CT404

Graphics & Image Processing

Name: Andrew Hayes
E-mail: [a.hayes18@universityofgalway.ie 2024-09-24
Student ID: 21321503

mailto://a.hayes18@universityofgalway.ie

CONTENTS

Contents

|2_Introduction to 2D Grthic§|
2.1 Digita| Images — Bitmapsl

2.2 Colour Encoding Schernej
2.3 The Real-Time Graphics Pipeling|

2.4 GraEhics Software|

2.5 GraphicsFormat]
[3 2D Vector Graphics|

3.1 Transformations
[3.1.1 2D Translation|

[3.1.2 2D Rotationofa Poimt|

3.1.3 2D Rotation of an Object|

3.1.4 Arbitrary 2D Rotation|

1 Matrix ion|

3.1.6 Scalingl

3.1.7 Order of Transformations|

{4 2D Raster Graphics|

[4.1 Tntroduction to HTMLS/Canvas|
(4.1.1 Canvas: Rendering Contexts|
[4.1.2 Canvas2D: Primitives|.
[4.1.3 Canvas2D: drawImage()]

4.1.4 nvas2D: Fill rok lours| . .
4.1. Canvas2D: Translations]

4.1 nvas2D: Order of Transformation
4.1.7 Scalingl

4.1.8 Canvas2D: Programmatic Graphics|

5 3D Co-Ordinate Systems|

5.1 Nested Co-Ordinate Systems|

5.2 3D Transformations|
[5.2.1 Translation|

5.2.2 Rotation About Principal Axes|. . .

5.2.3 Rotation About Arbitrary Axes| . .

|6 Graghics APIs|

6.1 reeds|o o
[6.1.1 3D Primitives|

[6.1.2 Cameras]
6.1.3 Lighting

[6.1.5 Geometry Beyond Primitives|

—_ e

NN N = -

W W W N

B

N

............................. 10

o 0] N &N Lt v N

2 INTRODUCTION TO 2D GRAPHICS

1 Introduction
Textbooks:
* Main textbook: [mage Processing and Analysis — Stan Birchfield (ISBN: 978-1285179520).
* Introduction to Computer Graphics — David J. Eck. (Available online at https://math.hws.edu/graphicsbook/).
* Computer Graphics: Principles and Practice — John F. Hughes et al. (ISBN: 0-321-39952-8).
* Computer Vision: Algorithms and Applications — Richard Szeliski (ISBN: 978-3-030-34371-2).

Computer graphics is the processing & displaying of images of objects that exist conceptually rather than physically
with emphasis on the generation of an image from a model of the objects, illumination, etc. and the real-time rendering
of images. Ideas from 2D graphics extend to 3D graphics.

Digital Image processing/analysis is the processing & display of images of real objects, with an emphasis on the
modification and/or analysis of the image in order to automatically or semi-automatically extract useful information.
Image processing leads to more advanced feature extraction & pattern recognition techniques for image analysis &
understanding.

1.1 Grading

* Assignments: 30%.

* Final Exam: 70%.

1.1.1 Reflection on Exams

“A lot of people give far too little detail in these questions, and/or don’t address the discussion parts — they just give
some high-level definitions and consider it done — which isn’t enough for final year undergrad, and isn’t answering
the question. More is expected in answers than just repeating what’s in my slides. The top performers demonstrate a
higher level of understanding and synthesis as well as more detail about techniques and discussion of what they do on a
technical level and how they fit together”

1.2 Lecturer Contact Information

* Dr. Nazre Batool. * Dr. Waqar Shahid Qureshi.
® nazre.batool@universityofgalway.ie ® wagarshahid.qureshi@universityofgalway.ie.

* Office Hours: Thursdays 16:00 — 17:00, CSB-2009. ¢ Office Hours: Thursdays 16:00 — 17:00, CSB-3001.

2 Introduction to 2D Graphics

2.1 Digital Images — Bitmaps

Bitmaps are grid-based arrays of colour or brightness (greyscale) information. Pixels (picture elements) are the cells of a
bitmap. The depth of a bitmap is the number of bits-per-pixel (bpp).

2.2 Colour Encoding Schemes

Colour is most commonly represented using the RGB (Red, Green, Blue) scheme, typically using 24-bit colour with

one 8-bit number representing the level of each colour channel in that pixel.

Alternatively, images can also be represented in greyscale wherein pixels are represented with one (typically 8-bit)
brightness value (or scale of grey) .

https://math.hws.edu/graphicsbook/
mailto://nazre.batool@universityofgalway.ie
mailto://waqarshahid.qureshi@universityofgalway.ie

3 2D VECTOR GRAPHICS

2.3 The Real-Time Graphics Pipeline

~

Rasterization

- B

Geometry

e

Application ‘

Model & View
Transformations

Scan Conversion

& Pixel Shading
+3D Models and texture
loading

*User interaction
handling

Etc.

Vertex Shading &
lllumination

Projection

Clipping (visibility
culling)

Screen Mapping

- 4

(World/obj space algs.)

(Image space algs.)

Figure 1: The Real-Time Graphics Pipeline

2.4 Graphics Software

The Graphics Processing Unit (GPU) of a computer is a hardware unit designed for digital image processing & to
accelerate computer graphics that is included in modern computers to complement the CPU. They have internal,
rapid-access GPU memory and parallel processors for vertices & fragments to speed up graphics renderings.

OpenGLisa 2D & 3D graphics API that has existed since 1992 that is supported by the graphics hardware in most
computing devices today. WebGL is a web-based implementation of OpenGL for use within web browsers. OpenGL
ES for Embedded Systems such as tablets & mobile phones also exists.

OpenGL was originally a client/server system with the CPU+Application acting as a client sending commands &
data to the GPU acting as a server. This was later replaced by a programmable graphics interface (OpenGL 3.0) to write
GPU programs (shaders) to be run by the GPU directly. It is being replaced by newer APIs such as Vulkan, Metal, &
Direct3D and WebGL is being replaced by WebGPU.

2.5 Graphics Formats

Vector graphics are images described in terms of co-ordinate drawing operations, e.g. AutoCAD, PowerPoint, Flash,
SVG. SVG (Scalable Vector Graphics) is an image specified by vectors which are scalable without losing any quality.

Raster graphics are images described as pixel-based bitmaps. File formats such as GIF, PNG, JPEG represent the
image by storing colour values for each pixel.

3 2D Vector Graphics

2D vector graphics describe drawings as a series of instructions related to a 2-dimensional co-ordinate system. Any
point in this co-ordinate system can be specified using two numbers (x, y):

3 2D VECTOR GRAPHICS

* The horizontal component , measuring the distance from the left-hand edge of the screen or window.

* The vertical component ¥, measuring the distance from the bottom of the screen or window (or sometimes from

the top).

3.1 Transformations

3.1.1 2D Translation

The translation of a point in 2 dimensions is the movement of a point (z, y) to some other point (', y').
/
r=x+a

y=y+b

(x%y")

(x.y)
o- a -

Figure 2: 2D Translation of a Point

3.1.2 2D Rotation of a Point

The simplest rotation of a point around the origin is given by:
z' =z cosh — ysinb

y' = xcosf + ysinb

(x.y)

(X,y)

Figure 3: 2D Rotation of a Point

3 2D VECTOR GRAPHICS

3.1.3 2D Rotation of an Object

In vector graphics, objects are defined as series of drawing operations (e.g., straight lines) performed on a set of vertices.
To rotate a line or more complex object, we simply apply the equations to rotate a point to the (z, y) co-ordinates of

each vertex.

45 degree rotation applied (_20 sin 45
. El

(0,20) |
20 cos 43) S5 (10 cos 45
v\‘}o sin 45)
100 / (o) \, (10.0) 1

\4)) (-10 cos 45‘7 -10 sin 45,

-10 sin 45) -10 cos 45)

Figure 4: 2D Rotation of an Object

3.1.4 Arbitrary 2D Rotation

In order to rotate around an arbitrary point (a, b), we perform translation, then rotation, then reverse the translation.
¥ =a+ (x—a)cosh — (y — b)sinf

v =a+ (z—a)cost + (y —b)sind

@b
X.¥)

xy)

QO

Figure 5: Arbitrary 2D Rotation

3.1.5 Matrix Notation

Matrix notation is commonly used for vector graphics as more complex operations are often easier in matrix format
and because several operations can be combined easily into one matrix using matrix algebra.

Rotation about (0, 0):
] cos sind]

—sinf@ cosf

Translation: _

2" Yyl =z y 1]

L O
o = O
- o O

4 2D RASTER GRAPHICS

3.1.6 Scaling

Scaling of an object is achieved by considering each of its vertices in turn, multiplying said vertex’s x & y values by
the scaling factor. A scaling factor of 2 will double the size of the object, while a scaling factor of 0.5 will halve it. Itis
possible to have different scaling factors for x & y, resulting in a stretch:

iL',:.I‘XS

Yy =yxt

If the object is not centred on the origin, then scaling it will also effect a translation.

3.1.7 Order of Transformations

¢ Translation 2 units along the red axis + Rotation by 45 degrees

¢ Then Rotation by 45 degrees around + Then Translation 2 units along the
the (new) centre (rotated) red axis

Figure 6: Order of Transformations

4 2D Raster Graphics

The raster approach to 2D graphics considers digital images to be grid-based arrays of pixels and operates on the images
at the pixel level.

4.1 Introduction to HTML5/Canvas
HTML or HyperText Markup Language is a page-description language used primarily for website. HIMLS brings

major updates & improvements to the power of client-side web development.

A canvas is a 2D raster graphics component in HTMLS. There is also a canvas with 3D (WebGL) which is a
3D graphics component that is more likely to be hardware-accelerated but is also more complex.
4.1.1 Canvas: Rendering Contexts

<canvas> creates a fixed-size drawing surface that exposes one or more rendering contexts. The getContext () method
returns an object with tools (methods) for drawing.

<html>
<head>
<script>
function draw() {
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

4 2D RASTER GRAPHICS

</html>

ctx.fillStyle = "rgb(200,0,0)";
ctx.fillRect (10, 10, 55, 50);
ctx.fillStyle = "rgba(0, 0, 200, 0.5)";
ctx.fillRect (30, 30, 55, 50);

}

</script>

</head>
<body onload="draw();">

<canvas id="canvas" width="150" height="150"></canvas>

</body>

Figure 7: Rendering of the Above HTML Code

4,1.2 Canvas2D: Primitives

Canvas2D only supports one primitive shape: rectangles. All other shapes must be created by combining one or more

paths. Fortunately, there are a collection of path-drawing functions which make it possible to compose complex shapes.

var

var

ctx

ctx

ctx.
ctx.
ctx.
ctx.
ctx.
ctx.
.arc(75,75,35,0,Math.PI, false); // Mouth (clockwise)
ctx.
ctx.
ctx.
.arc(90,65,5,0,Math.PI*2,true); // Right eye
ctx.

function draw(){

canvas = document.getElementById('canvas');

ctx = canvas.getContext('2d"');
fillRect(125,25,100,100);
clearRect(145,45,60,60);
strokeRect(150,50,50,50);

beginPath();

arc(75,75,50,0,Math.PI*2,true); // Outer circle
moveTo(110,75);

moveTo(65,65);
arc(60,65,5,0,Math.PI*2,true); // Left eye

moveTo(95,65);

stroke(); // renders the Path that has been built up..

Figure 8: Rendering of the Above JavaScript Code

4 2D RASTER GRAPHICS

4.1.3 Canvas2D: drawImage()

The example below uses an external image as the backdrop of a small line graph:

function draw()
var ctx = do
var img = ne
img.src = 'b
img.onload =
ctx.draw
ctx.begi
ctx.move
ctx.line
ctx.line
ctx.line
ctx.stro
}

{
cument .getElementById('canvas').getContext('2d');
w Image();
ackdrop.png';

function(){
Image(img,0,0);
nPath();
To(30,96);
To(70,66);
To(103,76);
To(170,15)
ke();

’

(
(
(
(

Figure 9: Rendering of the Above JavaScript Code

4.1.4 Canvas2D: Fill & Stroke Colours

<html>
<head>
<script>
func

}

</script

tion draw() {

var canvas = document.getElementById("canvas");
var context = canvas.getContext('2d');

// Filled Star

context.lineWidth=3;
context.fillStyle="#CCOOFF";
context.strokeStyle="#ffffo0"; // NOT lineStyle!
context.beginPath();

context.moveTo(100,50);
context.lineTo(175,200);

context.lineTo(0,100);

context.lineTo(200,100);
context.lineTo(25,200);

context.lineTo(100,50);

context.fill(); // colour the interior
context.stroke(); // draw the lines

>

22

23

24

25

26

20

21

22

23

24

25

26

27

28

4 2D RASTER GRAPHICS

</head>

<body onload="draw();">

<canvas id="canvas" width="300" height="300"></canvas>

</body>
</html>

Colours can be specified by name (red), by a string of the form rgb(r,g,b), or by hexadecimal colour codes #RRGGBB.

Figure 10: Rendering of the Above JavaScript Code

4.1.5 Canvas2D: Translations

<html>
<head>

}

</head>

</body>
</html>

<script>

function draw() {

var canvas = document.getElementById("canvas");

var context = canvas.getContext('2d');

context.save(); // save the default (root) co-ord system
context.fillStyle="#CCOOFF"; // purple
context.fillRect(100,0,100,100);

// translates from the origin, producing a nested co-ordinate system
context.translate(75,50);

context.fillStyle="#FFFF00"; // yellow
context.fillRect(100,0,100,100);

// transforms further, to produce another nested co-ordinate system
context.translate(75,50);

context.fillStyle="#0000FF"; // blue
context.fillRect(100,0,100,100);

context.restore(); // recover the default (root) co-ordinate system
context.translate(-75,90);

context.fillStyle="#00FF00"; // green
context.fillRect(100,0,100,100);

</script>

<body onload="draw();">
<canvas id="canvas" width="600" height="600"></canvas>

20

21

22

23

24

25

26

27

28

4 2D RASTER GRAPHICS

Figure 11: Rendering of the Above JavaScript Code

4.1.6 Canvas2D: Order of Transformations

</body>
</html>

<html>
<head>
<script>
function draw() {
var canvas = document.getElementById("canvas");
var context = canvas.getContext('2d');
context.save(); // save the default (root) co-ord system
context.fillStyle="#CCOOFF"; // purple
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
// translate then rotate
context.translate(100,0);
context.rotate(Math.PI/3);
context.fillStyle="#FFO0O00"; // red
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
// recover the root co-ord system
context.restore();
// rotate then translate
context.rotate(Math.P1/3);
context.translate(100,0);
context.fillStyle="#FFFF00"; // yellow
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
}
</script>
</head>

<body onload="draw();">
<canvas id="canvas" width="600" height="600"></canvas>

4 2D RASTER GRAPHICS

Figure 12: Rendering of the Above JavaScript Code

4.1.7 Scaling

<html>
<head>
<script>
function draw() {
var canvas = document.getElementById("canvas");
var context = canvas.getContext('2d');
context.fillStyle="#CCOOFF"; // purple
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
context.translate(150,0);
context.scale(2,1.5);
context.fillStyle="#FFO0O00"; // red
context.fillRect(0,0,100,100); // positioned with TL corner at 0,0
}
</script>
</head>
<body onload="draw();">
<canvas id="canvas" width="600" height="600"></canvas>
</body>
</html>

Figure 13: Rendering of the Above JavaScript Code

4.1.8 Canvas2D: Programmatic Graphics

<html>
<head>
<script>
function draw() {
var canvas = document.getElementById("canvas");
var context = canvas.getContext('2d');
context.translate(150,150);
for (i=0;i<15;i++) {
context.fillStyle = "rgb("+(i*255/15)+",0,0)";

10

5 3D CO-ORDINATE SYSTEMS

context.fillRect(0,0,100,100);
context.rotate(2*Math.PI1/15);

}
</script>
</head>
<body onload="draw();">
<canvas id="canvas" width="600" height="600"></canvas>
</body>
</html>

Figure 14: Rendering of the Above JavaScript Code

5 3D Co-Ordinate Systems

In a 3D co-ordinate system, a point P is referred to by three real numbers (co-ordinates): (x, y,). The directions of z,
Yy, & z are not universally defined but normally follow the right-hand rule for axes systems. In this case, z defined the
co-ordinate’s distance “out of” the monitor and negative z values go “into” the monitor.

5.1 Nested Co-Ordinate Systems

A nested co-ordinate system is defined as a translation relative to the world co-ordinate system. For example, —3.0
units along the x axis, 2.0 units along the y axis, and 2.0 units along the 2 axis.

5.2 3D Transformations

5.2.1 Translation

To translate a 3D point, modify each dimension separately:
¥=x+a
y' =y +a

z/:z—{—ag

1 0 0 O
0O 1 0 O
[a:’ y 2 1}:[myzl] 0 0 1 0
a]; az ag 1

5.2.2 Rotation About Principal Axes

A principal axis is an imaginary line through the “center of mass” of a body around which the body rotates.

* Rotation around the x-axis is referred to as pitch.

11

6 GRAPHICS APIS

* Rotation around the y-axis is referred to as yaw.
¢ Rotation around the z-axis is referred to as roll.

Rotation matrices define rotations by angle v about the principal axes.

1 0 0
R, =10 cosa sino
0 —sina cos«

To get new co-ordinates after rotation, multiply the point [z y z] by the rotation matrix:
[y =z y z]R:

For example, as a point rotates about the z-axis, its £ component remains unchanged.

5.2.3 Rotation About Arbitrary Axes

You can rotate about any axis, not just the principal axes. You specify a 3D point, and the axis of rotation is defined as
the line that joins the origin to this point (e.g., a toy spinning top will rotate about the y-axis, defined as (0, 1, 0)). You
must also specify the amount to rotate by, this is measured in radians (e.g., 27 radians is 360°).

6 Graphics APIs

Low-level graphics APIs are libraries of graphics functions that can be accessed from a standard programming language.
They are typically procedural rather than descriptive, i.e. the programmer calls the graphics functions which carry
out operations immediately. The programmer also has to write all other application code: interface, etc. Procedural
programming languages are typically faster than descriptive programming languages. Examples include OpenGL,
DirectX, Vulkan, Java Media APIs. Examples that run in the browser include Canvas2D, WebGL, SVG.

High-level graphics APIs are ones in which the programmer describes the required graphics, animations, interactivity,
etc. and doesn’t need to deal with how this will be displayed & updated. They are typically descriptive rather than
procedural and so are generally slower & less flexible because it is generally interpreted and rather general-purpose rather
than task-specific. Examples include VRML/X3D.

6.1 Three,js

WebGL (Web Graphics Library) is a JavaScript API for rendering interactive 2D & 3D graphics within any compatible
web browser without the use of plug-ins. WebGL s fully integrated with other web standards, allowing GPU-accelerated
usage of physics & image processing and effects as part of the web page canvas.

Three.js is a cross-browser JavaScript library and API used to create & display animated 4D computer graphics
in a web browser. Three.js uses WebGL.

<html>
<head>

<script src="three.js"></script>
<script>
'use strict'

function draw() {
// create renderer attached to HTML Canvas object
var ¢ = document.getElementById("canvas");
var renderer = new THREE.WebGLRenderer({ canvas: c, antialias: true });

12

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

6 GRAPHICS APIS

// create the scenegraph
var scene = new THREE.Scene();

// create a camera

var fov = 75;

var aspect = 600/600;

var near = 0.1;

var far = 1000;

var camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
camera.position.z = 100;

// add a light to the scene

var light = new THREE.PointLight (OxFFFFQO);
light.position.set (10, 30, 25);
scene.add(light);

// add a cube to the scene

var geometry = new THREE.BoxGeometry(20, 20, 20);

var material = new THREE.MeshLambertMaterial({color: 0xfd59d7});
var cube = new THREE.Mesh(geometry, material);

scene.add(cube);

// render the scene as seen by the camera
renderer.render(scene, camera);
}
</script>
</head>

<body onload="draw();">

<canvas id="canvas" width="600" height="600"></canvas>
</body>
</html>

Listing 1: “Hello World” in Three.js

In Three.js, a visible object is represented as a mesh and is constructed from a geometry & a material.

6.1.1 3D Primitives

Three.js provides a range of primitive geometry as well as the functionality to implement more complex geometry at a

lower level. Seelhttps://threejs.org/manual/?q=prim#en/primitives.

<html>
<head>

<script src="three.js"></script>
<script>
'use strict'

var scene;
function addGeometryAtPosition(geometry, x, y, z) {

var material = new THREE.MeshLambertMaterial({color: Oxffffff});
var mesh = new THREE.Mesh(geometry, material);

13

https://threejs.org/manual/?q=prim#en/primitives

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

52

S3

54

SS

56

57

58

59

60

61

62

63

64

6 GRAPHICS APIS

scene.add(mesh);
mesh.position.set(x,y,z);

function draw() {
// create renderer attached to HTML Canvas object
var c = document.getElementById("canvas");
var renderer = new THREE.WebGLRenderer({ canvas: c, antialias: true });

// create the scenegraph (global variable)
scene = new THREE.Scene();

// create a camera

var fov = 75;

var aspect = 400/600;

var near = 0.1;

var far = 1000;

var camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
camera.position.z = 100;

// add a light to the scene

var light = new THREE.PointLight (OxFFFF0O);
light.position.set(10, 0, 25);
scene.add(light);

// add a bunch of sample primitives to the scene
// see more here: https://threejsfundamentals.org/threejs/lessons/threejs-primitives.html

// args: width, height, depth
addGeometryAtPosition(new THREE.BoxGeometry(6,4,8), -50, 0, 0);

// args: radius, segments
addGeometryAtPosition(new THREE.CircleBufferGeometry(7, 24), -30, 0, 0);

// args: radius, height, segments
addGeometryAtPosition(new THREE.ConeBufferGeometry(6, 4, 24), -10, 0, 0);

// args: radiusTop, radiusBottom, height, radialSegments
addGeometryAtPosition(new THREE.CylinderBufferGeometry(4, 4, 8, 12), 20, 0, 0);

// arg: radius

// Polyhedrons

// (Dodecahedron is a 12-sided polyhedron, Icosahedron is 20-sided, Octahedron is 8-sided,
< Tetrahedron is 4-sided)

addGeometryAtPosition(new THREE.DodecahedronBufferGeometry(7), 40, 0, 0);
addGeometryAtPosition(new THREE.IcosahedronBufferGeometry(7), -50, 20, 0);
addGeometryAtPosition(new THREE.OctahedronBufferGeometry(7), -30, 20, 0);
addGeometryAtPosition(new THREE.TetrahedronBufferGeometry(7), -10, 20, 0);

// args: radius, widthSegments, heightSegments
addGeometryAtPosition(new THREE.SphereBufferGeometry(7,12,8), 20, 20, 0);

// args: radius, tubeRadius, radialSegments, tubularSegments

14

65

66

67

68

69

70

71

72

73

74

75

76

6 GRAPHICS APIS

addGeometryAtPosition(new THREE.TorusBufferGeometry(5,2,8,24), 40, 20, 0);

// render the scene as seen by the camera
renderer.render(scene, camera);
}
</script>
</head>

<body onload="draw();">
<canvas id="canvas" width="600" height="600"></canvas>
</body>
</html>

Listing 2: Code Illustrating Some Primitives Provided by Three.js

6.1.2 Cameras

3D graphics API cameras allow you to define:
* The camera location (z,y, 2).
* The camera orientation (straight-gay x rotation, y rotation, 2 rotation).

* The viewing frustum (the Field of View (FoV) & clipping planes).

Wiewving Frustum

Front Clipping
Plane

Back Clipping
Flane

Figure 15: The Viewing Frustum

In Three.js, the FoV can be set differently in the vertical and horizontal directions via the first & second arguments to
the constructor can be set differently in the vertical and horizontal directions via the first & second arguments to the
constructor (fov, aspect). Generally speaking, the aspect ratio should match that of the canvas width & height to
avoid the scene appearing to be stretched.

6.1.3 Lighting
Six different types of lights are available in both Three.js & WebGL:

* Point lights: rays emanate in all directions from a 3D point source (e.g., a lightbulb).

* Directional lights: rays emanate in one direction only from infinitely far away (similar effect rays from the Sun,
i.e. very far away).

* Spotlights: project a cone of light from a 3D point source aimed at a specific target point.

* Ambient lights: simulate in a simplified way the lighting of an entire scene due to complex light/surface
interactions — lights up everything in the scene regardless of position or occlusion.

15

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 GRAPHICS APIS

* Hemisphere lights: ambient lights that affect the “ceiling” or “floor” hemisphere of objects rather than affecting

them in their entirety.

* RectAreaLights: emit rectangular areas of light (e.g., fluorescent light strip).

<html>
<head>
<script src="three.js"></script>
<script>
'use strict'

function draw() {
// create renderer attached to HTML Canvas object
var ¢ = document.getElementById("canvas");
var renderer = new THREE.WebGLRenderer({ canvas: c, antialias: true });

// create the scenegraph
var scene = new THREE.Scene();

// create a camera

var fov = 75;

var aspect = 600/600;

var near = 0.1;

var far = 1000;

var camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
camera.position.set(0, 10, 30);

// add a light to the scene

var light = new THREE.PointLight (OxFFFFFF);
light.position.set(0, 10, 30);
scene.add(light);

// add a cylinder
// args: radiusTop, radiusBottom, height, radialSegments
var cyl = new THREE.Mesh(

new THREE.CylinderBufferGeometry(1l, 1, 10, 12),

new THREE.MeshLambertMaterial({color: OxAAAAAA}));
scene.add(cyl);

// clone the cylinder
var cyl2 = cyl.clone();

// modify its rotation by 60 degrees around its z axis
cyl2.rotateOnAxis(new THREE.Vector3(0,0,1), Math.PI/3);

scene.add(cyl2);

// clone the cylinder again

var cyl3 = cyl.clone();

scene.add(cyl3);

// set 1its rotation directly using "Euler angles", to 120 degrees on z axis
cyl3.rotation.set(0,0,2*Math.PI1/3);

// render the scene as seen by the camera
renderer.render(scene, camera);

16

49

50

51

52

53

S4

S5

56

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

6 GRAPHICS APIS

}
</script>
</head>

<body onload="draw();">

<canvas id="canvas" width="600" height="600"></canvas>
</body>
</html>

Listing 3: Rotation Around a Local Origin in Three.js

6.1.4 Nested Co-Ordinates

Nested co-ordinates help manage complexity as well as promote reusability & simplify the transformations of objects
composed of multiple primitive shapes. In Three.js, 3D objects have a children array; a child can be added to an object
using the method .add(childObject), i.e. nesting the child object’s transform within the parent object. Objects have
a parent in the scene graph so when you set their transforms (translation, rotation) it’s relative to that parent’s local
co-ordinate system.

<html>
<head>

<script src="three.js"></script>
<script>
'use strict'

function draw() {
// create renderer attached to HTML Canvas object
var ¢ = document.getElementById("canvas");
var renderer = new THREE.WebGLRenderer({ canvas: c, antialias: true });

// create the scenegraph
var scene = new THREE.Scene();

// create a camera

var fov = 75;

var aspect = 600/600;

var near = 0.1;

var far = 1000;

var camera = new THREE.PerspectiveCamera(fov, aspect, near, far);
camera.position.set(0, 1.5, 6);

// add a light to the scene

var light = new THREE.PointLight (OxFFFFFF);
light.position.set(0, 10, 30);
scene.add(light);

// desk lamp base
// args: radiusTop, radiusBottom, height, radialSegments
var base = new THREE.Mesh(

new THREE.CylinderBufferGeometry(1l, 1, 0.1, 12),

new THREE.MeshLambertMaterial({color: OxAAAAAA}));
scene.add(base);

17

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

S1

52

S3

54

SS

56

S7

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

6 GRAPHICS APIS

// desk lamp first arm piece

var arm = new THREE.Mesh(
new THREE.CylinderBufferGeometry(0.1, 0.1, 3, 12),
new THREE.MeshLambertMaterial({color: OxAAAAAA}));

// since we want to rotate around a point other than the arm's centre,

// we can create a pivot point as the parent of the arm, position the

// arm relative to that pivot point, and apply rotation on the pivot point
var pivot = new THREE.Object3D();

// centre of rotation we want

// (in world coordinates, since pivot is not yet a child of the base)
pivot.position.set(0, 0, 0);

pivot.add(arm); // pivot is parent of arm

base.add(pivot); // base is parent of pivot

// translate arm relative to its parent, i.e. 'pivot'
arm.position.set(0, 1.5, 0);

// rotate pivot point relative to its parent, i.e. 'base'
pivot.rotateOnAxis(new THREE.Vector3(0,0,1), -Math.P1/6);

// clone a second arm piece (consisting of a pivot with a cylinder as its child)
var pivot2 = pivot.clone();

// add as a child of the 1st pivot

pivot.add(pivot2);

// rotate the 2nd pivot relative to the 1st pivot (since it's nested)
pivot2.rotation.z = Math.PI/3;

// translate the 2nd pivot relative to the 1st pivot

pivot2.position.set(0,3,0);

// TEST: we can rotate the 1st arm piece and the 2nd arm piece should stay correct
pivot.rotateOnAxis(new THREE.Vector3(0,0,1), Math.PI1/12);

// TEST: we can also move the base, and everything stays correct
base.position.x -= 3;

// render the scene as seen by the camera
renderer.render(scene, camera);
}
</script>
</head>

<body onload="draw();">

<canvas 1id="canvas" width="600" height="600"></canvas>
</body>
</html>

Listing 4: Partial Desk Lamp with Nested Objects

The above code creates a correctly set-up hierarchy of nested objects, allowing us to:
* Translate the base while the two arms remain in the correct relative position.

* Rotate the first arm while keeping the second arm in the correct position.

18

6 GRAPHICS APIS

6.1.5 Geometry Beyond Primitives

In Three.js, the term “low-level geometry” is used to refer to geometry objects consisting of vertices, faces, & normal.

19

	Introduction
	Grading
	Reflection on Exams

	Lecturer Contact Information

	Introduction to 2D Graphics
	Digital Images – Bitmaps
	Colour Encoding Schemes
	The Real-Time Graphics Pipeline
	Graphics Software
	Graphics Formats

	2D Vector Graphics
	Transformations
	2D Translation
	2D Rotation of a Point
	2D Rotation of an Object
	Arbitrary 2D Rotation
	Matrix Notation
	Scaling
	Order of Transformations

	2D Raster Graphics
	Introduction to HTML5/Canvas
	Canvas: Rendering Contexts
	Canvas2D: Primitives
	Canvas2D: drawImage()
	Canvas2D: Fill & Stroke Colours
	Canvas2D: Translations
	Canvas2D: Order of Transformations
	Scaling
	Canvas2D: Programmatic Graphics

	3D Co-Ordinate Systems
	Nested Co-Ordinate Systems
	3D Transformations
	Translation
	Rotation About Principal Axes
	Rotation About Arbitrary Axes

	Graphics APIs
	Three.js
	3D Primitives
	Cameras
	Lighting
	Nested Co-Ordinates
	Geometry Beyond Primitives

