
L E C T U R E 7

N E S T E D C L A S S E S

D R A D R I A N C L E A R
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Objectives for today
• Understand nested classes
• Demonstrate the use of static nested classes, inner classes,

and anonymous inner classes

Q https://vevox.app/#/m/178336857

Nested Classes
• You can define a class as a member of another class. Such a class is

called a nested class and is illustrated here:
class EnclosingClass {
 ...
 class ANestedClass {
 ...
 }
}

Relationship to enclosing class
• You use nested classes to reflect and to enforce the

relationship between two classes.
• You should define a class within another class when the nested class

makes sense only in the context of its enclosing class or when it relies on
the enclosing class for its function.

• For example, a text cursor might make sense only in the context of a text
component.

• As a member of its enclosing class, a nested class has a
special privilege: It has unlimited access to its enclosing class's
members, even if they are declared private.

Static and inner classes
• Like other class members, a nested class can be declared

static (or not).
• A static nested class is called just that: a static nested class.
• A non-static nested class is called an inner class.

class EnclosingClass {
 ...
 static class StaticNestedClass {
 ...
 }
 class InnerClass {
 ...
 }
}

Static and inner classes
• As with static methods and variables, which we call class

methods and variables, a static nested class is associated with
its enclosing class.
• And like class methods, a static nested class cannot refer directly to

instance variables or methods defined in its enclosing class — it can use
them only through an object reference.

• As with instance methods and variables, an inner class is
associated with an instance of its enclosing class and has
direct access to that object's instance variables and methods.

Nested inner classes

• The interesting feature about the relationship
between these two classes is not that the
Inner Class is syntactically defined within
Enclosing Class.

• Rather, it's that an instance of Inner Class can
exist only within an instance of Enclosing
Class and that it has direct access to the
instance variables and methods of its
enclosing instance.

• You may encounter nested classes of both
kinds (static and inner) in the Java platform
API and be required to use them.

• However, most nested classes that you write
will probably be inner classes.

Using Anonymous Inner Classes
• Tokenizer
• Partition String into individual substrings
• Use delimiter
• Java offers java.util.StringTokenizer

Ó 2014 Prentice Hall, Inc.
All rights reserved.

TokenTest.java

Line 29

1 // Fig. 10.20: TokenTest.java
2 // Testing the StringTokenizer class of the java.util package
3
4 // Java core packages
5 import java.util.*;
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages
10 import javax.swing.*;
11
12 public class TokenTest extends JFrame {
13 private JLabel promptLabel;
14 private JTextField inputField;
15 private JTextArea outputArea;
16
17 // set up GUI and event handling
18 public TokenTest()
19 {
20 super("Testing Class StringTokenizer");
21
22 Container container = getContentPane();
23 container.setLayout(new FlowLayout());
24
25 promptLabel =
26 new JLabel("Enter a sentence and press Enter");
27 container.add(promptLabel);
28
29 inputField = new JTextField(20);
30
31 inputField.addActionListener(
32
33 // anonymous inner class
34 new ActionListener() {
35

inputField contains String to be
parsed by StringTokenizer

Ó 2014 Prentice Hall, Inc.
All rights reserved.

TokenTest.java

Lines 41-42

Line 45

Lines 47-48

36 // handle text field event
37 public void actionPerformed(ActionEvent event)
38 {
39 String stringToTokenize =
40 event.getActionCommand();
41 StringTokenizer tokens =
42 new StringTokenizer(stringToTokenize);
43
44 outputArea.setText("Number of elements: " +
45 tokens.countTokens() + "\nThe tokens are:\n");
46
47 while (tokens.hasMoreTokens())
48 outputArea.append(tokens.nextToken() + "\n");
49 }
50
51 } // end anonymous inner class
52
53); // end call to addActionListener
54
55 container.add(inputField);
56
57 outputArea = new JTextArea(10, 20);
58 outputArea.setEditable(false);
59 container.add(new JScrollPane(outputArea));
60
61 setSize(275, 260); // set the window size
62 show(); // show the window
63 }
64
65 // execute application
66 public static void main(String args[])
67 {
68 TokenTest application = new TokenTest();
69

Use StringTokenizer to parse
String stringToTokenize with

default delimiter “ \n\t\r”

Count number of tokens

Append next token to outputArea, as
long as tokens exist

Ó 2014 Prentice Hall, Inc.
All rights reserved.

TokenTest.java

70 application.addWindowListener(
71
72 // anonymous inner class
73 new WindowAdapter() {
74
75 // handle event when user closes window
76 public void windowClosing(WindowEvent windowEvent)
77 {
78 System.exit(0);
79 }
80
81 } // end anonymous inner class
82
83); // end call to addWindowListener
84
85 } // end method main
86
87 } // end class TokenTest

In-class demo
• Create a class to represent an array data structure of specified

size, populated with ascending integer values
• Includes a method, printEven that prints the even values of

the array
• Uses a nested inner class to iterate over even numbers of the

array.

Next time…
• Enums

