
Programming Paradigms
CT331 Week 6 Lecture 1

Finlay Smith
Finlay.smith@universityofgalway.ie

Functional Programming

Functional Programming

Given the same problem to solve, a program for this problem in any

programming language can be considered equivalent to any other at machine

level, in that the programs will result in changes to values contained in memory

cells.

However, there can be quite significant differences at conceptual and

implementation level.

Functional Programming

Conceptual … various types of programming languages are better suited to

solving particular problems.

Functional Programming

Consider Building an embedded system:

● Assembly: Fast. Lightweight. Memory efficient. Use of architecture specific commands.

● C: Fast. Lightweight. Memory efficient.

● Python: Too much overhead.

● Java: Too much overhead.

● GO/Rust: Too much overhead.

● Javascript (Node): Too much overhead.

● Scheme/Haskell: Too much overhead. (Perhaps on a lisp machine)

Functional Programming

Consider Building a webserver:

● Assembly: Time to develop / test on each platform + see C

● C: Memory allocation for each connection? Long running process..memory leaks?

● Python: Memory safe but what about data types? Open to XSS attacks etc.

● Java: Garbage collections: memory safe! Strongly Typed: type safety. JVM on a small

webserver...overhead for small projects.

● GO/Rust: Memory safe. Type safe. Lightweight runtime. Requires front end javascript. (ok for

static content / specific usecases.)

● Javascript (Node): Memory safe. Type safe ??? (typescript etc). Lightweight. Isomorphic: Use

same code on server as client. Single threaded...handling concurrency. Callback hell.

● Scheme/Haskell: Can define custom types. Memory safe. Can be lightweight. Less community

support...

Functional Programming

Consider Building an AI system:

● Assembly: Time to develop / test on each platform + see C.

● C: Efficient calculation. Memory allocation for many data points? Possible memory leaks.

Dealing with high level data will result in complex code. Multithreading?

● Python: High level data (OOP) + memory. Multiprocessing (threading). Scypi / Numpy /

matplotplib available.

● Java: Memory safe. Type safety. Code becomes very long-winded.

● GO/Rust: Memory safe. Type safe. High level data…???

● Javascript (Node): suitable for distributed systems (GA’s). single-threaded is a huge issue.

Callback hell…

● Scheme/Haskell: Elegant code. Custom types. Memory safe. Lightweight. Mathematical system

=> mathematical code.

Lisp (Racket / Scheme)

Lisp

Lisp: List Processing

Scheme: Dialect of Lisp

Racket: Implementation of Scheme.

Lisp

Prefix Notation: (a.k.a Polish Notation)

(+ 3 4)

(* 5 6)

(- 4 (* 5 6))

Lisp - Function Vs Literal

Parenthesis means function:

(+ 3 4) = 7

(* 5 6) = 30

(- 4 (* 5 6)) = -26

Quote means literal:

(+ 3 4) = 7

‘(+ 3 4) = ‘(+ 3 4)

Rather than considering ‘+’ the name of a

function, the quote means to take everything

literally…’+’ is just a word.

Nothing is evaluated.

Lisp - S-Expressions

Both code and data are structured as nested

lists in Lisp.

Symbolic Expressions (s-expressions, sexprs,

sexps) are a notation for nested list structures.

Defined with a very simple recursive grammar,

but produces a very flexible framework for

computing..

An s-expressions is defined as:

1. An atom

2. An expression in the form (X . Y) where X

and Y and s-expressions.

Lisp - S-Expressions: Atoms

An atom (historically) is something that is ‘indivisible’.

This is true for s-expressions in Lisp too.

Primitive data types like number, string, boolean etc. are atoms. (1 2 3…. A b c… \n \t … \0)

Lists and pairs (s-expressions) are not atoms.

Lisp - Cons Pairs

A pair is two pieces of data together.

Pairs are created by the cons function, short for

construct:

The two values joined with cons are printed

between parentheses, but with a dot (i.e., a

period surrounded by whitespace) in between:

> (cons 1 2)

'(1 . 2)

> (cons "banana" "split")

'("banana" . "split")

