
CT437

COMPUTER SECURITY AND FORENSIC COMPUTING

PUBLIC KEY CRYPTOGRAPHY

Dr. Michael Schukat

Lecture Content
2

 Public key cryptography versus private key
cryptography

 Public key cryptography applications

 Diffie-Hellman Key exchange

 Man-in-the-Middle (MitM) attacks

 RSA encryption

 Optimisation techniques for public key encryption

 ECC encryption

 The Double-Ratchet algorithm

Model of Conventional Cryptosystem

Y = EK(X), X = EK
-1(Y)

Symmetric block ciphers are cryptographically strong,

but key distribution can be a headache!

Features and Limitations of Private-

Key Cryptography

 Traditional symmetric/single key cryptography uses one
key, shared by both sender and receiver
 If this key is disclosed, communications are compromised

 The key is also symmetric, both parties are equal
 This is problematic too, as it does not protect the sender from

a situation, where:
- the receiver forges a message using that key
- and claims that it was sent be the sender
◼ Think about an electronic contract that is exchanged between two

business partners that use a shared key
◼ One party can forge a contract and claim it was sent by the other

side
◼ Message authentication (HMAC or CMAC) doesn’t solve the

problem!

Features of Public-Key Cryptography

 Public-key/two-key/asymmetric cryptography involves the use
of two keys:
 a public-key, which the owner shares with any peer; it is used to:
◼ Encrypt messages send from the peer to the owner
◼ Verify the integrity and origin of messages send from the owner to a peer

(signature validation)

 a private-key, known only to the recipient/owner, used to:
◼ Decrypt messages that were encoded using their public key
◼ Digitally sign data send to a peer (signature creation)

 The keys are asymmetric, because they are not equal
 Those who encrypt a message or verify a signature (using the

receiver’s public key) cannot decrypt the message or forge a
signature

 It is computationally very hard (and infeasible) for an attacker
to rebuild an owner’s private key by analysing their public key

 This is achieved through the application of number- theoretic
concepts

Public-Key Encryption

M

Applications of Public-Key

Cryptosystems

 Data encryption/decryption:
The sender encrypts the message with the recipient’s public key and the
receiver decodes the message using their private key
 Recall symmetric encryption where only one key is used

 Digital signature/authentication:
The sender “signs” a message with their private key. Signing is achieved
by encrypting the message or its MAC using their private key (next slide)
 Recall private key encryption where sender and receiver just share one key

 Key exchange:
Two sides negotiate a symmetric session key
 Private key encryption is much faster than public key encryption

 This key may also be used for conventional message authentication

 Note that in order to avoid confusion we use from now on the terms:
 Symmetric key for private key encryption (block ciphers and stream ciphers)

 Public and private keys for public key encryption

Public-Key Cryptosystems: Secrecy

and Authentication

Public

key

Private

key

The entire message Y is the

authenticator

Note that this scheme requires B to

determine that a received message

is intelligible, i.e. that Z has not been

manipulated by a MitM in transit

Recap: Basic Uses of Hash Functions (H) in

Combination with asymmetric Encryption (c)

KRa = Sender’s private key

KUa = Sender’s public key

Recap: Basic Uses of Hash Functions (H) in

Combination with asymmetric Encryption (d)

KRa = Sender’s private key

KUa = Sender’s public key

Public-Key Cryptosystems
11

 There are different cryptosystems, including (from

simplest to most complex):

 Diffie Hellman key exchange

 RSA

 DSS

 Elliptic Curve Cryptography

Modular Arithmetic
12

 Modular arithmetic is a system of arithmetic for integers,

where numbers wrap around when reaching a certain

value n, called the modulus

 Recall modulus operator “%” in C and other languages, i.e.

“division with rest” with rest being the modulus

 Example: 75 / 6 = 12 remainder 3 ➔ 75 % 6 = 3

 Numbers {0, 1, …, n - 1} are called “multiplicative group

of integers modulo n”, or simply Zn, for some n > 0

 Within Zn, addition and multiplication is well defined!

Example: Multiplication in Z9

* 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8

2 0 2 4 6 8 1 3 5 7

3 0 3 6 0 3 6 0 3 6

4 0 4 8 3 7 2 6 1 5

5 0 5 1 6 2 7 3 8 4

6 0 6 3 0 6 3 0 6 3

7 0 7 5 3 1 8 6 4 2

8 0 8 7 6 5 4 3 2 1

Mx3

Illustration of Concept behind Diffie-

Hellman Key Exchange (Wikipedia)
14

 Alice and Bob want to share a secret colour
using public transport

 i.e. an adversary (i.e. Mallory, not shown) can
get samples of any colour that is exchanged
between both

 Alice and Bob agree on a common “public”
paint color (yellow in the example)

 Each of them add a secret colour and send
their mix to the other party

 Mallory can intercept both, but cannot separate
the mixtures

 Alice and Bob receive the other’s mixture
and add their secret colour

 Both colours are identical

 → This color is their common secret

Diffie-Hellman Key Exchange

 Diffie-Hellman provides a mechanism for a secure key exchange between
two endpoints
 The negotiated key is subsequently used as a symmetric key (or as a seed for a key)

for data encryption and message authentication (as seen before)

 The algorithm uses the multiplicative group of integers modulo q
 q has typically a length of 1024 or 2048 bits

 It is based on the difficulty of computing discrete logarithms over such
groups, e.g.

 63 mod 17 = 216 mod 17 = 12 (easy)

 12 = 6y mod 17? (difficult)

 Recall 63 = 6 x 6 x 6, so we need just the multiplication

 The core equation for the key exchange is

 K = (A)B mod q

Diffie-Hellman: Global Public Elements

 Alice and Bob select:

 A prime number q which determines Zq
 A positive integer a, with 1 < a < q and a is a primitive root of q

◼ Note that a is also called the generator

 Definition: a is a primitive root of q, if numbers
a mod q, a2 mod q, … a(q - 1) mod q
are distinct integer values between 1 and (q - 1) (i.e. in Zq) in
some permutation

 Example: a = 3 is a primitive root of Z5 (i.e. q = 5), a = 4 is not:
 31 = 3 = 0 * 5 + 3 41 = 4 = 0 * 5 + 4
 32 = 9 = 1 * 5 + 4 42 = 16 = 3 * 5 + 1
 33 = 27 = 5 * 5 + 2 43 = 64 = 12 * 5 + 4
 34 = 81 = 16 * 5 + 1 44 = 256 = 51 * 5 + 1

Primitive Roots of Zn with 15 < n < 32
17

Generation of Secret-Key: Part 1

 Alice and Bob share publicly a prime number q and a
primitive root a

 Alice (User A):
 Select secret number XA with 0 < XA < q
 Calculate public value YA = aXA mod q (difficult to reverse)

 YA is sent to Bob (user B)

 Bob (User B):
 Select secret number XB with 0 < XB < q
 Calculate public value YB = aXB mod q (difficult to reverse)

 YB is send to Alice

Generation of Secret-Key: Part 2

 Alice:

 Alice owns XA and receives YB

 She generates the secret key: K = (YB)XA mod q

 Bob:

 Bob owns XB and receives YA

 Bob generates the secret key: K = (YA)XB mod q

 Both keys are identical!

Generation of Secret-Key: Part 2

K = (YB)XA mod q

 = (aXB mod q)XA mod q

 = (aXB)XA mod q

 = aXB XA mod q

 = aXA XB mod q

 = (aXA)XB mod q

 = (aXA mod q)XB mod q

 = (YA)XB mod q

Example for Diffie-Hellman

 Alice and Bob agree on public values q and a, and
determine their respective secrets XA and XB :

 Let q = 5 and a = 3

 Alice picks XA = 2, therefore YA = aXA mod 5 = 4

 Bob picks XB = 3, therefore YB = aXB mod 5 = 2

 Alice sends YA = 4 to Bob

 Bob sends YB = 2 to Alice

 Alice calculates: K = (YB)XA mod q = 22 mod 5 = 4

 Bob calculates: K = (YA)XB mod q = 43 mod 5 = 4

Ephemeral versus Static Diffie-Hellman

Keys

 The generated DH keys can be either

 static (to be reused)

 ephemeral (only used once, e.g., for one session only)

 Ephemeral keys

 provide forward secrecy, but no endpoint authenticity

◼ Forward secrecy: If the current key is recovered by an adversary, it only
effects the current session, but no past or future sessions

 Static keys

 do not provide forward secrecy

 do provide (implicit) endpoint authenticity

 do not protect against replay-attacks

Example DH Parameters
23

 Standardised, see https://www.ietf.org/rfc/rfc3526.txt

 Example 2048-bit MODP Group

 q = 2^2048 - 2^1984 - 1 + 2^64 * { [2^1918 pi] + 124476 }

 q = FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1

 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD

 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245

 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED

 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D

 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F

 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D

 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B

 E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9

 DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510

 15728E5A 8AACAA68 FFFFFFFF FFFFFFFF

 a = 2

[] == rounded

https://www.ietf.org/rfc/rfc3526.txt

DH and Man-in-the-Middle (MitM)

Attacks

 Mallory is a MitM attacker with the ability to intercept, and fabricate messages

 Not to confuse with a Meet-in-the-Middle attack (→ double-DES and triple-DES)

 Both Alice and Bob are unaware of Mallory’s existence, as there is no mutual authentication and an
unprotected communication link

 Alice and Bob exchange their shared values (A and B in the example), but these are intercepted by Mallory

 Mallory completes both key exchanges sending her own shared value Z to both Alice and Bob

 By doing so, Mallory establishes two individual (secure) connections with Alice and Bob

 Alice and Bob have no idea that they became victims of a MitM attack!

In-Class Activity: Diffie-Hellman

MitM Attack

 Let q = 5 and a = 3;

 XAlice = 2, therefore YAlice = a
XAlice mod 5 = 4

 XBob = 3, therefore YBob = a
XBob mod 5 = 2

 XMalory = 1, therefore YMalory = a
XMalory mod 5 = 3

 What session keys between
 Alice and Malory

 Malory and Bob

are generated?

 Note: User A’s key K = (YB)XA mod q

 Note: User B’s key K = (YA)XB mod q

Solution
26

 Alice sends “4” to Bob, but this message is intercepted by Malory

 Bob sends “2” to Alice, but this message is intercepted by Malory

 Malory sends “3” to both parties, claiming to be either Bob or Alice

 Alice receives “3” and calculates K as follow: K = 32 mod 5 = 4

 Malory calculates 41 mod 5 = 4

 Bob receives “3” and calculates K as follow: K = 33 mod 5 = 2

 Malory calculates 21 mod 5 = 2

 Alice and Bob think they just mutually agreed on a shared
secret key

 From this point onwards Malory as a MitM can read,
manipulate and fabricate messages between Alice and Bob

The RSA Algorithm

 Published by Rivest, Shamir and Adleman in 1977, but first discovered by
Clifford Cocks (British mathematician and cryptographer) in 1973

 The RSA scheme works similar to a block cipher, where a plaintext M and a
ciphertext C are integers between 0 and n – 1,i.e. elements of Zn

 M can be a plaintext message (block), a hash value, or a private key picked
by the sender to be shared with the message recipient
 E.g., “ABC” = “01000001 01000010 01000011” = 427680310

 Principle: C = Me mod n
 M = Cd mod n = Med mod n

 Public key KU = {e, n}
 Private key KR = {d, n}

 With n sufficiently large it is infeasible to determine d given e and n

Key Generation for the RSA Algorithm

Greatest

common divisor

See next slide

Euler’s totient

function Phi

Example

 Let p = 7, q = 11 and n = pq = 77

 φ(77) = (p - 1)(q - 1) = 6 x 10 = 60

 Factorisation of 60 = 1 * 2 * 5 * 2 * 3

Therefore, the divisors of 60 are: 2, 3, 5

 List of all integers x, 1<x<60, with GCD(60,x) = 1:
7, 11, 13, 17, 19, 23, 29, 31, 37, 47, 49, 53, 59

Note that these integers either
 are prime numbers (that cannot share a common divisor with 60), or

 do not share a common divisor with 60 (i.e., 7 and 49)

Example (continued)

 Let e = 7

 Choose d with ed = 1 mod φ(pq)
 7d = 1 mod 60 7d mod 60 = 1

 7*1 mod 60 = 7 7*2 mod 60 = 14 7*3 mod 60 = 21

7*4 mod 60 = 28 7*5 mod 60 = 35 7*6 mod 60 = 42
7*7 mod 60 = 49 7*8 mod 60 = 56 7*9 mod 60 = 3
7*10 mod 10 = 28 7*11 mod 60 = 17 7*12 mod 60 = 24

… 7*43 mod 60 = 1

 Therefore d = 43

 Therefore KU = (7, 77) and KR = (43, 77)

 Note there are better / more efficient algorithms (i.e. the
Extended Euclidean Algorithm) to calculate d

Example for an Encryption/Decryption

 Obvious drawbacks:

 Very large numbers are to be computed
◼ Ordinary integer or floating-point variables don’t work

◼ Instead, large number libraries need to be used

 This makes RSA encryption / decryption is very slow!

Computational Aspects of Public Key

Cryptography

 Assume you have to evaluate the expression C = 50323 mod 899 as part of the
encoding process

 Note that the modulus is small enough to fit into an integer variable

 50323 = 1.367929313795408423250439710106 x 1062 cannot be properly
represented using an ordinary integer or floating-point variable!

 In order to solve this problem, the exponentiation must be broken down into
smaller steps, e.g.

 50323 mod 899 = ((5036 mod 899) x (5036 mod 899)
 x (5036 mod 899) x (5035 mod 899)) mod 899

 5036 mod 899 = ((5033 mod 899) x (5033 mod 899)) mod 899

 5035 mod 899 = ((5033 mod 899) x (5032 mod 899)) mod 899

 5033 mod 899 = ((5032 mod 899) x 503) mod 899

Computational Aspects of Public Key

Cryptography

 … or even iteratively:
50323 mod 899 =
((((((5032 mod 899) x 503) mod 899) x 503) mod
899) x … x 503) mod 899

 This expression consists of 22 nested multiplications and 22
nested modulus operations and can be easily calculated by
using a loop

 However, once a single number squared is too large to fit
into a 32-bit or 64-bit (unsigned) integer variable, a big
number library must be used

The Security of RSA

 There are various angles to attack the RSA algorithm:
 Brute force: Trying all possible private keys (not a great idea!)

 Mathematical attacks: Factor n (which is the product of two
primes); see some very old data below:

 See also (for some more recent data)
https://en.wikipedia.org/wiki/RSA_numbers#RSA-704

 Timing attacks: Based on analysis of the run time of an
decryption algorithm

https://en.wikipedia.org/wiki/RSA_numbers#RSA-704

Breaking RSA
37

 Consider the key pair (e, n) and (d, n) or simply (e, n)
and d

 n = p * q, with p and q being large (secret!) primes

 Factorising n is unfeasible for very large n

 However, let’s assume n can be factored into p and q

 The adversary can now do the following calculations:

 φ(n) = (p – 1) * (q – 1)

 Identify d, so that e * d = 1 mod φ(n)

◼ e is known, use the aforementioned Extended Euclidean
Algorithm

Step 1: Factorise N
38

// This is a very lightweight integer factoring algorithm, not very efficient or
// sophisticated.

// Assume n is the product of two primes p1 and p2

void factorise(int n) {

 int i;

 for (p1 = 2; i <= sqrt(n); i++) {

 if (n % p1 == 0)

 printf(“n = %d; p1 = %d; p2 = %d\n”), n, p1, n / p1);

 break;

}

// Note that the integer values above would be replaced with large number
// representations, i.e., BIGNUM in OpenSSL

Step 2: Determine e
39

// We know p and q (n was successfully factorised), d is in the public key KR= d, n

// This is again a very lightweight algorithm, not very efficient or sophisticated.

int breakRSA(int p, int q, int d) {

 int prod, found = 0, start = 1, df = -1;

 int phi = (p -1) * (q – 1);

 while ((!found) && (start < phi)) { // exit if needed

 prod = d * start;

 if (prod % phi == 1) found = 1;

 else start++;

 }

 if (found) df = start;

 return (df);

}

// Note that the integer values above would be replaced with large number
// representations, i.e., BIGNUM in OpenSSL

How to choose p and q
40

 When choosing p and q, the following should be
considered:

1. p <> q, as p = q = sqrt(n)

2. Neither p or q must not be “small”, as factorising could
produce a result in a reasonable amount of time (see
previous slide “Step 1: Factorise N”)

3. p must not be similar in size to q, because of Fermat's
method of factoring a composite number N:

◼ N can be represented as the difference of two squares:

◼ p * q = N a2 – b2 (a - b) (a + b) [== p * q]

◼ N = a2 - b2 can be rewritten as: b2 = a2 - N

◼ To find a solution, iterate through a (starting with round(sqrt(N))),
until a2 - N is a square number (i.e. b2)

Fermat’s Factoring Algorithm
41

// This function assumes N can be factorised. It returns N’s factors
// p and q, using “pass by reference” pointers, so that both values
// are returned.

void fermatFactor(int N, int *p, int *q) {

 int a = ceiling(sqrt(N)); // start value for a

 int b2 = a * a - N; // see last slide

 while (sqrt(b2) * sqrt(b2) <> b2) { // is b2 a square?

 a = a + 1; // No, so increment a …

 b2 = a * a – N; // … and update b2

 }

 *p = a - sqrt(b2);

 *q = a + sqrt(b2);

}

If p (= a - b) and q (= a + b)

are similar in size, it takes only a

small number of iterations over a

to find a solution

Example
42

1. n = 33 (based on secret values p = 3 and q = 11)

2. First iteration: a = 6 (i.e., ceiling(sqrt(33)):

1. b2 = 6 * 6 – 33 = 3

2. b2 is not a square number

3. a = a + 1

3. Second iteration: a = 7:

1. b2 = 7 * 7 – 33 = 16

2. b2 is a square number

4. Calculate p and q:

1. p = 7 - sqrt(16) = 3

2. q = 7 + sqrt(16) = 11

https://arstechnica.c

om/information-

technology/2022/0

3/researcher-uses-

600-year-old-

algorithm-to-crack-

crypto-keys-found-

in-the-wild/

43

Breaking RSA in Practise

https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/

CVE-2022-26320
44

Elliptic Curve Cryptography (ECC)

 Traditional methods exploit the properties of
arithmetic using large finite groups Zn with n having
a typical size of 1024 bits, i.e. 309 decimal digits

 The security depends on the difficulty of factorising
large numbers or calculating discrete logarithms

 Using large numbers makes such algorithms
computationally expensive

 In ECC, Zn is replaced by points of an elliptic curve,
making the discrete log calculation problem
different and much harder compared to the discrete
log in ordinary groups

Elliptic Curve Groups

 Elliptic curves are based on simplified cubic
equations, e.g.
y2 = x3 +ax + b
where a and b are real numbers

 The curve shown here is defined by the
equation
y2 = x3 – x (i.e., a = -1 and b = 0)

 To plot such a curve, we need to compute
y = sqrt(x3 +ax + b)

 Since the shape of the curve depends on a and
b, ECs can be described as E(a,b)

 The above curve can be written as E(-1, 0)

 In order to operate on elliptic curves, we need
to introduce an operation that is equivalent to
the addition as well as a “0” element

Elliptic Curves over a Finite Field

 In order to have values (x, y)within Zp, the modulus
operation is used again:
 y2 mod p = (x3 +ax + b) mod p

 p is either a prime number or p = 2m

 We only consider pairs (x, y), where both x and y
are integer values

 Example: Table of all integer
solutions for E23(1,1)

The Elliptic Curve E23(1,1)

Adding Points on an Elliptic Curve

 ECC requires the equivalent of an addition on
Ep(A,B) of two points a and b

 This is done (geometrically) as follows:
 - Draw a straight line through a and b
 to find the third intersecting point w,
 - then draw a vertical line through w to
 find the intersecting point c (that’s the sum)

 Every line intersects the curve three
 times (tangents are counted twice), e.g.,
 the line through a and b intersects a
 "third" point b. We name this line [a,b,b]

 O is called the origin, or point at infinity

 We can say
 a + b = c a + d = b + c = O
 a + a = b a + O = a

ECC over a Finite Field: Addition

 There’s p as defined before

 Addition of two field elements S = (xS, yS) and Q =
(xQ, yQ) with S <> -Q:

 S + Q = R = (xR, yR)

 xR = (L
2 - xS – xQ) mod p

 yR = (L (xS – xR) – yS) mod p
 L is either

◼ ((yQ – yS) / (xQ – xS)) mod p, if S <> Q, or

◼ ((3 x2S + a) / (2 yS)) mod p, if S = Q

ECC over a Finite Field: Addition and

Multiplication

 The addition of two elliptic points P and Q consists of a

number of integer operations (mod q):

 5 or 6 subtractions

 1 or 4 multiplications

 1 division

 A multiplication (P * Q) is done via consecutive additions

 A scalar multiplication (x * Q) with some scalar x is the

operation of successively adding a point Q along an elliptic

curve to itself x times (i.e. Q + Q + Q + … + Q)

ECC Diffie-Hellman

 Similar to conventional Diffie-Hellman, but
operates of finite EC field:

Users A & B select a suitable curve Ep(a, b)

Users select base point (equivalent to primitive root)

G=(x1,y1)
User A & B select private keys na and nb

Users A & B compute public keys PA and PB

 Shared keys are exchanged

 Secret key K is computed

ECC Diffie-Hellman Example

 Use E211(0, -4) that is equivalent to y2 mod 211 = (x3 - 4) mod 211

 Choose G = (2, 2)

 User A chooses na = 121, so A’s public key PA is:
121 * G = 121 * (2, 2) = (115, 48)

 User B chooses nb = 203, so B’s public key PB is:
203 * G = 203 * (2, 2) = (130, 203)

 The shared secret key K is 121 * (130, 203) = 203 * (115, 48) = (169,
69)

 Note:
 ECC-DH (or ECDH for short) can be compromised via a MitM!

 We still use a BIGNUM integer representation, but the range of values is
significantly smaller, and operations can be executed much quicker (see next slide)

Comparable Key Sizes for Equivalent

Security

Symmetric

scheme

(key size in bits)

ECC-based

scheme

(size of p in bits)

RSA

(modulus size in

bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

192 384 7680

256 512 15360

FYI: Curve25519
58

 Curve25519 is an elliptic curve offering 128 bits of security (with
256 bits key size) and designed for use with the elliptic curve
Diffie–Hellman (ECDH) key agreement scheme

 It is one of the fastest ECC curves and is not covered by any
known patents

 It was first released by the cryptologist Daniel J. Bernstein in
2005

 In 2013, interest began to increase considerably when it was
discovered that the NSA had potentially implemented a
backdoor into the most common EC encryption method

 i.e. the P-256 curve based Dual_EC_DRBG algorithm

 Today it is the de facto alternative to P-256

 Its reference implementation is public domain software

The Double-Ratchet Algorithm[1]

59

 The Double Ratchet algorithm is a cryptographic protocol used by two
parties to exchange encrypted messages

 Messages are encrypted using (fast) symmetric key algorithms (e.g., AES)

 Every message that is exchanged in either direction is encrypted using a
different private key

 The algorithm is implemented in the Signal protocol, which in turn is used in
secure messaging apps such as the Signal app and WhatsApp

 It ensures forward secrecy and post-compromise security, making
conversations secure even if previous keys are compromised

 (Perfect) forward secrecy and post-compromise security are properties of
secure communication protocols

 Forward security ensures the confidentiality of past sessions even if long-term
keys are compromised

 Post-compromise security ensures the security of future communications even
after an initial compromise

Key Derivation Function (KDF) and KDF

Chains
60

 A KDF is a cryptographic function that

 is used to create a new secret key for each message

 takes a secret (KDF key) and some (Input) data, and
returns an output

 looks like a “one-way” function (i.e., a hash function)

 In a KDF chain some of the KDF output is used as
an (Output key) and some is used to make a new
(KDF key)

 If two endpoints agree on the same initial (KDF
key) and the same (Input), they create the same
sequence of output keys, and can exchange
messages securely

 A KDF chain guarantees forward security, but not
automatically post-compromise security

 Consider output key (2) being recovered by an
attacker:

 The attacker cannot calculate key (1)

 The attacker is only prevented from calculating Output
key (3), if Input is a secret shared by both endpoints

(1)

(2)

(3)

KDF Chains
61

 A KDF chain is like a ratchet, which only goes in one direction

 each step provides a different output (KDF key|| Output key)

 Both Alice and Bob have both a “send” and “receive” ratchet each

 Alice’s “send” and Bob’s “receive” ratchet are initialised using the same initial KDF and the
same Input key (and visa versa)

 Every time a message is to be sent by either side, it is encrypted first using a new encryption
key (Output key) that is generated by invoking the KDF (i.e., the “sender” ratchet)

 Similarly, every time the receiver receives a new message it calculates the (same) key for
message decryption by invoking the KDF (i.e., the “receiver” ratchet)

Sender and Receiver Ratchet
62

Alice Bob

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

KB1

KB2

…

KB1

KB2

…

CAx MAx = DKAx(CAx)CAx = EKAx(MAx)

MBx = DKBx(CBx) CBx = EKBx(MBx)CBx

Later!

Explanations
63

 K{A|B}x is a secret key used by A or B for encoding
and decoding a message (e.g., KA5 or KB7)

 x is simply an incremented index value (i.e., 1, 2, 3,…)

 M{A|B}x are (indexed) plaintext messages
generated by A or B (e.g., MA5 or MB7)

 C{A|B}x is the corresponding ciphertext

 E.g., MA3 <-> CA3

 E() and D() are corresponding encryption and
decryption functions that use a key KAx (e.g.,
DKA5(CA5))

Synchronising Sender and Receiver Ratchets

to compensate for lost Messages
64

Alice Bob

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

DH-

Ratchet

Send-

Ratchet
Receive-

Ratchet

KA1

KA2

…

KB1

KB2

…

KB1

KB2

…

x ||CAx MAx = DKAx(CAx)CAx = EKAx(MAx)

MBx = DKBx(CBx) CBx = EKBx(MBx)x || CBx

If messages get lost in

transit, the ratchets

go out of sync,

therefore …

Symmetric Key Ratchet
65

 “Send” and “receive” ratchets are also

called the symmetric-key ratchets

 Since every message sent is encrypted

with a unique Message key (see

diagram), the receiver may have to

buffer generated (decryption) keys to

deal with packets received out-of-order

 Here KDF keys are called (Chain keys)

 The sequence of generated chain keys is

called a sending chain / receiving chain

 Here KDF chains use a (secret) (Constant)

as a 2nd input to provide post-

compromise security

The Diffie-Hellman Ratchet
66

 As Alice and Bob exchange messages, they also exchange new
Diffie-Hellman public keys to generate shared secret keys

 These secret keys become the input to another KDF chain, the root
chain

 This is called the Diffie-Hellman ratchet

 The output keys from the root chain provide for new KDF chain
keys for the sending and receiving ratchet

 The complete construct is called a Double Ratchet, consisting of the
symmetric key ratchets and the DH ratchet, which require KDF keys
for three chains:

 a sending chain and a receiving chain (linked to the “send” and
“receive “ratchets)

◼ With Alice’s sending chain matches Bob’s receiving chain, and vice versa

 a root chain (linked to the DH-ratchet)

The Diffie-Hellman Ratchet
67

 To implement the DH ratchet, each party generates a DH

key pair (a Diffie-Hellman public key and private key)

which becomes their current ratchet key pair

 Every message from either party begins with a header

which contains the sender’s current DH-ratchet public key

 When a new ratchet public key is received from the other

party, a DH ratchet step is performed which replaces the

local party’s current ratchet key pair with a new key pair

 This results in a “ping-pong” behavior as the parties take

turns replacing ratchet key pairs

Stepping through the DH-Ratchet: Step 1

68

 Alice receives Bob’s ratchet’s public key

 Alice’s ratchet’s public key isn’t yet known to Bob

 As part of the initialisation Alice performs a DH

calculation using her ratchet’s (Private key) and Bob’s

ratchet’s (Public key)

Alice’s rachet’s private and public key

Bob’s rachet’s public key

Stepping through the DH-Ratchet: Step 2

69

 Alice’s initial messages advertise her ratchet’s public key

 Once Bob receives one of these messages, he performs a DH ratchet step
(consisting of two (DH) steps, i.e., Diffie-Hellman key exchange calculations):

 He calculates the DH output between Alice’s ratchet’s public key and his
ratchet’s (Private key), which equals Alice’s initial (DH output)

 Bob then calculates a new ratchet key pair and calculates a new DH output:

Stepping through the DH-Ratchet: Step 3

70

 Messages sent by Bob advertising his new Public key are received by Alice,
who does a similar step comprising:

 A (DH) operation using her current Private key and bob’s new Public key will
result in a DH output identical to the one calculated by Bob

 She creates a new Private / Public key and calculates a new DH output :

Stepping through the Diffie-Hellman

Ratchet: Step 4+
71

 Messages sent by Alice

advertise her new public

key

 Bob receives one of these

messages and perform a

second DH ratchet step,

and so on

Deriving Sending and Receiving Chains

Keys
72

 The DH outputs
generated during each
DH ratchet step are used
to derive new sending
and receiving chain keys
for Alice’s and Bob’s
symmetric key ratchets

 The DH outputs are not
used directly, but go
through a DH ratchet first
(see next slide)

Deriving Sending and Receiving Chains
73

 This diagram shows the complete process from Alice’s perspective:

 The Root Key is a shared secret with Bob, determined via (ECC-) DH at the beginning of
the protocol / session

 The DH output (as calculated in previous slides), together with the Root key, is processed
by the DH ratchet in the centre of the diagram to create a Receiving chain key

 Bob’s public key, together with Alice’s Private key of her 2nd generated keypair is used
for another KDF invocation that generates the Sending chain key and a new Root key

A Double Ratchet Walk-Through
74

 The following example shows a double ratchet walk-through from

Alice’s perspective, including only messages she is receiving from Bob

 Step 1:

 Alice receives Bob’s public key and generates a new root key (RK) and sending

chain key (CK)

 Step 2:

 When Alice sends her first message, she applies a symmetric-key ratchet step to

her sending chain key (CK), resulting in a

◼ message key (A1)

◼ new chain key (CK) (ignore for now)

A Double Ratchet Walk-Through
75

 Step 3:

 Alice receives a response from Bob; it contains his new DH ratchet public key B1

 Alice applies a DH ratchet step to derive a new receiving chain key (CK) …

◼ She then applies a symmetric-key ratchet step on (CK) to get the message key (B1) for the

received message, as well as a new chain key (CK)

 … and to derive a new sending chain key (CK)

◼ In the next step (shown on the next slide), she applies the ratchet on (CK) as well to create

the sending key (A2)

A Double Ratchet Walk-Through
76

 Step 4:

 Here Alice next sends a message using (A2), and applies two more ratchet steps

to create sending message keys (A3) and (A4) for 2 additional messages

◼ Note that the DH-rachet wasn’t invoked to create new chain keys, as seen before, i.e. Alice

sent a sequence of messages to Bob without prior receiving his new public key

 Alice receives a message encrypted

with (B2)

 Since Alice didn’t receive a new public

key from Bob, she simply applies the

receiving key ratchet again, to derive

(B2)

A Double Ratchet Walk-Through
77

 Step 5:

 Alice then receives Bob’s new public

key (B3), as well as messages

encrypted with (B3) and (B4)

 She generates these keys, by

◼ Applying the DH ratchet and creating

a new receiving chain key (CK)

◼ Executing the receiving key ratchet

twice to generate (B3) and (B4)

 Alice also generates a new sensing

message key (A5), by

◼ calculating a new private key

◼ Applying the DH ratchet

◼ Creating a new sending chain key

◼ Executing its ratchet once to create (A5)

Summary: Keys and Key Exchanges in

the Double Ratchet Protocol
78

 Initial Key Exchange:

 Two parties (Alice and Bob) perform an initial key exchange using (a
MitM-resilient variation of) ECDH to establish the Root key;

 The Constants in the symmetric key ratchets are derived from the Root key

 Symmetric Key Ratcheting:

 Every time a message is sent / received, a new symmetric encryption key
is provided by the “send” ratchet and the “receive” ratchet

 This process is known as "ratcheting forward" and ensures that each
message has a unique encryption key

 Asymmetric Key Ratcheting:

 Normally, after each message exchange, both parties generate a new
root key by doing a DH key exchange

 However, if the message receiver is offline, the sender can still use
symmetric key ratcheting to create a new message key for each message

References
79

[1] The Double Ratchet Algorithm; Trevor Perrin and

Moxie Marlinspike

	Slide 1: CT437 Computer Security and Forensic Computing Public Key Cryptography
	Slide 2: Lecture Content
	Slide 3: Model of Conventional Cryptosystem
	Slide 4: Features and Limitations of Private-Key Cryptography
	Slide 5: Features of Public-Key Cryptography
	Slide 6: Public-Key Encryption
	Slide 7: Applications of Public-Key Cryptosystems
	Slide 8: Public-Key Cryptosystems: Secrecy and Authentication
	Slide 9: Recap: Basic Uses of Hash Functions (H) in Combination with asymmetric Encryption (c)
	Slide 10: Recap: Basic Uses of Hash Functions (H) in Combination with asymmetric Encryption (d)
	Slide 11: Public-Key Cryptosystems
	Slide 12: Modular Arithmetic
	Slide 13: Example: Multiplication in Z9
	Slide 14: Illustration of Concept behind Diffie-Hellman Key Exchange (Wikipedia)
	Slide 15: Diffie-Hellman Key Exchange
	Slide 16: Diffie-Hellman: Global Public Elements
	Slide 17: Primitive Roots of Zn with 15 < n < 32
	Slide 18: Generation of Secret-Key: Part 1
	Slide 19: Generation of Secret-Key: Part 2
	Slide 20: Generation of Secret-Key: Part 2
	Slide 21: Example for Diffie-Hellman
	Slide 22: Ephemeral versus Static Diffie-Hellman Keys
	Slide 23: Example DH Parameters
	Slide 24: DH and Man-in-the-Middle (MitM) Attacks
	Slide 25: In-Class Activity: Diffie-Hellman MitM Attack
	Slide 26: Solution
	Slide 27: The RSA Algorithm
	Slide 28: Key Generation for the RSA Algorithm
	Slide 29: Example
	Slide 30: Example (continued)
	Slide 31: Example for an Encryption/Decryption
	Slide 32: Computational Aspects of Public Key Cryptography
	Slide 33: Computational Aspects of Public Key Cryptography
	Slide 35: The Security of RSA
	Slide 37: Breaking RSA
	Slide 38: Step 1: Factorise N
	Slide 39: Step 2: Determine e
	Slide 40: How to choose p and q
	Slide 41: Fermat’s Factoring Algorithm
	Slide 42: Example
	Slide 43: https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/
	Slide 44: CVE-2022-26320
	Slide 48: Elliptic Curve Cryptography (ECC)
	Slide 49: Elliptic Curve Groups
	Slide 50: Elliptic Curves over a Finite Field
	Slide 51: The Elliptic Curve E23(1,1)
	Slide 52: Adding Points on an Elliptic Curve
	Slide 53: ECC over a Finite Field: Addition
	Slide 54: ECC over a Finite Field: Addition and Multiplication
	Slide 55: ECC Diffie-Hellman
	Slide 56: ECC Diffie-Hellman Example
	Slide 57: Comparable Key Sizes for Equivalent Security
	Slide 58: FYI: Curve25519
	Slide 59: The Double-Ratchet Algorithm[1]
	Slide 60: Key Derivation Function (KDF) and KDF Chains
	Slide 61: KDF Chains
	Slide 62: Sender and Receiver Ratchet
	Slide 63: Explanations
	Slide 64: Synchronising Sender and Receiver Ratchets to compensate for lost Messages
	Slide 65: Symmetric Key Ratchet
	Slide 66: The Diffie-Hellman Ratchet
	Slide 67: The Diffie-Hellman Ratchet
	Slide 68: Stepping through the DH-Ratchet: Step 1
	Slide 69: Stepping through the DH-Ratchet: Step 2
	Slide 70: Stepping through the DH-Ratchet: Step 3
	Slide 71: Stepping through the Diffie-Hellman Ratchet: Step 4+
	Slide 72: Deriving Sending and Receiving Chains Keys
	Slide 73: Deriving Sending and Receiving Chains
	Slide 74: A Double Ratchet Walk-Through
	Slide 75: A Double Ratchet Walk-Through
	Slide 76: A Double Ratchet Walk-Through
	Slide 77: A Double Ratchet Walk-Through
	Slide 78: Summary: Keys and Key Exchanges in the Double Ratchet Protocol
	Slide 79: References

