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CS4423-Networks: Week 12 (2+3 April 2025)

Part 1: Bow Tie Components

Niall Madden, School of Mathematical and Statistical Sciences

University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at https://

www.niallmadden.ie/2425-CS4423/#Week12

This notebook was adapted by Niall Madden from one developed by Angela Carnevale.

import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": "#224488", "font_color": "white", "arrowsize"

import matplotlib.pyplot as plt

np.set_printoptions(precision=2) # just display arrays to 2 decimal places
np.set_printoptions(suppress=True)

from collections import Counter

Digraphs and Mathematical Relations

When a directed graph  is regarded as a relation on the set , strongly connected components can

be described as the equivalence classes of an equivalence relation, as we'll now explain.

First recall that

•  means that there is a (directed) edges from  to 

•  means that there is a path from  to .

We can see (right?) that the relation  is the reflexive and transitive closure of the edge relation

.
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Thus, by construction it is reflexive and transitive.

(There might be nodes  and  with  and , though it won't be all of them).

So this allows us to define a new relation as follows.

Definition. We set  if and .

This is an equivalence relation we get equivalence classes that partition our graph. These equivalence

classes are the strongly connected components of . We denote the class of  by .

Moreover, there is a partial order relation  (a relation which is reflexive, transitive and anti-

symmetric) on the set of equivalence classes:

 if .

We can say something about the structure of the WWW in terms of these equivalence classes and of

the partial order on them.

The Bow-Tie Structure of the WWW

Like the giant component in a simple graph, it turns out that a directed graph with sufficiently many

edges has a giant SCC.

The remainder of the graph consists of four more sets of components of nodes, as follows:

1. IN: upstream components, the set of all components  with  SCC.

2. OUT: downstream components, the set of all components  with  SCC.

3. tendrils: the set of all components  with either  IN and  OUT or  OUT and  IN;

and tubes: components  with  IN,  OUT but  SCC.

4. disconnected components.

Thus, in any directed graph with a distinguished SCC, the WCC in which it is contained necessarily has

the following global bow-tie structure:

Research on available data on the Web in 1999 has confirmed this bow tie structure for the World

Wide Web, with a large Giant SCC covering less than  of the vertex set, and the three parts IN, OUT

and the tendrils and tubes roughly of the same size. One can assume that this proportion has not

changed much over time, although the advent of social media has brought many new types of links

and documents to the Web.

Computing Bow-Tie Components

Example. Let's start with a reasonably large random directed graph, using the Erdős-Rényi 

model:
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n, m = 100, 120
G = nx.gnm_random_graph(n, m, directed=True)

nx.draw(G)

Weakly Connected Components

The weakly connected components of a directed graph  can be determined by BFS, as before,

counting as "neighbors" of a node both its successors and it predecessors in the graph.

A single component, the weakly connected component of node , is found as follows.

def weak_component(G, x):
nodes = {x}
queue = [x]
for y in queue:

G.nodes[y]["seen"] = True
for z in set(G.successors(y)) | set(G.predecessors(y)): ## preds+succs are the neighbours of a 

if z not in nodes:
nodes.add(z)
queue.append(z)

return nodes

The list of all weakly connected components is computed by looping over all the nodes of G ,

computing the components of "unseen" nodes and collecting them in a list. The final result is sorted

by decreasing length before it is returned.

def weak_components(G):
wccs = [] # initialize
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# find each node's wcc
for x in G:

if not G.nodes[x].get("seen"):
wccs.append(weak_component(G, x))

            
# clean up after yourself
for x in G:

del G.nodes[x]["seen"]
        

# return sorted list of wccs
return sorted(wccs, key=len, reverse=True)

Note let's check the number of Weakly Connected Components, and their order:

wccs = weak_components(G)
print(f"G has {len(wccs)} weakly connected components")

G has 7 weakly connected components

[len(c) for c in wccs]

[93, 2, 1, 1, 1, 1, 1]

Computing WCCs and SCCs in networkx

As you might expect, there are algorithms for doing this in networkx . Let's try them, but first recall

a variant on an examples from last week:

G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3,0), (2,4),(2,5),(4,5), (6,7), (7,6)])
nx.draw_circular(G, **opts)
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WCCS

We should have been able to see there are 2 WCCs:

C = nx.weakly_connected_components(G) # returns and iterable
print(f"There are {len(list(C))} WCCs:")
for c in nx.weakly_connected_components(G):

print(c)

There are 2 WCCs:
{0, 1, 2, 3, 4, 5}
{6, 7}

Strongly Connected Components

Strongly connected components are efficiently found by DFS. Tarjan's Algorithm cleverly uses

recursion and an additional stack for this.

Have a look at the Wiki page. We'll use networkx :
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C = nx.strongly_connected_components(G) # returns and iterable
print(f"There are {len(list(C))} WCCs:")
for c in nx.strongly_connected_components(G):

print(c)

There are 4 WCCs:
{5}
{4}
{0, 1, 2, 3}
{6, 7}

We'll finish by checking the size of the components of a graph in 

n, m = 100, 120
G = nx.gnm_random_graph(n, m, directed=True)

C = nx.weakly_connected_components(G) # returns and iterable
print(f"There are {len(list(C))} WCCs:")
k=-1
for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True):

if (len(c)>1):
k+=1
print(f"Component {k} has {len(c)}")

print(f"Other {n-k-1} components have order 1")

There are 16 WCCs:
Component 0 has 83
Component 1 has 2
Component 2 has 2
Other 97 components have order 1

For SCCs, we get:

C = nx.strongly_connected_components(G) # returns and iterable
print(f"There are {len(list(C))} SCCs:")
k=-1
for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True):

if (len(c)>1):
k+=1
print(f"Component {k} has {len(c)}")

print(f"Other {n-k-1} components have order 1")

There are 95 SCCs:
Component 0 has 6
Other 99 components have order 1
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