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Lecture Content
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 Public key cryptography versus private key 
cryptography

 Public key cryptography applications

 Diffie-Hellman Key exchange

 Man-in-the-Middle (MitM) attacks

 RSA encryption

 Optimisation techniques for public key encryption

 ECC encryption

 The Double-Ratchet algorithm



Model of Conventional Cryptosystem

Y = EK(X), X = EK
-1(Y)

Symmetric block ciphers are cryptographically strong, 

but key distribution can be a headache!



Features and Limitations of Private-

Key Cryptography 

 Traditional symmetric/single key cryptography uses one 
key, shared by both sender and receiver 
 If this key is disclosed, communications are compromised

 

 The key is also symmetric, both parties are equal 
 This is problematic too, as it does not protect the sender from 

a situation, where: 
- the receiver forges a message using that key 
- and claims that it was sent be the sender
◼ Think about an electronic contract that is exchanged between two 

business partners that use a shared key
◼ One party can forge a contract and claim it was sent by the other 

side
◼ Message authentication (HMAC or CMAC) doesn’t solve the 

problem!



Features of Public-Key Cryptography

 Public-key/two-key/asymmetric cryptography involves the use 
of two keys: 
 a public-key, which the owner shares with any peer; it is used to:
◼ Encrypt messages send from the peer to the owner
◼ Verify the integrity and origin of messages send from the owner to a peer 

(signature validation)

 a private-key, known only to the recipient/owner, used to:
◼ Decrypt messages that were encoded using their public key
◼ Digitally sign data send to a peer (signature creation) 

 The keys are asymmetric, because they are not equal
 Those who encrypt a message or verify a signature (using the 

receiver’s public key) cannot decrypt the message or forge a 
signature

 It is computationally very hard (and infeasible) for an attacker 
to rebuild an owner’s private key by analysing their public key

 This is achieved through the application of number- theoretic 
concepts 



Public-Key Encryption

M



Applications of Public-Key 

Cryptosystems  

 Data encryption/decryption:
The sender encrypts the message with the recipient’s public key and the 
receiver decodes the message using their private key
 Recall symmetric encryption where only one key is used

 Digital signature/authentication:
The sender “signs” a message with their private key. Signing is achieved 
by encrypting the message or its MAC using their private key (next slide)
 Recall private key encryption where sender and receiver just share one key

 Key exchange:
Two sides negotiate a symmetric session key
 Private key encryption is much faster than public key encryption

 This key may also be used for conventional message authentication

 Note that in order to avoid confusion we use from now on the terms:
 Symmetric key for private key encryption (block ciphers and stream ciphers)

 Public and private keys for public key encryption



Public-Key Cryptosystems: Secrecy 

and Authentication

Public

key

Private 

key

The entire message Y is the 

authenticator 

Note that this scheme requires B to 

determine that a received message 

is intelligible, i.e. that Z has not been 

manipulated by a MitM in transit 



Recap: Basic Uses of Hash Functions (H) in 

Combination with asymmetric Encryption (c)

KRa = Sender’s private key

KUa = Sender’s public key



Recap: Basic Uses of Hash Functions (H) in 

Combination with asymmetric Encryption (d)

KRa = Sender’s private key

KUa = Sender’s public key



Public-Key Cryptosystems
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 There are different cryptosystems, including (from 

simplest to most complex):

 Diffie Hellman key exchange

 RSA 

 DSS

 Elliptic Curve Cryptography



Modular Arithmetic
12

 Modular arithmetic is a system of arithmetic for integers, 

where numbers wrap around  when reaching a certain 

value n, called the modulus

 Recall modulus operator “%” in C and other languages, i.e. 

“division with rest” with rest being the modulus

 Example: 75 / 6 = 12 remainder 3 ➔ 75 % 6 = 3  

 Numbers {0, 1, …, n - 1} are called “multiplicative group 

of integers modulo n”, or simply Zn, for some n > 0

 Within Zn, addition and multiplication is well defined!



Example: Multiplication in Z9

* 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8

2 0 2 4 6 8 1 3 5 7

3 0 3 6 0 3 6 0 3 6

4 0 4 8 3 7 2 6 1 5

5 0 5 1 6 2 7 3 8 4

6 0 6 3 0 6 3 0 6 3

7 0 7 5 3 1 8 6 4 2

8 0 8 7 6 5 4 3 2 1

Mx3



Illustration of Concept behind Diffie-

Hellman Key Exchange (Wikipedia)
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 Alice and Bob want to share a secret colour 
using public transport

 i.e. an adversary (i.e. Mallory, not shown) can 
get samples of any colour that is exchanged 
between both

 Alice and Bob agree on a common “public” 
paint color (yellow in the example)

 Each of them add a secret colour and send 
their mix to the other party

 Mallory can intercept both, but cannot separate 
the mixtures

 Alice and Bob receive the other’s mixture 
and add their secret colour

 Both colours are identical 

 → This color is their common secret 



Diffie-Hellman Key Exchange

 Diffie-Hellman provides a mechanism for a secure key exchange between 
two endpoints
 The negotiated key is subsequently used as a symmetric key (or as a seed for a key) 

for data encryption and message authentication (as seen before)

 The algorithm uses the multiplicative group of integers modulo q
 q has typically a length of 1024 or 2048 bits

 It is based on the difficulty of computing discrete logarithms over such 
groups, e.g. 

  63 mod 17 = 216 mod 17 = 12 (easy)

  12 = 6y mod 17?   (difficult)

 Recall 63 = 6 x 6 x 6, so we need just the multiplication

  The core equation for the key exchange is 

   K = (A)B mod q



Diffie-Hellman: Global Public Elements

 Alice and Bob select: 

 A prime number q which determines Zq
 A positive integer a, with 1 < a < q and a is a primitive root of q

◼ Note that a is also called the generator

 Definition: a is a primitive root of q, if numbers 
a mod q, a2 mod q, … a(q - 1) mod q
are distinct integer values between 1 and (q - 1) (i.e. in Zq) in 
some permutation

 Example: a = 3 is a primitive root of Z5 (i.e. q = 5), a = 4 is not:
 31 = 3   = 0   * 5 + 3  41 = 4     = 0   * 5 + 4
 32 = 9   = 1   * 5 + 4   42 = 16   = 3   * 5 + 1 
 33 = 27 = 5   * 5 + 2     43 = 64   = 12 * 5 + 4 
 34 = 81 = 16 * 5 + 1   44 = 256 = 51 * 5 + 1   



Primitive Roots of Zn with 15 < n < 32
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Generation of Secret-Key: Part 1

 Alice and Bob share publicly a prime number q and a 
primitive root a

 Alice (User A):
 Select secret number XA with 0 < XA < q
 Calculate public value YA = aXA mod q   ( difficult to reverse)

 YA is sent to Bob (user B)

 Bob (User B):
 Select secret number XB with 0 < XB < q
 Calculate public value YB = aXB mod q   ( difficult to reverse)

 YB is send to Alice



Generation of Secret-Key: Part 2

 Alice:

 Alice owns XA and receives YB

 She generates the secret key:     K = (YB)XA mod q

 Bob:

 Bob owns XB and receives YA

 Bob generates the secret key:     K = (YA)XB mod q

 Both keys are identical!



Generation of Secret-Key: Part 2

K = (YB)XA mod q

   = (aXB mod q)XA mod q

    = (aXB)XA mod q

   = aXB XA mod q 

    = aXA XB mod q 

    = (aXA)XB mod q

    = (aXA mod q)XB mod q

 = (YA)XB mod q



Example for Diffie-Hellman

 Alice and Bob agree on public values q and a, and 
determine their respective secrets XA and XB :

 Let q = 5 and a = 3

 Alice picks XA = 2, therefore YA = aXA mod 5 = 4

 Bob picks XB = 3, therefore YB = aXB mod 5 = 2

 Alice sends YA = 4 to Bob

 Bob sends YB = 2 to Alice

 Alice calculates: K = (YB)XA mod q = 22 mod 5 = 4

 Bob calculates: K = (YA)XB mod q = 43 mod 5 = 4



Ephemeral versus Static Diffie-Hellman 

Keys

 The generated DH keys can be either 

 static (to be reused)

 ephemeral (only used once, e.g., for one session only)

 Ephemeral keys 

 provide forward secrecy, but no endpoint authenticity

◼ Forward secrecy: If the current key is recovered by an adversary, it only 
effects the current session, but no past or future sessions

 Static keys

 do not provide forward secrecy

 do provide (implicit) endpoint authenticity

 do not protect against replay-attacks



Example DH Parameters
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 Standardised, see https://www.ietf.org/rfc/rfc3526.txt 

 Example 2048-bit MODP Group

 q = 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 }

 q = FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1

      29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD

      EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245

      E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED

      EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D

      C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F

      83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D

      670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B

      E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9

      DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510

      15728E5A 8AACAA68 FFFFFFFF FFFFFFFF

 a = 2

[] == rounded

https://www.ietf.org/rfc/rfc3526.txt


DH and Man-in-the-Middle (MitM) 

Attacks 

 Mallory is a MitM attacker with the ability to intercept, and fabricate messages

 Not to confuse with a Meet-in-the-Middle attack (→ double-DES and triple-DES)

 Both Alice and Bob are unaware of Mallory’s existence, as there is no mutual authentication and an 
unprotected communication link

 Alice and Bob exchange their shared values (A and B in the example), but these are intercepted by Mallory

 Mallory completes both key exchanges sending her own shared value Z to both Alice and Bob 

 By doing so, Mallory establishes two individual (secure) connections with Alice and Bob

 Alice and Bob have no idea that they became victims of a MitM attack!



In-Class Activity: Diffie-Hellman 

MitM Attack

 Let q = 5 and a = 3;

 XAlice = 2, therefore YAlice = a
XAlice mod 5 = 4

 XBob = 3, therefore YBob = a
XBob mod 5 = 2

 XMalory = 1, therefore YMalory = a
XMalory mod 5 = 3

 What session keys between 
 Alice and Malory

 Malory and Bob

are generated?

 Note: User A’s key K = (YB)XA mod q 

 Note: User B’s  key K = (YA)XB mod q



Solution
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 Alice sends “4” to Bob, but this message is intercepted by Malory

 Bob sends “2” to Alice, but this message is intercepted by Malory

 Malory sends “3” to both parties, claiming to be either Bob or Alice

 Alice receives “3” and calculates K as follow: K = 32 mod 5 = 4

 Malory calculates 41 mod 5 = 4

 Bob receives “3” and calculates K as follow: K = 33 mod 5 = 2

 Malory calculates 21 mod 5 = 2

 Alice and Bob think they just mutually agreed on a shared 
secret key

 From this point onwards Malory as a MitM can read, 
manipulate and fabricate messages between Alice and Bob 



The RSA Algorithm  

 Published by Rivest, Shamir and Adleman in 1977, but first discovered by 
Clifford Cocks (British mathematician and cryptographer) in 1973

 The RSA scheme works similar to a block cipher, where a plaintext M and a 
ciphertext C are integers between 0 and n – 1,i.e. elements of Zn

 M can be a plaintext message (block), a hash value, or a private key picked 
by the sender to be shared with the message recipient   
 E.g., “ABC” = “01000001 01000010 01000011” = 427680310

  Principle: C = Me mod n
  M = Cd mod n = Med mod n

  Public key  KU = {e, n}
  Private key KR = {d, n}

  With n sufficiently large it is infeasible to determine d given e and n



Key Generation for the RSA Algorithm

Greatest 

common divisor

See next slide

Euler’s totient 

function Phi



Example

 Let p = 7, q = 11 and n = pq = 77

 φ(77) = (p - 1)(q - 1) = 6 x 10 = 60

 Factorisation of 60 = 1 * 2 * 5 * 2 * 3

Therefore, the divisors of 60 are: 2, 3, 5

 List of all integers x, 1<x<60, with GCD(60,x) = 1:
7, 11, 13, 17, 19, 23, 29, 31, 37, 47, 49, 53, 59



Note that these integers either
 are prime numbers (that cannot share a common divisor with 60), or

 do not share a common divisor with 60 (i.e., 7 and 49)



Example (continued)

 Let e = 7

 Choose d with ed = 1 mod φ(pq)  
            7d = 1 mod 60  7d mod 60 = 1

 7*1 mod 60 = 7 7*2 mod 60  = 14 7*3 mod 60 = 21

7*4 mod 60 = 28 7*5 mod 60  = 35 7*6 mod 60  = 42 
7*7 mod 60 = 49 7*8 mod 60  = 56 7*9 mod 60  = 3 
7*10 mod 10 = 28 7*11 mod 60  = 17 7*12 mod 60  = 24

…   7*43 mod 60 = 1 

 Therefore d = 43

 Therefore KU = (7, 77) and KR = (43, 77)

 Note there are better / more efficient algorithms (i.e. the 
Extended Euclidean Algorithm) to calculate d



Example for an Encryption/Decryption

 Obvious drawbacks: 

 Very large numbers are to be computed
◼ Ordinary integer or floating-point variables don’t work

◼ Instead, large number libraries need to be used

 This makes RSA encryption / decryption is very slow!



Computational Aspects of Public Key 

Cryptography

 Assume you have to evaluate the expression C = 50323 mod 899 as part of the 
encoding process

 Note that the modulus is small enough to fit into an integer variable

 50323 = 1.367929313795408423250439710106 x 1062 cannot be  properly 
represented using an ordinary integer or floating-point variable!

 In order to solve this problem, the exponentiation must be broken down into 
smaller steps, e.g.

 50323 mod 899 = ((5036 mod 899) x (5036 mod 899) 
             x  (5036 mod 899) x (5035 mod 899)) mod 899 

 5036 mod 899 = ((5033 mod 899) x (5033 mod 899)) mod 899 

 5035 mod 899 = ((5033 mod 899) x (5032 mod 899)) mod 899 

 5033 mod 899 = ((5032 mod 899) x 503) mod 899



Computational Aspects of Public Key 

Cryptography

 … or even iteratively:
50323 mod 899 =
((((((5032 mod 899) x 503) mod 899) x 503) mod 
899) x … x 503) mod 899  

 This expression consists of 22 nested multiplications and 22 
nested modulus operations and can be easily calculated by 
using a loop

 However, once a single number squared is too large to fit 
into a 32-bit or 64-bit (unsigned) integer variable, a big 
number library must be used



The Security of RSA

 There are various angles to attack the RSA algorithm:
 Brute force: Trying all possible private keys (not a great idea!)

 Mathematical attacks: Factor n (which is the product of two 
primes); see some very old data below:

 See also (for some more recent data) 
https://en.wikipedia.org/wiki/RSA_numbers#RSA-704 

 Timing attacks: Based on analysis of the run time of an 
decryption algorithm

https://en.wikipedia.org/wiki/RSA_numbers#RSA-704


Breaking RSA
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 Consider the key pair (e, n) and (d, n) or simply (e, n) 
and d

 n = p * q, with p and q being large (secret!) primes

 Factorising n is unfeasible for very large n

 However, let’s assume n can be factored into p and q

 The adversary can now do the following calculations:

 φ(n) = (p – 1) * (q – 1) 

 Identify d, so that e * d = 1 mod φ(n)

◼ e is known, use the aforementioned Extended Euclidean 
Algorithm



Step 1: Factorise N
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// This is a very lightweight integer factoring algorithm, not very efficient or 
// sophisticated.

// Assume n is the product of two primes p1 and p2

void factorise(int n) {

 int i;

 for (p1 = 2; i <= sqrt(n); i++) {

  if (n % p1 == 0) 

   printf(“n = %d; p1 = %d; p2 = %d\n”), n, p1, n / p1);

  break;  

}

// Note that the integer values above would be replaced with large number
// representations, i.e., BIGNUM in OpenSSL



Step 2: Determine e
39

// We know p and q (n was successfully factorised), d is in the public key KR= d, n

// This is again a very lightweight algorithm, not very efficient or sophisticated.

int breakRSA(int p, int q, int d) {

 int prod, found = 0, start = 1, df = -1;

 int phi = (p -1) * (q – 1);

 while ((!found) && (start < phi)) { // exit if needed

  prod = d * start;

  if (prod % phi == 1) found = 1;

  else start++;

 }

 if (found) df = start;

 return (df);

}

// Note that the integer values above would be replaced with large number
// representations, i.e., BIGNUM in OpenSSL



How to choose p and q
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 When choosing p and q, the following should be 
considered:

1. p <> q, as p = q = sqrt(n)

2. Neither p or q must not be “small”, as factorising could 
produce a result in a reasonable amount of time (see 
previous slide “Step 1: Factorise N”)

3. p must not be similar in size to q, because of Fermat's 
method of factoring a composite number N:

◼ N can be represented as the difference of two squares:

◼ p * q = N  a2 – b2  (a - b) (a + b) [== p * q]

◼ N = a2 - b2 can be rewritten as: b2 = a2 - N 

◼ To find a solution, iterate through a (starting with round(sqrt(N))), 
until a2 - N is a square number (i.e. b2)



Fermat’s Factoring Algorithm
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// This function assumes N can be factorised. It returns N’s factors 
// p and q, using “pass by reference” pointers, so that both values 
// are returned.

void fermatFactor(int N, int *p, int *q) { 

    int a = ceiling(sqrt(N)); // start value for a

    int b2 = a * a - N; // see last slide

    while (sqrt(b2) * sqrt(b2) <> b2) { // is b2 a square?

        a = a + 1; // No, so increment a …

        b2 = a * a – N; // … and update b2

    }

    *p = a - sqrt(b2);

    *q = a + sqrt(b2);

}

If p (= a - b) and q (= a + b) 

are similar in size, it takes only a 

small number of iterations over a 

to find a solution   



Example
42

1. n = 33 (based on secret values p = 3 and q = 11)

2. First iteration: a = 6 (i.e., ceiling(sqrt(33)):

1. b2 = 6 * 6 – 33 = 3 

2. b2 is not a square number

3. a = a + 1

3. Second iteration: a = 7:

1. b2 = 7 * 7 – 33 = 16

2. b2 is a square number

4. Calculate p and q:

1. p = 7 - sqrt(16) = 3

2. q = 7 + sqrt(16) = 11



https://arstechnica.c

om/information-

technology/2022/0

3/researcher-uses-

600-year-old-

algorithm-to-crack-

crypto-keys-found-

in-the-wild/ 
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Breaking RSA in Practise

https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
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Elliptic Curve Cryptography (ECC)

 Traditional methods exploit the properties of 
arithmetic using large finite groups Zn with n having 
a typical size of 1024 bits, i.e. 309 decimal digits

 The security depends on the difficulty of factorising 
large numbers or calculating discrete logarithms

 Using large numbers makes such algorithms 
computationally expensive

 In ECC, Zn is replaced by points of an elliptic curve, 
making the discrete log calculation problem 
different and much harder compared to the discrete 
log in ordinary groups



Elliptic Curve Groups

 Elliptic curves are based on simplified cubic 
equations, e.g. 
y2 = x3 +ax + b
where a and b are real numbers

 The curve shown here is defined by the 
equation 
y2 = x3 – x (i.e., a = -1 and b = 0)

 To plot such a curve, we need to compute
y = sqrt(x3 +ax + b)

 Since the shape of the curve depends on a and 
b, ECs can be described as E(a,b) 

 The above curve can be written as E(-1, 0) 

 In order to operate on elliptic curves, we need 
to introduce an operation that is equivalent to 
the addition as well as a “0” element



Elliptic Curves over a Finite Field

 In order to have values (x, y)within Zp, the modulus 
operation is used again:
 y2 mod p = (x3 +ax + b)  mod p

 p is either a prime number or p = 2m

 We only consider pairs (x, y), where both x and y 
are integer values

 Example: Table of all integer 
solutions for E23(1,1)



The Elliptic Curve E23(1,1) 



Adding Points on an Elliptic Curve 

 ECC requires the equivalent of an addition on  
Ep(A,B) of two points a and b

 This is done (geometrically) as follows:
  - Draw a straight line through a and b 
    to find the third intersecting point w, 
  - then draw a vertical line through w to 
    find the intersecting point c (that’s the sum)

  Every line intersects the curve three
  times (tangents are counted twice), e.g.,
  the line through a and b intersects a 
  "third" point b. We name this line [a,b,b] 

  O is called the origin, or point at infinity

  We can say 
   a + b = c                    a + d = b + c = O   
   a + a = b                    a + O = a



ECC over a Finite Field: Addition

 There’s p as defined before

 Addition of two field elements S = (xS, yS) and Q = 
(xQ, yQ) with S <> -Q:

 S + Q = R = (xR, yR) 

 xR = (L
2 - xS – xQ) mod p

 yR = (L (xS – xR) – yS) mod p
 L is either

◼ ((yQ – yS) / (xQ – xS)) mod p, if S <> Q, or 

◼ ((3 x2S + a) / (2 yS)) mod p, if S = Q



ECC over a Finite Field: Addition and 

Multiplication

 The addition of two elliptic points P and Q consists of a 

number of integer operations (mod q):

 5 or 6 subtractions

 1 or 4 multiplications

 1 division

 A multiplication (P * Q) is done via consecutive additions

 A scalar multiplication (x * Q) with some scalar x is the 

operation of successively adding a point Q along an elliptic 

curve to itself x times (i.e. Q + Q + Q + … + Q)



ECC Diffie-Hellman

 Similar to conventional Diffie-Hellman, but 
operates of finite EC field:

Users A & B select a suitable curve Ep(a, b) 

Users select base point (equivalent to primitive root) 

G=(x1,y1)
User A & B select private keys na and nb

Users A & B compute public keys PA and PB

 Shared keys are exchanged

 Secret key K is computed



ECC Diffie-Hellman Example

 Use E211(0, -4) that is equivalent to y2 mod 211 = (x3 - 4) mod 211

 Choose G = (2, 2)

 User A chooses na = 121, so A’s public key PA is:
121 * G = 121 * (2, 2) = (115, 48)

 User B chooses nb = 203, so B’s public key PB is:
203 * G = 203 * (2, 2) = (130, 203)

 The shared secret key K is 121 * (130, 203) = 203 * (115, 48) = (169, 
69)

 Note:
 ECC-DH (or ECDH for short) can be compromised via a MitM!

 We still use a BIGNUM integer representation, but the range of values is 
significantly smaller, and operations can be executed much quicker (see next slide)



Comparable Key Sizes for Equivalent 

Security

Symmetric 

scheme

(key size in bits)

ECC-based 

scheme

(size of p in bits)

RSA

(modulus size in 

bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360



FYI: Curve25519
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 Curve25519 is an elliptic curve offering 128 bits of security (with 
256 bits key size) and designed for use with the elliptic curve 
Diffie–Hellman (ECDH) key agreement scheme

 It is one of the fastest ECC curves and is not covered by any 
known patents

 It was first released by the cryptologist Daniel J. Bernstein in 
2005

 In 2013, interest began to increase considerably when it was 
discovered that the NSA had potentially implemented a 
backdoor into the most common EC encryption method

 i.e. the P-256 curve based Dual_EC_DRBG algorithm

 Today it is the de facto alternative to P-256

 Its reference implementation is public domain software



The Double-Ratchet Algorithm[1]
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 The Double Ratchet algorithm is a cryptographic protocol used by two 
parties to exchange encrypted messages

 Messages are encrypted using (fast) symmetric key algorithms (e.g., AES)

 Every message that is exchanged in either direction is encrypted using a 
different private key

 The algorithm is implemented in the Signal protocol, which in turn is used in 
secure messaging apps such as the Signal app and WhatsApp

 It ensures forward secrecy and post-compromise security, making 
conversations secure even if previous keys are compromised

 (Perfect) forward secrecy and post-compromise security are properties of 
secure communication protocols 

 Forward security ensures the confidentiality of past sessions even if long-term 
keys are compromised

 Post-compromise security ensures the security of future communications even 
after an initial compromise



Key Derivation Function (KDF) and KDF 

Chains
60

 A KDF is a cryptographic function that 

 is used to create a new secret key for each message

 takes a secret (KDF key) and some (Input) data, and 
returns an output

 looks like a “one-way” function (i.e., a hash function)

 In a KDF chain some of the KDF output is used as 
an (Output key) and some is used to make a new
(KDF key)

 If two endpoints agree on the same initial (KDF 
key) and the same (Input), they create the same 
sequence of output keys, and can exchange 
messages securely 

 A KDF chain guarantees forward security, but not 
automatically post-compromise security

 Consider output key (2) being recovered by an 
attacker:

 The attacker cannot calculate key (1)

 The attacker is only prevented from calculating Output 
key (3), if Input is a secret shared by both endpoints

(1)

(2)

(3)



KDF Chains
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 A KDF chain is like a ratchet, which only goes in one direction

 each step provides a different output (KDF key|| Output key)

 Both Alice and Bob have both a “send” and “receive” ratchet each

 Alice’s “send” and Bob’s “receive” ratchet are initialised using the same initial KDF and the 
same Input key (and visa versa)

 Every time a message is to be sent by either side, it is encrypted first using a new encryption 
key (Output key) that is generated by invoking the KDF (i.e., the “sender” ratchet)

 Similarly, every time the receiver receives a new message it calculates the (same) key for 
message decryption by invoking the KDF (i.e., the “receiver” ratchet)



Sender and Receiver Ratchet
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Alice Bob

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

KB1

KB2

…

KB1

KB2

…

CAx MAx = DKAx(CAx)CAx = EKAx(MAx)

MBx = DKBx(CBx) CBx = EKBx(MBx)CBx

Later!



Explanations
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 K{A|B}x is a secret key used by A or B for encoding 
and decoding a message (e.g., KA5 or KB7)

 x is simply an incremented index value (i.e., 1, 2, 3,…)

 M{A|B}x are (indexed) plaintext messages 
generated by A or B (e.g., MA5 or MB7)

 C{A|B}x is the corresponding ciphertext

 E.g., MA3 <-> CA3

 E() and D() are corresponding encryption and 
decryption functions that use a key KAx (e.g., 
DKA5(CA5))



Synchronising Sender and Receiver Ratchets 

to compensate for lost Messages
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Alice Bob

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

KB1

KB2

…

KB1

KB2

…

x ||CAx MAx = DKAx(CAx)CAx = EKAx(MAx)

MBx = DKBx(CBx) CBx = EKBx(MBx)x || CBx

If messages get lost in 

transit, the ratchets 

go out of sync, 

therefore …



Symmetric Key Ratchet
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 “Send” and “receive” ratchets are also 

called the symmetric-key ratchets

 Since every message sent is encrypted 

with a unique Message key (see 

diagram), the receiver may have to 

buffer generated (decryption) keys to 

deal with packets received out-of-order

 Here KDF keys are called (Chain keys)

 The sequence of generated chain keys is 

called a sending chain / receiving chain 

 Here KDF chains use a (secret) (Constant) 

as a 2nd input to provide post-

compromise security



The Diffie-Hellman Ratchet
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 As Alice and Bob exchange messages, they also exchange new 
Diffie-Hellman public keys to generate shared secret keys

 These secret keys become the input to another KDF chain, the root 
chain

 This is called the Diffie-Hellman ratchet

 The output keys from the root chain provide for new KDF chain 
keys for the sending and receiving ratchet

 The complete construct is called a Double Ratchet, consisting of the 
symmetric key ratchets and the DH ratchet, which require KDF keys 
for three chains: 

 a sending chain and a receiving chain (linked to the “send” and 
“receive “ratchets)

◼ With Alice’s sending chain matches Bob’s receiving chain, and vice versa

 a root chain (linked to the DH-ratchet)



The Diffie-Hellman Ratchet
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 To implement the DH ratchet, each party generates a DH 

key pair (a Diffie-Hellman public key and private key) 

which becomes their current ratchet key pair

 Every message from either party begins with a header 

which contains the sender’s current DH-ratchet public key

 When a new ratchet public key is received from the other 

party, a DH ratchet step is performed which replaces the 

local party’s current ratchet key pair with a new key pair

 This results in a “ping-pong” behavior as the parties take 

turns replacing ratchet key pairs 



Stepping through the DH-Ratchet: Step 1
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 Alice receives Bob’s ratchet’s public key

 Alice’s ratchet’s public key isn’t yet known to Bob

 As part of the initialisation Alice performs a DH 

calculation using her ratchet’s (Private key) and Bob’s 

ratchet’s (Public key)

Alice’s rachet’s private and public key

Bob’s rachet’s public key



Stepping through the DH-Ratchet: Step 2
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 Alice’s initial messages advertise her ratchet’s public key

 Once Bob receives one of these messages, he performs a DH ratchet step 
(consisting of two (DH) steps, i.e., Diffie-Hellman key exchange calculations): 

 He calculates the DH output between Alice’s ratchet’s public key and his 
ratchet’s (Private key), which equals Alice’s initial (DH output)

 Bob then calculates a new ratchet key pair and calculates a new DH output:



Stepping through the DH-Ratchet: Step 3
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 Messages sent by Bob advertising his new Public key are received by Alice, 
who does a similar step comprising:

 A (DH) operation using her current Private key and bob’s new Public key will 
result in a DH output identical to the one calculated by Bob

 She creates a new Private / Public key and calculates a new DH output :



Stepping through the Diffie-Hellman 

Ratchet: Step 4+
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 Messages sent by Alice 

advertise her new public 

key

 Bob receives one of these 

messages and perform a 

second DH ratchet step, 

and so on



Deriving Sending and Receiving Chains 

Keys
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 The DH outputs 
generated during each 
DH ratchet step are used 
to derive new sending 
and receiving chain keys 
for Alice’s and Bob’s 
symmetric key ratchets

 The DH outputs are not 
used directly, but go 
through a DH ratchet first 
(see next slide)



Deriving Sending and Receiving Chains
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 This diagram shows the complete process from Alice’s perspective:

 The Root Key is a shared secret with Bob, determined via (ECC-) DH at the beginning of 
the protocol / session

 The DH output (as calculated in previous slides), together with the Root key, is processed 
by the DH ratchet in the centre of the diagram to create a Receiving chain key

 Bob’s public key, together with Alice’s Private key of her 2nd generated keypair is used 
for another KDF invocation that generates the Sending chain key and a new Root key



A Double Ratchet Walk-Through
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 The following example shows a double ratchet walk-through from 

Alice’s perspective, including only messages she is receiving from Bob

 Step 1: 

 Alice receives Bob’s public key and generates a new root key (RK) and sending 

chain key (CK)

 Step 2: 

 When Alice sends her first message, she applies a symmetric-key ratchet step to 

her sending chain key (CK), resulting in a

◼ message key (A1)

◼ new chain key (CK) (ignore for now)



A Double Ratchet Walk-Through
75

 Step 3: 

 Alice receives a response from Bob; it contains his new DH ratchet public key B1 

 Alice applies a DH ratchet step to derive a new receiving chain key (CK) …

◼ She then applies a symmetric-key ratchet step on (CK) to get the message key (B1) for the 

received message, as well as a new chain key (CK)

 … and to derive a new sending chain key (CK) 

◼ In the next step (shown on the next slide), she applies the ratchet on (CK) as well to create 

the sending key (A2)



A Double Ratchet Walk-Through
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 Step 4: 

 Here Alice next sends a message using (A2), and applies two more ratchet steps 

to create sending message keys (A3) and (A4) for 2 additional messages

◼ Note that the DH-rachet wasn’t invoked to create new chain keys, as seen before, i.e. Alice 

sent a sequence of messages to Bob without prior receiving his new public key

 Alice receives a message encrypted 

with (B2) 

 Since Alice didn’t receive a new public

key from Bob, she simply applies the

receiving key ratchet again, to derive

(B2)



A Double Ratchet Walk-Through
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 Step 5: 

 Alice then receives Bob’s new public 

key (B3), as well as messages 

encrypted with (B3) and (B4)

 She generates these keys, by

◼ Applying the DH ratchet and creating 

a new receiving chain key (CK)

◼ Executing the receiving key ratchet 

twice to generate (B3) and (B4)

 Alice also generates a new sensing 

message key (A5), by

◼ calculating a new private key

◼ Applying the DH ratchet

◼ Creating a new sending chain key

◼ Executing its ratchet once to create (A5) 



Summary: Keys and Key Exchanges in 

the Double Ratchet Protocol
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 Initial Key Exchange: 

 Two parties (Alice and Bob) perform an initial key exchange using (a 
MitM-resilient variation of) ECDH to establish the Root key; 

 The Constants in the symmetric key ratchets are derived from the Root key

 Symmetric Key Ratcheting: 

 Every time a message is sent / received, a new symmetric encryption key 
is provided by the “send” ratchet and the “receive” ratchet

 This process is known as "ratcheting forward" and ensures that each 
message has a unique encryption key

 Asymmetric Key Ratcheting: 

 Normally, after each message exchange, both parties generate a new 
root key by doing a DH key exchange

 However, if the message receiver is offline, the sender can still use 
symmetric key ratcheting to create a new message key for each message
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