
S T R E A M P R O C E S S I N G I I

D R A D R I A N C L E A R
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Objectives for today
• Become familiar with operations for
• Filtering, slicing, and matching
• Finding, matching, and reducing

Filtering with predicates

Filtering unique elements
• distinct()
• Returns a stream with unique elements
• Uses implementation of the equals method of objects produced by a

stream

• How would you filter all even numbers from a list, making sure
there are no duplicates, and print them to the console?

List<Integer> numbers = Arrays.asList(1, 2, 1, 3, 3, 2, 4);
…

Truncating a stream
• limit(n)
• Returns a stream no longer than n

• Adheres to order for ordered streams
• Also works on unordered streams (e.g., a stream of a Set) but

order cannot be assumed

Skipping elements
• skip(n)
• Returns a stream that discards the first n elements
• Or an empty stream

• How would you use streams to filter the first two meat dishes?

• How would you print the names of the middle five dishes on the
menu?

Dish Dish Dish Dish Dish Dish Dish Dish DishMenu

Start index End index

Start index length

Mapping
• Selecting, or extracting, information from certain objects
• Like selecting a column from a table in SQL

• Takes a function as an argument
• Often a method reference is used

• The type of stream returned by the map method is determined
by the return type of the argument function
• E.g., map(Dish::getName) returns a stream of type Stream<String>

• Suppose you have a list of words as follows:
List<String> words = Arrays.asList(”Richard", ”Of", ”York", ”Gave”, “Battle”, “In”, “Vain”);

• How might you use stream processing to return a list of the
number of characters in each word?

flatMap
• How would you find the unique letters of dishes on the menu?

flatMap
• How would you find the unique letters of dishes on the menu?

• map(w -> w.split(""))
• Returns type Stream<String [] >

• How would you find the unique letters of dishes on the menu?

• Compiles but isn’t what we need
• Ideally, we want map(w -> w.split("")) to return something of type
Stream<String>

flatMap

flatMap
• Arrays.stream takes an array an produces a stream

• Now map(Arrays::stream)produces a list of streams
(Stream<Stream<String>>)

flatMap
• flatMap allows us to amalgamate all of the separate streams

produced from map(Arrays::stream) into a single stream
• Maps each array not with a stream, but with the contents of

that stream

Finding and matching
• allMatch
• anyMatch
• noneMatch
• findFirst
• findAny

Reducing
• What if we want to express more complicated queries like
• “Calculate the sum of all calories in the menu,” or
• “What is the highest calorie dish in the menu?”

• Combine all elements in the stream repeatedly to produce a
single value like an integer
• i.e., reduce the stream to a single value
• Known as a fold in functional programming

Summing numbers
• For-each loop

• Using a stream

}

2 parameters:
• Initial value
• operation

Stream operations: stateless vs. stateful
• Stateless operations
• Some operations like map and filter don’t have an internal state
• They take each element from an input stream and produce zero or one

results in the output stream
• Stateful operations
• Operations like reduce and limit need to have internal state in order to

produce their result (e.g. accumulating)
• This internal state can be bounded in size i.e., isn’t affected by the

number of elements in the stream
• Other operations like sorted and distinct are unbounded as they require

knowing the previous history in order to produce their result
• Sorted requires all elements to be buffered before a single element can

be added to the output stream
• Can be problematic if the stream is large

