The solution for this problem is to create a virtual
environment, a self-contained directory tree that contains a Python installation for a particular version of Python plus
a number of additional packages. Different applications can then use different virtual environments.

By default, most IDEs will create a new virtual environment for each new project created. It is also possible to set up a
project to run on a specific pre-configured virtual environment. The built-in module venv can also be used to create &
manage virtual environments through the console.

To use the venv module, first decide where you want the virtual environment to be created, then open a command line
at that location use the command python -m venv environmentname to create a virtual environment with the specified
name. You should then see the directory containing the virtual environment appear on the file system, which can then
be activated using the command source environmentname/bin/activate.

To install a package to a virtual environment, first activate the virtual environment that you plan to install it to and then
enter the command python -m pip install packagename.

If you have installed packages to a virtual environment, you will need to make that virtual environment available
to Jupyter Lab so that your . ipynb files can be executed on the correct environment. You can use the package ipykrenel
to do this.

4 Classification

4.1 Supervised Learning Principles

Recall from before that there are several main types of machine learning techniques, including supervised learning,
unsupervised learning, semi-supervised learning, & reinforcement learning. Supervised learning tasks include both
classification & regression.

The task definition of supervised learning is to, given examples, return a function h (hypothesis) that approximates
some “true” function f that (hypothetically) generated the labels for the examples. We need to have a set of examples
called the training data, each having a label & a set of attributes that have known values.
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We consider the labels (classes) to be the outputs of some function f: the observed attributes are its inputs. We
denote the attribute value inputs x and labels are their corresponding outputs f(x). An example is a pair (z, f(z)).
The function f is unknown, and we want to discover an approximation of it . We can then use / to predict labels of
new data (generalisation). This is also known as pure inductive learning.

Anyone for Tennis? — I
Attributes/ __ _ Description
Dimensions —+ ID Outlook | Temp Hun_lldlty Windy Play?
A sunny hot high false no
B sunny hot high true no
One Training C overcast hot high false yes
Case —r D rainy mild high false yes
E rainy cool normal false yes
F rainy cool normal true no
G overcast normal true yes
Identifier Attribute values = Labels/Classes/Target Attribute =
(not used in learning) Independent variables Dependent variable

Figure 1: Training Data Example for a Classification Task

Tennis
Training Data

[' |
B -0

Figure 2: Overview of the Supervised Learning Process

4.2 Introduction to Classification
The simplest type of classification task is where instances are assigned to one of two categories: this is referred to as
a binary classification task or two-class classification task. Many popular machine learning problems fall into this

category:

* Is cancer present in a scan? (Yes / No).

Should this loan be approved? (Yes / No).

Sentiment analysis in text reviews of products (Positive / Negative).

* Face detection in images (Present / Not Present).

The more general form of classification task is the mutli-class classification where the number of classes is > 3.
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4.2.1 Example Binary Classification Task

Objective: build a binary classifier to predict whether a new previously unknown athlete who did not feature in the

dataset should be drafted.

There 20 the

college athletes.csv on Canvas.

are examples in dataset, see

The college athlete’s dataset contains two attributes:
* Speed (continuous variable).
* Agility (continuous variable).

The target data: whether or not each athlete was drafted to
a professional team (yes / no).

College Athletes

ID Speed Agility Draft
1 2.5 6 no
2 3.75 8 no
3 2.25 5.5 no
4 3.25 8.25 no
5 2.75 7.5 no
6 4.5 5 no
7 3.5 5.25 no
8 3 3.25 no
9 4 4 no
10 4.25 3.75 no
11 2 2 no
12 5 2.5 no
13 8.25 8.5 no
14 5.75 8.75 yes
15 4.75 6.25 yes
16 5.5 6.75 yes
17 5.25 9.5 yes
18 7 4.25 yes
19 7.5 8 yes
20 7.25 5.75 yes

Figure 3: Example Dataset for a Binary Classification Task

10
. * %
8 TR +.
6 bl *. %
_.é\ g a 0%20
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I!I
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x Draft=no
+ Draft=yes
% 2 4 6 8 10

Speed

Figure 4: Feature Space Plot for the College Athlete’s Dataset

We want to decide on a reasonable decision boundary to categorise new unseen examples, such as the one denoted
by the purple question mark below. We need algorithms that will generate a hypothesis / model consistent with the
training data. Is the decision boundary shown below in thin black lines a good one? It is consistent with all of the
training data, but it was drawn manually; in general, it won’t be possible to manually draw such decision boundaries

when dealing with higher dimensional data (e.g., more than 3 features).
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10
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Figure 5: Feature Space Plot for the College Athlete’s Dataset

4.2.2 Example Classification Algorithms

There are many machine learning algorithms available to learn a classification hypothesis / model. Some examples (with

corresponding scikit-learn classes) are:

* k-nearest neighbours: scikit-learn KNeighboursClassifier.

Decision trees: scikit-learn DecisionTreeClassifier.

Gaussian Processes: scikit-learn GaussianProcessClassifier.

Neural networks: scikit-learn MLPClassifier.

Logistic regression: scikit-learn LogisticRegression. Note that despite its name, logistic regression is a linear

model for classification rather than regression.

4.2.3 Logistic Regression on the College Athletes Dataset

Below is an example of a very simple hypothesis generated using an ML model — a linear classifier created using the
scikit-learn LogisticRegression with the default settings.

10
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College athletes logistic regression (scikit-learn defaults)

10

AglIILy

Speed

Figure 6: Logistic Regression on the College Athletes Dataset

Is this a good decision boundary? 12 training examples correct = 90.4% accuracy. Note how the decision boundary is
a straight line (in 2D). Note also that using logistic regression makes a strong underlying assumption that the data is

linearly separable.

4.2.4 Decision Tree on the College Athletes Dataset

Below is an example of a more complex hypothesis, generated using the scikit-learn DecisionTreeClassifier with the

default settings.

College athletes decision tree (scikit-learn defaults)

10
8 1D=13
6
=
<
4
2
: Draft=no
+ Draft=yes
0
0 2 4 6 8 10

Speed

Figure 7: Decision Tree on the College Athletes Dataset

Note the two linear decision boundaries: this is a very different form of hypothesis compared to logistic regression. Is

this a good decision boundary? 21 training examples correct = 100% accuracy.

11
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4.2.5 Gaussian Process on the College Athletes Dataset

Below is an example of a much more complex hypothesis generated using the scikit-learn GaussianProcessClassifier

with the default settings.

College athletes gaussian process (scikit-learn defaults)

10

Speed

Figure 8: Gaussian Process on the College Athletes Dataset

Note the smoothness of the decision boundary compared to the other methods. Is this a good decision boundary? %

training examples correct = 100% accuracy.

Which of the three models explored should we choose? It’s complicated; we need to consider factors such as accuracy of
the training data & independent test data, complexity of the hypothesis, per-class accuracy etc.

4.2.6 Use of Independent Test Data

Use of separate training & test datasets is very important when developing an ML model. If you use all of your data
for training, your model could potentially have good performance on the training data but poor performance on new

independent test data.

12
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