CT404

Graphics & Image Processing

Name: Andrew Hayes
E-mail: [a.hayes18@universityofgalway.ie 2024-09-16
Student ID: 21321503

mailto://a.hayes18@universityofgalway.ie

CONTENTS

Contents

|2_Introduction to 2D Grthic§|
2.1 Digita| Images — Bitmapsl

2.2 Colour Encoding Schernej
2.3 The Real-Time Graphics Pipeling|

2.4 GraEhics Software|

2.5 GraphicsFormat]
[3 2D Vector Graphics|

3.1 Transformations
[3.1.1 2D Translation|

[3.1.2 2D Rotationofa Poimt|

3.1.3 2D Rotation of an Object|

3.1.4 Arbitrary 2D Rotation|

1 Matrix ion|

3.1.6 Scalingl

3.1.7 Order of Transformations|

{4 2D Raster Graphics|

[4.1 Tntroduction to HTMLS/Canvas|
(4.1.1 Canvas: Rendering Contexts|
[4.1.2 Canvas2D: Primitives|.
[4.1.3 Canvas2D: drawImage()]

4.1.4 nvas2D: Fill rok lours| . .
4.1. Canvas2D: Translations]

4.1 nvas2D: Order of Transformation
4.1.7 Scalingl

4.1.8 Canvas2D: Programmatic Graphics|

—_ e

NN N = -

W W W N

B

N

............................. 10

o 0] N &N Lt v N

2 INTRODUCTION TO 2D GRAPHICS

1 Introduction
Textbooks:
* Main textbook: [mage Processing and Analysis — Stan Birchfield (ISBN: 978-1285179520).
* Introduction to Computer Graphics — David J. Eck. (Available online at https://math.hws.edu/graphicsbook/).
* Computer Graphics: Principles and Practice — John F. Hughes et al. (ISBN: 0-321-39952-8).
* Computer Vision: Algorithms and Applications — Richard Szeliski (ISBN: 978-3-030-34371-2).

Computer graphics is the processing & displaying of images of objects that exist conceptually rather than physically
with emphasis on the generation of an image from a model of the objects, illumination, etc. and the real-time rendering
of images. Ideas from 2D graphics extend to 3D graphics.

Digital Image processing/analysis is the processing & display of images of real objects, with an emphasis on the
modification and/or analysis of the image in order to automatically or semi-automatically extract useful information.
Image processing leads to more advanced feature extraction & pattern recognition techniques for image analysis &
understanding.

1.1 Grading

* Assignments: 30%.

* Final Exam: 70%.

1.1.1 Reflection on Exams

“A lot of people give far too little detail in these questions, and/or don’t address the discussion parts — they just give
some high-level definitions and consider it done — which isn’t enough for final year undergrad, and isn’t answering
the question. More is expected in answers than just repeating what’s in my slides. The top performers demonstrate a
higher level of understanding and synthesis as well as more detail about techniques and discussion of what they do on a
technical level and how they fit together”

1.2 Lecturer Contact Information

* Dr. Nazre Batool. * Dr. Waqar Shahid Qureshi.
® nazre.batool@universityofgalway.ie ® wagarshahid.qureshi@universityofgalway.ie.

* Office Hours: Thursdays 16:00 — 17:00, CSB-2009. ¢ Office Hours: Thursdays 16:00 — 17:00, CSB-3001.

2 Introduction to 2D Graphics

2.1 Digital Images — Bitmaps

Bitmaps are grid-based arrays of colour or brightness (greyscale) information. Pixels (picture elements) are the cells of a
bitmap. The depth of a bitmap is the number of bits-per-pixel (bpp).

2.2 Colour Encoding Schemes

Colour is most commonly represented using the RGB (Red, Green, Blue) scheme, typically using 24-bit colour with

one 8-bit number representing the level of each colour channel in that pixel.

Alternatively, images can also be represented in greyscale wherein pixels are represented with one (typically 8-bit)
brightness value (or scale of grey) .

https://math.hws.edu/graphicsbook/
mailto://nazre.batool@universityofgalway.ie
mailto://waqarshahid.qureshi@universityofgalway.ie

3 2D VECTOR GRAPHICS

2.3 The Real-Time Graphics Pipeline

~

Rasterization

- B

Geometry

e

Application ‘

Model & View
Transformations

Scan Conversion

& Pixel Shading
+3D Models and texture
loading

*User interaction
handling

Etc.

Vertex Shading &
lllumination

Projection

Clipping (visibility
culling)

Screen Mapping

- 4

(World/obj space algs.)

(Image space algs.)

Figure 1: The Real-Time Graphics Pipeline

2.4 Graphics Software

The Graphics Processing Unit (GPU) of a computer is a hardware unit designed for digital image processing & to
accelerate computer graphics that is included in modern computers to complement the CPU. They have internal,
rapid-access GPU memory and parallel processors for vertices & fragments to speed up graphics renderings.

OpenGLisa 2D & 3D graphics API that has existed since 1992 that is supported by the graphics hardware in most
computing devices today. WebGL is a web-based implementation of OpenGL for use within web browsers. OpenGL
ES for Embedded Systems such as tablets & mobile phones also exists.

OpenGL was originally a client/server system with the CPU+Application acting as a client sending commands &
data to the GPU acting as a server. This was later replaced by a programmable graphics interface (OpenGL 3.0) to write
GPU programs (shaders) to be run by the GPU directly. It is being replaced by newer APIs such as Vulkan, Metal, &
Direct3D and WebGL is being replaced by WebGPU.

2.5 Graphics Formats

Vector graphics are images described in terms of co-ordinate drawing operations, e.g. AutoCAD, PowerPoint, Flash,
SVG. SVG (Scalable Vector Graphics) is an image specified by vectors which are scalable without losing any quality.

Raster graphics are images described as pixel-based bitmaps. File formats such as GIF, PNG, JPEG represent the
image by storing colour values for each pixel.

3 2D Vector Graphics

2D vector graphics describe drawings as a series of instructions related to a 2-dimensional co-ordinate system. Any
point in this co-ordinate system can be specified using two numbers (x, y):

3 2D VECTOR GRAPHICS

* The horizontal component , measuring the distance from the left-hand edge of the screen or window.

* The vertical component ¥, measuring the distance from the bottom of the screen or window (or sometimes from

the top).

3.1 Transformations

3.1.1 2D Translation

The translation of a point in 2 dimensions is the movement of a point (z, y) to some other point (', y').
/
r=x+a

y=y+b

(x%y")

(x.y)
o- a -

Figure 2: 2D Translation of a Point

3.1.2 2D Rotation of a Point

The simplest rotation of a point around the origin is given by:
z' =z cosh — ysinb

y' = xcosf + ysinb

(x.y)

(X,y)

Figure 3: 2D Rotation of a Point

3 2D VECTOR GRAPHICS

3.1.3 2D Rotation of an Object

In vector graphics, objects are defined as series of drawing operations (e.g., straight lines) performed on a set of vertices.
To rotate a line or more complex object, we simply apply the equations to rotate a point to the (z, y) co-ordinates of

each vertex.

45 degree rotation applied (_20 sin 45
. El

(0,20) |
20 cos 43) S5 (10 cos 45
v\‘}o sin 45)
100 / (o) \, (10.0) 1

\4)) (-10 cos 45‘7 -10 sin 45,

-10 sin 45) -10 cos 45)

Figure 4: 2D Rotation of an Object

3.1.4 Arbitrary 2D Rotation

In order to rotate around an arbitrary point (a, b), we perform translation, then rotation, then reverse the translation.
¥ =a+ (x—a)cosh — (y — b)sinf

v =a+ (z—a)cost + (y —b)sind

@b
X.¥)

xy)

QO

Figure 5: Arbitrary 2D Rotation

3.1.5 Matrix Notation

Matrix notation is commonly used for vector graphics as more complex operations are often easier in matrix format
and because several operations can be combined easily into one matrix using matrix algebra.

Rotation about (0, 0):
] cos sind]

—sinf@ cosf

Translation: _

2" Yyl =z y 1]

L O
o = O
- o O

4 2D RASTER GRAPHICS

3.1.6 Scaling

Scaling of an object is achieved by considering each of its vertices in turn, multiplying said vertex’s x & y values by
the scaling factor. A scaling factor of 2 will double the size of the object, while a scaling factor of 0.5 will halve it. Itis
possible to have different scaling factors for x & y, resulting in a stretch:

iL',:.I‘XS

Yy =yxt

If the object is not centred on the origin, then scaling it will also effect a translation.

3.1.7 Order of Transformations

¢ Translation 2 units along the red axis + Rotation by 45 degrees

¢ Then Rotation by 45 degrees around + Then Translation 2 units along the
the (new) centre (rotated) red axis

Figure 6: Order of Transformations

4 2D Raster Graphics

The raster approach to 2D graphics considers digital images to be grid-based arrays of pixels and operates on the images
at the pixel level.

4.1 Introduction to HTML5/Canvas
HTML or HyperText Markup Language is a page-description language used primarily for website. HIMLS brings

major updates & improvements to the power of client-side web development.

A canvas is a 2D raster graphics component in HTMLS. There is also a canvas with 3D (WebGL) which is a
3D graphics component that is more likely to be hardware-accelerated but is also more complex.
4.1.1 Canvas: Rendering Contexts

<canvas> creates a fixed-size drawing surface that exposes one or more rendering contexts. The getContext () method
returns an object with tools (methods) for drawing.

<html>
<head>
<script>
function draw() {
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

4 2D RASTER GRAPHICS

</html>

ctx.fillStyle = "rgb(200,0,0)";
ctx.fillRect (10, 10, 55, 50);
ctx.fillStyle = "rgba(0, 0, 200, 0.5)";
ctx.fillRect (30, 30, 55, 50);

}

</script>

</head>
<body onload="draw();">

<canvas id="canvas" width="150" height="150"></canvas>

</body>

Figure 7: Rendering of the Above HTML Code

4,1.2 Canvas2D: Primitives

Canvas2D only supports one primitive shape: rectangles. All other shapes must be created by combining one or more

paths. Fortunately, there are a collection of path-drawing functions which make it possible to compose complex shapes.

var

var

ctx

ctx

ctx.
ctx.
ctx.
ctx.
ctx.
ctx.
.arc(75,75,35,0,Math.PI, false); // Mouth (clockwise)
ctx.
ctx.
ctx.
.arc(90,65,5,0,Math.PI*2,true); // Right eye
ctx.

function draw(){

canvas = document.getElementById('canvas');

ctx = canvas.getContext('2d"');
fillRect(125,25,100,100);
clearRect(145,45,60,60);
strokeRect(150,50,50,50);

beginPath();

arc(75,75,50,0,Math.PI*2,true); // Outer circle
moveTo(110,75);

moveTo(65,65);
arc(60,65,5,0,Math.PI*2,true); // Left eye

moveTo(95,65);

stroke(); // renders the Path that has been built up..

Figure 8: Rendering of the Above JavaScript Code

4 2D RASTER GRAPHICS

4.1.3 Canvas2D: drawImage()

The example below uses an external image as the backdrop of a small line graph:

function draw()
var ctx = do
var img = ne
img.src = 'b
img.onload =
ctx.draw
ctx.begi
ctx.move
ctx.line
ctx.line
ctx.line
ctx.stro
}

{
cument .getElementById('canvas').getContext('2d');
w Image();
ackdrop.png';

function(){
Image(img,0,0);
nPath();
To(30,96);
To(70,66);
To(103,76);
To(170,15)
ke();

’

(
(
(
(

Figure 9: Rendering of the Above JavaScript Code

4.1.4 Canvas2D: Fill & Stroke Colours

<html>
<head>
<script>
func

}

</script

tion draw() {

var canvas = document.getElementById("canvas");
var context = canvas.getContext('2d');

// Filled Star

context.lineWidth=3;
context.fillStyle="#CCOOFF";
context.strokeStyle="#ffffo0"; // NOT lineStyle!
context.beginPath();

context.moveTo(100,50);
context.lineTo(175,200);

context.lineTo(0,100);

context.lineTo(200,100);
context.lineTo(25,200);

context.lineTo(100,50);

context.fill(); // colour the interior
context.stroke(); // draw the lines

>

22

23

24

25

26

20

21

22

23

24

25

26

27

28

4 2D RASTER GRAPHICS

</head>

<body onload="draw();">

<canvas id="canvas" width="300" height="300"></canvas>

</body>
</html>

Colours can be specified by name (red), by a string of the form rgb(r,g,b), or by hexadecimal colour codes #RRGGBB.

Figure 10: Rendering of the Above JavaScript Code

4.1.5 Canvas2D: Translations

<html>
<head>

}

</head>

</body>
</html>

<script>

function draw() {

var canvas = document.getElementById("canvas");

var context = canvas.getContext('2d');

context.save(); // save the default (root) co-ord system
context.fillStyle="#CCOOFF"; // purple
context.fillRect(100,0,100,100);

// translates from the origin, producing a nested co-ordinate system
context.translate(75,50);

context.fillStyle="#FFFF00"; // yellow
context.fillRect(100,0,100,100);

// transforms further, to produce another nested co-ordinate system
context.translate(75,50);

context.fillStyle="#0000FF"; // blue
context.fillRect(100,0,100,100);

context.restore(); // recover the default (root) co-ordinate system
context.translate(-75,90);

context.fillStyle="#00FF00"; // green
context.fillRect(100,0,100,100);

</script>

<body onload="draw();">
<canvas id="canvas" width="600" height="600"></canvas>

20

21

22

23

24

25

26

27

28

4 2D RASTER GRAPHICS

Figure 11: Rendering of the Above JavaScript Code

4.1.6 Canvas2D: Order of Transformations

</body>
</html>

<html>
<head>
<script>
function draw() {
var canvas = document.getElementById("canvas");
var context = canvas.getContext('2d');
context.save(); // save the default (root) co-ord system
context.fillStyle="#CCOOFF"; // purple
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
// translate then rotate
context.translate(100,0);
context.rotate(Math.PI/3);
context.fillStyle="#FFO0O00"; // red
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
// recover the root co-ord system
context.restore();
// rotate then translate
context.rotate(Math.P1/3);
context.translate(100,0);
context.fillStyle="#FFFF00"; // yellow
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
}
</script>
</head>

<body onload="draw();">
<canvas id="canvas" width="600" height="600"></canvas>

4 2D RASTER GRAPHICS

Figure 12: Rendering of the Above JavaScript Code

4.1.7 Scaling

<html>
<head>
<script>
function draw() {
var canvas = document.getElementById("canvas");
var context = canvas.getContext('2d');
context.fillStyle="#CCOOFF"; // purple
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
context.translate(150,0);
context.scale(2,1.5);
context.fillStyle="#FFO0O00"; // red
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
}
</script>
</head>
<body onload="draw();">
<canvas id="canvas" width="600" height="600"></canvas>
</body>
</html>

Figure 13: Rendering of the Above JavaScript Code

4.1.8 Canvas2D: Programmatic Graphics

<html>
<head>
<script>
function draw() {
var canvas = document.getElementById("canvas");
var context = canvas.getContext('2d');
context.translate(150,150);
for (i=0;i<15;i++) {
context.fillStyle = "rgb("+(i*255/15)+",0,0)";

10

4 2D RASTER GRAPHICS

context.fillRect(0,0,100,100);
context.rotate(2*Math.PI1/15);

}
</script>
</head>
<body onload="draw();">
<canvas id="canvas" width="600" height="600"></canvas>
</body>
</html>

Figure 14: Rendering of the Above JavaScript Code

11

	Introduction
	Grading
	Reflection on Exams

	Lecturer Contact Information

	Introduction to 2D Graphics
	Digital Images – Bitmaps
	Colour Encoding Schemes
	The Real-Time Graphics Pipeline
	Graphics Software
	Graphics Formats

	2D Vector Graphics
	Transformations
	2D Translation
	2D Rotation of a Point
	2D Rotation of an Object
	Arbitrary 2D Rotation
	Matrix Notation
	Scaling
	Order of Transformations

	2D Raster Graphics
	Introduction to HTML5/Canvas
	Canvas: Rendering Contexts
	Canvas2D: Primitives
	Canvas2D: drawImage()
	Canvas2D: Fill & Stroke Colours
	Canvas2D: Translations
	Canvas2D: Order of Transformations
	Scaling
	Canvas2D: Programmatic Graphics

