
Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing Systems
& Organisation

Process Management

Content
1. Process Manager Process – User perspective

2. Process – Operating System perspective

3. Threads

4. Operating System services for process management

2

Program and Process

• Program: static entity made up of source program language statements
that define process behavior when executed on a set of data

• Process: dynamic entity that executes a program on a particular set of
data using resources allocated by the system
• two or more processes could execute the same program, each using its own data

and resources

3

What is a Process?
• A process is a program in execution

• It is composed of:
• Program
• Data
• Process Control Block (PCB): contains the state of the process in

execution
• What it is?
• How much of its processing has been completed?
• Etc.

4

Execution of a Process

• In order to execute, a process needs
an Abstract Machine Environment
to manage its use of resources

• Process Control Block (PCB) is
required to map the environment
state on the physical machine state

• The OS keeps a process descriptor
for each process

5

Abstract Machine Environment

Object program Data

Process Control Block Resources

Program Execution

• Each execution of the program generates a process that is executed

• Inter-process relationships:
• Competition – processes are trying to get access to different resources of the

system, therefore a protection between processes is necessary
• Cooperation – sometime the processes need to communicate between

themselves and exchange information – synchronization is needed

6

Process Manager Functions

• Implements:
1. CPU sharing (called scheduling)

• allocate resources to processes in conformance with certain policies
2. Process synchronization and inter-process communication

• deadlock strategies and protection mechanisms

7

Process Manager

8

ProcessProgram

The Abstract Computing Environment

Process Manager

Protection Process
Descriptor

Deadlock

Synchronizaton

Scheduler

CPU

Resource
Manager

ResourcesResourcesResources

File
Manager

Device
Manger

Memory
Manager

Devices Memory

Process – User Perspective
Example:

Consider an application that monitors an industrial process, to record its operation.

• The application contains 4 program modules:
• Data acquisition (collect): Reads 3 values from a converter

• Collecting each data is 1 T interval: ¼ T processor time, ¾ T is wait time to finish read op from
converter

• Data storage (log): Writes on the disk the 3 values read by collect:
• It needs two operations (writing two values at a time, including “newline:) which take 2 T intervals

each: 2/4 T processor time and 6/4 T wait time to finish the write operation

• Statistical processing (stat): Statistical processing of the three values collected by
collect, needs 2T

• Print results (report): Prints two values resulted from statistical processing (stat)
• Each print operation requires ¼ T processor time and 5/4 T wait time to finish print operation

9

Sequential Implementation

• The time required for a cycle is 12T:
• 4.25T is required for processing time (processor time)
• 7.75T is wait time between various I/O operations

main(){
while (TRUE){

collect();
log();
stat();
report();
}

}

 reportcollect

0T 1T 2T 3T 4T 6T5T 7T 8T 9T 10
T

12
T

11
T

Processor
Time

 log stat

Multitasking Implementation

• The following processes will be executed in a quasi-parallel fashion,
with the following priorities:
• Log
• Collect
• Report
• Stat

• For correct functionality, the processes need to synchronize to each
other; this will be done with directives wait/signal:
• Wait – wait for a signal from a specific process
• Signal – send a signal to a specific process

11

void log(){
while(TRUE){

wait(collect);
log_disk();
signal (collect);

}
}

void collect(){
while(TRUE){

wait (log);
wait (stat);
collect_ad ();
signal (log);
signal (stat);

}
}

void report(){
while (TRUE){

wait (stat);
report_pr ();
signal (stat);

}
}

void stat(){
while (TRUE){

wait (collect);
wait (report);
stat_ad ();
signal (collect);
signal (report)

}
}

12

• 5.25 T for the execution of a complete cycle
• Only 1T lost in waiting time between I/O operations

main(){
init_proc(&log(), …);
init_proc(&collect(), …);
init_proc(&report(), …);
init_proc(&stat(),…);

signal (collect); signal (collect);
signal (stat);
start_schedule();

}

Process – OS Perspective
• The processor’s principal function: execute machine instructions residing in main memory

• Those instructions are provided in the form of programs
• A processor may interleave the execution of a number of programs over time

• Program View
• Its execution involves a sequence of instructions within that program
• The behavior of individual process can be characterised by a sequence of instructions

• trace of the process

• Processor View
• Executes instructions from main memory, as dictated by changing values in the program counter (PC)

register
• The behaviour of the processor can be characterised by showing how the traces of various processes

are interleaved
14

State Process Models

• Two State Process Model

• Five State Process Model

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 15

Two State Model

• The process can be in one of two states:
• running or not running

• When the OS creates a new process, it enters it into the Not Running state;
after that, the process exists, is known to the OS and waits for the opportunity
to run
• From time to time, the currently running process will be interrupted and the

dispatcher process will select a new process to run
• The new process will be moved to Running state and the former one to Not Running state

16

Process Creation Process Termination

Process Creation
• Creation of new process:

• The OS builds the data structures that are used to manage the process
• The OS allocates space in main memory to the process

• Reasons for process creation:
• New batch job
• Interactive logon
• Created by OS to provide a service

• i.e., process to control printing
• Spawned by existing process

• i.e., to exploit parallelism

17

Process Termination
• Reasons for process termination
• Process finished its execution (natural completion)
• Total time limit exceeded
• Errors (memory unavailable, arithmetic error, protection error, invalid

instruction, privileged instruction, I/O failure, etc.)
• Parent request

o A parent has typically the right to request a child termination
• Parent termination

o When the parent terminates, the OS may automatically terminate all of its children

18

Queuing Discipline
• Each process needs to be represented
• Info relating to each process, including current state and location in memory
• Waiting processes should be kept in some sort of queue

• List of pointers to processes blocks
• Linked list of data blocks; each block representing a process

• Dispatcher behavior:
• An interrupted process is transferred in waiting queue

• If process is completed or aborted, it is discarded
• The dispatcher selects a process from the queue to execute

19

Five State Model
• Running – The process is currently being executed

• For single processor systems, one single process can be in this state at a
time

• Ready – a process that is prepared to execute when given the turn

• Blocked – a process that can’t execute until some event occurs
• Such as the completion of an I/O operation

• New – a process that has been created, but not yet accepted in the
pool of executable processes by OS
• Typically, a new process has not yet been loaded into main memory

• Exit – a process that has been released from the pool of executable
processes by the OS
• Completed or due to some errors

20

Five State Model Process Transition Diagram

21

Process – OS Perspective

• Consider three processes: A, B and C that are loaded in memory
• In addition, there is a small dispatcher program that switches the

processor from one process to another (using Round Robin with 6
instructions)
• No use of virtual memory
• Process B invokes an I/O operation in its fourth instruction

22

Example

• Movement of each process described earlier (A, B and C)
among the states

23

Queuing Discipline (1)

• There are two queues now: ready queue and blocked queue
• When the process is admitted in the system, it is placed in ready queue

• When a process is removed from the processor, it is either placed in ready
queue or in blocked queue (depending on circumstances)

• When an event occurs, all the processes waiting on that event are moved
from blocked queue onto ready queue.

24

Queuing Discipline (2)

• Multiple blocked queues; one per each event
• When event occurs, the entire list of processes is moved in ready

queue
25

Suspended Processes

• Processor is faster than I/O so all processes could be waiting for I/O
• Swap these processes to disk to free up more memory
• Blocked state becomes suspend state when swapped to disk

26

Process Management Services
• create (&process_id, attributes)
• Creates a new process with

implicit or specified attributes

• delete (process_id)
• Sometime known as destroy, terminate

or exit
• Finishes the process specified by

process_id
• Whenever the process is

terminated, all the files are closed,
• all the allocated resources are released

• abort (process_id)
• Same as the delete but for abnormal

termination
• Usually generates a :post mortem

dump” which contains the state of the
process before the abnormal
termination

• suspend (process_id)
• Determines the specified process to go

in suspended state

27

Process Management Services
• resume (process_id)

• Determines the specified process to go from the suspended state in ready state

• delay (process_id, time)
• Same with sleep
• Suspends the specified process for the specified period of time
• After the delay time elapses, the process is brought to ready state

• get_attributes (process_id, &buffer_attributes)
• Used to find out the attributes for the given process

• set_attributes (process_id, buffer_attributes)
• Used to set the attributes of the specified process

28

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 29

Process Description

Process Description

• What information does the
operating system need to control
processes and manage resources
for them?
• Operating System Control

Structures
• Memory Tables
• I/O Tables
• File Tables
• Primary Process Table
• Process Image

• User Program, user data, stack and
attributes of the process

30

Memory Tables
• Used to keep track of both main (real) and secondary (virtual)

memory.
• Some of main memory is reserved for use by the operating system;

the remainder is available to the processes.

• Contain:
• The allocation of main memory to processes
• The allocation of secondary memory to processes
• Any protection attributes of blocks of main or virtual memory (such as

which processes can access certain shared memory regions)
• Any information needed to manage virtual memory

31

I/O Tables
• Are used by the operating system to manage the I/O devices
• At any given time, an I/O device may be available or assigned to a

particular process.
• If an I/O is in progress, the OS needs to know the status of the I/O

operation and the location in main memory being used as the source or
destination of the I/O transfer.

32

File Tables
• These tables provide information about:

• the existence of files
• their location on secondary memory
• their current status
• other attributes

• Much of this information is maintained and managed by the File
Manager, in which case the process manager has little or no
knowledge of files.

33

Process Tables
• Primary process table is used to keep one entry

per each process in the operating system.
• Each entry contains at least one pointer to a process

image.

• The Process Image contains:
• Stack

• Each process has one or more stacks associated with it.
• A stack is used to store parameters and calling addresses for

procedure and system calls
• User Data

• Program data that can be modified, etc.
• Process Control Block

• Data needed by the operating system to control the process
(attributes and information about process)

34

Process Control Block

Contains:

1. Process Identification: data always include a unique identifier for
the process

2. Processor State Information: define the status of a process when
it is suspended

3. Process Control Information: used by the OS to manage the
process

35

Process Identification

• Identifiers
• Numeric identifiers that may be stored with the Process Control Block

include:
• Identifier of this process
• Identifier of the process that created this process (parent process)
• User identifier

36

Processor State Information

• User-Visible Registers
• A user-visible register is one that may be referenced by means of the machine language that

the processor executes.

• Control and Status Registers
• These are a variety of processor registers that are employed to control the operation of the

processor. These include:
• Program Counter: Contains the address of the next instruction to be fetched
• Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry,

equal, overflow bits)
• Status information: Includes interrupt enabled/disabled flags, execution mode

• Stack Pointers
• Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is

used to store parameters and calling addresses for procedure and system calls.
• The stack pointer points to the top of the stack.

37

Process Control Information (1)

• Scheduling and State Information
• This is information that is needed by the operating system to perform

its scheduling function. Typical items of information:

• Process state: defines the readiness of the process to be scheduled for execution
(e.g., running, ready, waiting, halted).

• Priority: One or more fields may be used to describe the scheduling priority of
the process. In some systems, several values are required (e.g., default, current,
highest-allowable)

• Scheduling-related information: This will depend on the scheduling algorithm
used. Examples are the amount of time that the process has been waiting and
the amount of time that the process executed the last time it was running.

• Event: Identity of event the process is awaiting before it can be resumed
38

Process Control Information (2)
• Data Structuring
• A process may be linked to another process in a queue or other structure. E.g.,:

• all processes in a waiting state for a particular priority level may be linked in a queue.
• a process may exhibit a parent-child (creator-created) relationship with another process. The

process control block may contain pointers to other processes to support these structures.

• Inter-process Communication
• Various flags, signals, and messages may be associated with communication between two independent

processes.

• Process Privileges
• Processes are granted privileges in terms of the memory that may be accessed and the types of

instructions that may be executed.
• In addition, privileges may apply to the use of system utilities and services.

39

Process Control Information (3)

• Memory Management
• This section may include pointers to segment and/or page tables

that describe the virtual memory assigned to this process.

• Resource Ownership and Utilization
• Resources controlled by the process may be indicated, such as

opened files.
• A history of utilisation of the processor or other resources may also

be included
• this information may be needed by the scheduler.

40

Threads and Processes

Threads and Processes

• A process is defined sometimes as a heavyweight process
• A thread is defined as a lightweight process

• Separate two ideas:
• Process: Ownership of memory, files, other resources

-> execution of applications
• Thread: Unit of execution we use to dispatch

-> share the same address space hence can read from and write to the same data
structures

• Multithreading
• Allow multiple threads per process

42

Threads (1)
• It is a unit of computation associated with a particular heavyweight

process, using many of the associated process’s resources
• has a minimum of internal state and a minimum of allocated resources

• A group of threads are sharing the same resources:
• E.g., files, memory space, etc.

• The process is the execution environment for a family of threads
• a process with one thread is a classic process

• A thread belongs only to one process

43

Threads (2)

• Individual execution state

• Each thread has a control block, with a state (Running/Blocked/etc.),
saved registers, instruction pointer

• Separate stack and hardware state (PC, registers, PSW, etc.) per thread

• Shares memory and files with other threads that are in that process

• Faster to create a thread than a process

• Because a family of threads belonging to the same process have
common resources, the thread switch is very efficient

• Thread switch for threads from different processes is as complex as
classic process switch

44

Using Threads

45

Application

Physical screen

Windows

Window
threads

References
• “Operating Systems”, William Stallings, ISBN 0-13-

032986-x
• “Operating Systems – A Modern Perspective”, Garry

Nutt, ISBN 0-8053-1295-1

46

