ASO03: Refactoring &
Application Deployment

Design Patterns and Application Deployment

Introduction:

e This assignment builds upon the previous two and focuses on refactoring
the musicrinder application, and deploying the final version using Docker.

» You will apply relevant design patterns to improve the maintainability and
scalability of the application.

e The goal is to ensure the application follows modern software engineering
principles while maintaining a fully functional CI/CD pipeline.

v Task 3.1: Refactoring with Design Patterns [25
marks]

Goal:

The objective of this task is to refactor specific parts of the musicrinder
application using design patterns to improve code readability,
maintainability, and scalability.

| The skeleton codes are provided in the repository.

a) Singleton with Dependency Injection [5 marks]

Scenario:

Implement a

Logger class for the application, ensuring that only one instance exists
throughout the app. Refactor the Logger to use Spring's Dependency
Injection (DI) for cleaner code and better testability.

Instructions:

1. Complete the Singleton Logger Class:

ASO03: Refactoring & Application Deployment

e Implement the Logger class using the Singleton pattern to track
search requests and errors.

e Use private static t0 ensure only one instance exists, but don’t call it
manually.

2. Refactor Logger to Use Spring's DI:
e Use Spring's acomponent annotation to register 1ogger as a bean.

e @autowired the Logger instance in the wmusicrindercontroller to track
search requests.

b) Abstract Factory for Search Providers [5 marks]

Scenario:
Complete the
Abstract Factory Pattern to handle different types of search providers (e.qg.,

YouTube and Lyrics providers).
e You can refer to the existing API calls for each provider.

e They offer a different type of search, but they should follow a common
interface.

Instructions:
1. Complete the Search Provider Interface:

e Implement a common interface for search providers, e.g.,

SearchProvider .
o Each provider (YouTube, Lyrics) will implement this interface.
2. Implement the Concrete Factories:

e Create concrete classes like voutubesearchprovider and
Lyricssearchprovider , implementing the interface methods.

o Add logic to fetch the correct results from the APlIs.
3. Complete the Abstract Factory:

e Implement an abstract factory searcheroviderractory that provides
methods like createprovider() .

e Create subclasses like voutubesearchproviderractory and
LyricssearchproviderFactory to instantiate specific search providers.

ASO03: Refactoring & Application Deployment

c) Decorator with Caching [5 marks]

Scenario:
Implement the
Decorator Pattern to add caching functionality to the search results.

- The first time a search is executed, the result should be fetched from the
API, but subsequent requests should be served from the cache.

Instructions:
1. Complete the Cache Decorator:
e Implement a cachenecorator that wraps the search provider class.

» Check if the search result exists in the cache before making a new
API request.

2. Implement the Caching Mechanism:

o Store the search results in a wap or any suitable caching solution

(CacheService) .

o When a search query is repeated, retrieve the result from the cache
instead of hitting the API.

o Additional Notes:

Use the cacheservice to cache the search results, and
to check if the search results are already cached

Use '"cached result:" as a prefix for the cached
results to differentiate them from the direct fetch of
uncached search results

d) Strategy Pattern for Search Algorithm [10 marks]

Scenario:

The app should support multiple search algorithms. Implement the
Strategy Pattern to switch between different search algorithms (e.g., fuzzy
search vs. exact search).

Instructions:

1. Define the Search Strategy Interface:

ASO03: Refactoring & Application Deployment

e Create a secarchstrategy interface with a method scarch() , taking
query parameters as input.

2. Implement Different Strategies:

o Implement different strategies: exactsearchstrategy and

FuzzySearchStrategy .
e exactsearchstrategy Will perform a straightforward match.
] FuzzySearchStrategy will allow partial matches.

o Additional notes:

The search strategy implementation can be abstract
(i.e., you can simplify it to return different messages
representative of "hypothetical” searches.

© overkill solution necessary !

3. Bonus:

» Combine this with the caching decorator from the previous
challenge, so that the search results are cached regardless of the
strategy used.

* Submissions:

e Ensure the refactored code is committed to your GitHub
repository.

e Ensure there are meaningful commits showing your
refactoring process.

v Task 3.2: Application Deployment [5 marks]

Goal:

Finalise the CI/CD pipeline and deploy the fully refactored version of the
musicFinder application. Ensure that the pipeline is capable of building,
testing, and deploying the Dockerized version of the application.

ASO03: Refactoring & Application Deployment

Instructions:
1. Add a CI/CD pipeline:

e Create anew .github/workflows/ci.yml file to include Docker build and
deployment steps.

e Ensure the pipeline:
o Builds the application using Maven.
o Deploys the application inside a Docker container.

o Ensure that the application can be accessed locally via

http://localhost:8080 .
Tips:

o Test the pipeline manually before submitting to ensure everything runs
smoothly.

o Ensure the Docker image is correctly configured to expose port 8080.
o Helpful Links:

o GitHub Actions for Docker

* Submissions:

e Ensure your GitHub repository contains an updated

.github/workflows/ci.yml file.

e The pipeline must be triggered automatically on every push.

Disclaimer:

This assignment will be evaluated using GitHub Actions, which will
automatically run checks on your repository. Please ensure that your pipeline
passes all required checks before the deadline.

» Automated Testing — Each push will trigger GitHub Actions to validate
your work based on the CI/CD pipeline, refactored code, and Docker
deployment.

ASO03: Refactoring & Application Deployment

https://docs.github.com/en/actions/publishing-packages/publishing-docker-images

» Monitoring Progress — Check the Actions tab in your repository to view
the status of your submission.

ASO03: Refactoring & Application Deployment

