OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

School of Computer Science

University
ofGalway.ie

Today’s Lecture

Using the Comparable Interface
Sorting
Testing

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Back to the Card assighment

You will find a package called casino containing four classes:

- EO T PO) ;44390304;4,0 30014’4 TQ,Qo . .
. . " LI B AL N N
» Card - representing a playing card object ’ ¢ R R AR R AR J |6 K
c c Pl e e et e e eF @ ¥t e e e er WV H $ ¢
» Deck - representing a deck of playing cards T st s s s
* Hand - representing a hand of cards (e.g. & cards) " " v lvwlow|®v|*"v| " Jlm| =
« Dealer - a dealer that can shuffle and deal out hands of cards o ael aelaaslaaraaaadaoadaasatn] T T
)) I O R O R R R e o e
The Dealer class contains the main method. + * AL AL AL 2 g @K
R R R R R R R o I I
The programme is called like this: 4 N O A R R A R R A R A $ §
+ . . ol e e LR 3R K 3K AL ﬂ' @ K
* 4|0 0’0 L
java casino.Dealer 5 4 Yo e e ecje] e erje erfeejeerje ey | ¢
This asks the program to deal and print out 4 hands containing 5 playing cards each
It should return output like the following:
-+) 3 = I. F
E Conscle &8 _7® Call Higrarchy F e X Sk b E @

<terminated= Dealer [Java Application] /System/Library/JavasdavavirtualMachines/1.6.0. jdk/'ContentasHeme/bindava (Oct 6, 20153, 10:21:43 AM)
Hand: Sewen of Clubs; Three of Clubs; Six of Diamonds; Seven of Diamonds; Queen of Diamonds;

Hand: Four of Clubs; Mine of Diomonds; Three of Hearts; Wine of Clubs; Seven of Hearts;

Hand: Jack of Hearts; Ten of Spades; Two of Diamonds; Six of Spaodes; Two of Spades;

Hand: Wine of Hearts; Seven of Spades; Jack of Spodes; Two of Clubs; Ace of Spaodes;

OLl -
UNIVERSITY oF GALWAY

Card Game

A card game involves cards of different values
These are normally gathered together in a Deck

There are a number of things you might want to do with a deck
Shuffle the deck
Deal the deck
Sort the deck
Search for a card

\L Ly
AT OLLSCOILNAGAILLIMHE
. slmils -
ojlr-lfk UNIVERSITY oF GALWAY

LW

C av

public class Card {
private int suit, rank;

public static final String[] SUITS = {"Clubs", "Diamonds", "Hearts", "Spades"};
public static final String[] RANKS = {null, "Ace", "Two", "Three", "Four", "Five",
"Six", "Seven”, "Eight", "Nine", "Ten",
"Jack", "Queen", "King"};

public Card (int suit, int rank) throws IllegalArgumentException {

if(suit<® || suit> Card.SUITS.length-1){
throw new IllegalArgumentException("Incorrect suit value " +suit);

}

if(rank<1 || rank> Card.RANKS.length-1)({
throw new IllegalArgumentException("Incorrect rank value " + rank);

}

this.suit = suit; this.rank = rank;

public int getSuit(){
return suit;

}

public int getRank(){
return rank;

}
OLLSCOILNA GAILLI @0verride
UNIVERSITY OF GAL' public String toString(){
return Card.RANKS[rank] + " of " + Card.SUITS[suit]: //returns rank of suit
}

equals ()

Recall that every object inherits equals method from java.lang.Object
Two cards are equal if they have the same suit and the same rank

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

Quiz: equals() method for Card

@0verride

public boolean equals(|EEW object){
if(object==null){

return N
}

if (object [N Card){

Card card = (Card) object;

if(suit==card.getSuit() fijjrank==card.getRank()){
return true;
}
}
return I ;
}

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

compareTlo

Equals is a very useful method
However, when searching or sorting, it is important to know whether one
object has a greater/less value than another

With primitive values, it is trivial to understand if one number is greater/less
than another.

Eg.5>4; 0.1>-0.1;
How do we decide if one Card is greater/less than other?

a
A (OLLSCOILNAGAILLIMHE
UNIVERSITY oF GALWAY

Natural Ordering

When deciding on whether one object is greater or less than another, we refer to the
natural ordering of the objects’ class

Natural ordering is the ordering imposed on an object when its class implements the
Comparable Interface

In Google look-up , “Java Comparable Interface”

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

10

Comparable<T>

public interface Comparable<T>

This interface imposes a total ordering on the objects of each class that implements
it. This ordering is referred to as the class's natural ordering, and the class's
compareTo method is referred to as its natural comparison method.

Lists (and arrays) of objects that implement this interface can be sorted automatically
by Collections.sort (and Arrays.sort). Objects that implement this interface can
be used as keys in a sorted map or as elements in a sorted set, without the need to

specify a comparator.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

11

Comparable<T> interfaces

Like most interfaces, very lightweight

Has one method: compareTo

All classes that implement Comparable, must also provide a
concrete implementation of compareTo

L L,
A (OLLSCOILNAGAILLIMHE
- - -
) :* UNIVERSITY oF GALWAY

12

compareTo(T o)

int compareTo(T o)

Parameters:

o - the object to be compared.

Returns:

a negative integer, zero, or a positive integer as this object 1is
less than, equal to, or greater than the specified object.

Throws:

NullPointerException - if the specified object is null

ClassCastException - if the specified object's type prevents it from
being compared to this object.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

13

Interface Comparable<T>

The <T> in Comparable<T> means that we can specify in advance the type
of the object that should be compared

In other words, unlike the equals method which has a generic Object
parameter, we can specify the input type for the compareTo method

N
f = OLLSCOILNAGAILLIMHUE

o ZJ UNIVERSITY oF GALWAY
W

14

Objective: make the Card class sortable and searchable
Create a Deck of Cards that can be shuffled and searched

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

15

implements Comparable

Modify the Class definition of Card to implement Comparable

public class Card implements Comparable<Card={

The <Card> tells Java that you plan to compare Card objects only
To get this to compile you have to implement the compareTo method

@0verride
public int compareTo(Card card){

return 8;

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

16

What is the natural ordering of a set of Cards?

The suits are generally ordered in increasing value as follows
clubs, diamonds, hearts, spades

The rank goes is ordered in increasing value
Ace, 2,3,4,5,6,7,8,9, 10, Jack, Queen, King

These orderings are reflected by the arrays we have already defined

SUITS = {"Clubs”, "Diamonds", "Hearts", "Spades"};
RANKS = {null, "Ace", "Two", "Three", "Four", "Five",
"Six", "Seven", "Eight", "Nine", "Ten",

"Jack", "Queen”, "King"};

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

17

What is the natural ordering of a set of Cards?

The suit value produces the primary ordering

Card(3,1)

A
-

-, &

is always
greater than

The rank value produces the secondary ordering

Card(0,10)

Ly
= OLLSCOIL NA (GAILLIMUE

-.vﬁ' UNIVERSITY of GALWAY

10

sefo oo
s,

i o

e

is always
greater than

& |
' '
s

\4

O&Ot;':!'-!'
of: of 30 3o

Ot

Card(2,1)

Card(0,9)

How should compareTo behave?

’ @
compareTlo =1
PY P '
‘* - ¢
10 g
&*** ** *
o ok compareTo .Y.*.!. =1
ey, M
0 % ¥
NAT OLLSCOILNAGAILLIMHE

| N
. -||m|- .
e
45 W g

UNIVERSITY oF GALWAY

How should compareTo behave?

‘A

v
' compareTo o =-1
e
\ A4

=

=T &

i% & e &
z*z compareTlo .y."'.y. =-1
L * *'i' :***
;;TT%T;@ OLLSCOILNA GAILLIMH] b 0

UNIVERSITY oF GALWAY

C aw A
4w

How should compareTo behave?

& |
' '
s

\4

ot -&.‘_-a- 3o
o of- 30 3o

@Dl 5

o/_lll\ OLLSCOILNAGAILLIMI
Sl UNIVERSITY OF GALWA

[« v‘v

20

comparelo

comparelo

2: S
&
oo
o %

*
6

Card.compareTo

The method first checks for equality
Then checks if the card is in a higher or lower suit
Then it checks it’s rank

@0verride
public int compareTo(Card card){

L .y - - o 4
f -1 -] : ~= - : ~
.y | T ot = LA Sl L o 11 .-'H.'H.Ir | |
L = b= = - . =) - 1 = = =~ 4+ = |‘_“‘_-"__i = = J e 1 o 1 ot I_ =
e b - e L4 L = o e b | [_ Al e B | 3 i | I " 1
- . - i =
i = = = § - = = = PR —— = b= o= = i - = | == - _|
1 LINT1lS & alue 15 less Tha ~al U SUll adlUE 2 LU
T T » e | ,{_ 9 ©= T E' 3T r [= =N als = =aal raT W 7
A | B | i1 i | y | o LS| C | 3 | 1 M = LAl |
-~ 2= 3= 11 F
LTS Wiho = LU T

43

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

22

compareTlo

The method first checks for equality
Then checks if the card is in a higher or lower suit

Then it checks it’s rank

@0verride
public int compareTo(Card card){
if(this.equals(card)) return 8;

if(this.suit > card.getSuit()) return 1;
if(this.suit < card.getSuit()) return -1;

if(this.rank > card.getRank()) return 1;

return -1;

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

23

assert

Use assert to declare a statement that must be true
If it is not true, your programme will throw an AssertionError Exception
You can use the Assert statement as a quick way to test for expected output

assert(2==2); // will always be true
assert(true==false) // will always be false

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Quick Test

public void testCompareTo(){
Card cardl = new Card(1,2):
Card card2 = new Card(1,2):

int result = cardl.compareTo(card2);
assert(result==0); // assert = this must be true

Card card3 = new Card(2,3):
Card card4 new Card(1,2):

result = card3.compareTo(card4);
assert(result==1); // assert = this must be true

result = card4.compareTo(card3);
assert(result==-1); // assert = this must be true

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY }

25

If you run this code and it produces no Exception then the assert
statements were all true —and your code passed the test

Download the code uploaded after this lecture to test it yourself

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

26

A Deck of Cards

We will create a new class called Deck to hold the Card objects
When we create a Deck object, it should immediately populate itself
with 52 card objects

We also want methods to sort the Cards and to search for a Card

Ly,
A (OLLSCOILNAGAILLIMHE
- [
) :* UNIVERSITY oF GALWAY

27

Deck Class

Function: to store cards and to perform any methods to do with shuffling and sorting and searching

What data structure will it use to store the Card objects?

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

28

Deck Class

Function: to store cards and to perform any methods to do with sorting and searching

Instance variable is an array of
references to Card objects

public class Deck

1LNsitance vdrlable

private Card[] cards = new Card|[52];

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

Deck()

Constructor populates the Deck with Card objects
Outer loop enumerates the suits from 0 to 3.
Inner loop enumerates the ranks from 1 to 13.

IET"
* Constructor for objects of class Deck
*/
public Deck()
{

int index = 8;
for(int i =8 ; i< Card.SUITS.length; i++)({
for(int j =1 ; j< Card.RANKS.length; j++)({
cards[index] = new Card(i,j);
index++;

29 }

30

Card Array

Cards Array now contains 52 Card objects

0123

cards [——= [JLJ IO LY

Ly,
&\ OLLSCOILNAGAILLIMHE
-..Q' UNIVERSITY of GALWAY

o1

[\

HiEIE .

suit

rank

suit| 0

rank | 2

31

Sorting

We are going to create an instance method called sort belonging to the Deck class
It should sort the Cards into the order in which they were created by the Deck

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

32

Arrays.sort

We will make use of the the sort method from the java.util.Arrays class

Look up java.util.Arrays on Google

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

33

public class Arrays
extends Object

This class contains various methods for manipulating arrays (such as sorting and
searching). This class also contains a static factory that allows arrays to be viewed as

lists.

The methods in this class all throw a NullPointerException, if the specified array
reference is null, except where noted.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

34

sort

public static void sort(0Object[] a)

Sorts the specified array of objects into ascending order, according to the natural
ordering of its elements. All elements in the array must implement the Comparable
interface. Furthermore, all elements in the array must be mutually comparable (that is,
el.compareTo(e2) must not throw a ClassCastException for any elements el and e2 in

the array).

This sort is guaranteed to be stable: equal elements will not be reordered as a result of
the sort.

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

35

sort

With the Arrays class, creating a sort method for the array of Cards is easy

public void sort()
{

Arrays.sort(cards);

That’s all there is to it.

Remember to put import java.util.Arrays at the top of the class

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

__

public class Deck

{

)

// instance variables
private Card[] cards = new Card[52]:

IET"

* Constructor for objects of class Deck
*/

public Deck()

{

i

// this code creates 52 unique Cards

int index = 8;

for(int i =@ ; i< Card.SUITS.length; i++){ // for each suit value
for(int j =1 ; j< Card.RANKS.length; j++){ // for each rank value
cards[index] = new Card(i,j); // add a new Ca
index++; // increase the index by 1

}
}
}
‘public void sort()
o
| Arrays.sort(cards);
1}

37

sort() method in the Deck class

observation: As far as the Arrays.sort method is concerned it is sorting an
Array of Comparalble objects, not Card objects

The Arrays.sort method will only ever call the compareTo method of the

Card object
public void sort()

{
}

Arrays.sort(cards);

a
A (OLLSCOILNAGAILLIMHE
- -
) :* UNIVERSITY oF GALWAY

38

How do we test the sort method?

Define an equals method for Deck
If two Decks have the same cards, in the same order then they are equal

Test approach
Create two decks
Test if they are equal
Shuffle one Deck
Test that the Decks are no longer equal
Sort the shuffled Deck (with new sort method)
Test if both decks are equal again

Vs
& OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

39

How do we test the sort method?

Define an equals method for Deck

If two Decks have the same cards, in the same order then they are equal

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

@0verride
public boolean equals(Object object){
if (object == null){
return false;
}

if(object instanceof Deck) {
Deck deck = (Deck) object;
for(int i = @; i< cards.length; i++){

if(!getCard(i) .equals(deck.getCard(i))){
return false;
}

}
}

return true;

40

How do we test the sort method?

Define a shuffle method for Deck
Many ways to do this
The code below randomly shuffles the array of cards according to the Fisher Yates algorithm

public void shuffle()({
for(int i = cards.length-1; i=B; i--){
int j = (int)(Math.random() * i+1);
Card temp = cards[i];
cards[i] cards[]j];
cards|j] temp;

}

Ly,
&\ OLLSCOILNAGAILLIMHE
-.vﬁ' UNIVERSITY of GALWAY

41

Test Code

public static void main(String| | args)

{

Deck deckl = new Deck();
Deck deck2 = new Deck();

assert(deckl.equals(deck2)); // should be equal
deck1.shuffle();// randomly shuffles the deck
assert(!deck1.equals(deck2)); // both decks should not be equal
deck1.sort(); // should sort the deck back to its orginal order

assert(deckl.equals(deck2)); // should be equal again

42

Testing

If this test code runs without throwing an Exception then the assert methods were true
And the code passed the test

Run the code yourself and verify that no AssertionError Exception is thrown
Comment out the deckl.sort() method in the test code.
Verify that an AssertionError Exception is now thrown

Ly,
A (OLLSCOILNAGAILLIMHE
- - -
) :* UNIVERSITY oF GALWAY

43

Lecture wrap up

e This lecture we looked at using the Comparable interface

 We defined the compareTo method for a Card object

 We then used the java.util.Arrays.sort method to sort a Deck of Cards

* As with any method we design we devised a test to evaluate if the method works

* A handy way of evaluating whether an expected value occurs is to use the assert function

* |f the assert fails, the program throws an AssertionError alerting you to the fact that your code has
not produced expected output

QOLLSCOILNA GAILLIMHUE
UNIVERSITY oF GALWAY

	CT2106�Object Oriented Programming
	Today’s Lecture
	Back to the Card assignment
	Card Game
	Slide Number 5
	equals()
	Quiz: equals() method for Card
	compareTo
	Natural Ordering
	Comparable<T>
	Comparable<T> interfaces
	compareTo(T o)
	Interface Comparable<T>
	Slide Number 14
	implements Comparable
	What is the natural ordering of a set of Cards?
	What is the natural ordering of a set of Cards?
	How should compareTo behave?
	How should compareTo behave?
	How should compareTo behave?
	Card.compareTo
	compareTo
	assert
	Quick Test
	Slide Number 25
	A Deck of Cards
	Deck Class
	Deck Class
	Deck()
	Card Array
	Sorting
	Arrays.sort
	Slide Number 33
	Slide Number 34
	sort
	Slide Number 36
	sort() method in the Deck class
	How do we test the sort method?
	How do we test the sort method?
	How do we test the sort method?
	Test Code
	Testing
	Lecture wrap up

