
L E C T U R E 3
U N I T T E S T I N G I N J A V A &

T E S T D R I V E N D E V E L O P M E N T
P A R T 1

- D R . A D R I A N C L E A R -
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Objectives…
• By the end of this lecture, you will:
1. have been introduced to testing terminology and the

main kinds of testing
2. understand the practice of Test Driven Development

(TDD)
3. have been introduced to unit testing and JUnit, the Java

unit testing framework
4. have written some tests using a TDD approach

Testing
• Systematic process of analysing a system or system

component to detect the differences between specified
(required) and observed (existing) behavior.

• Attempt to show that the implementation of a system is
inconsistent with the desired functionality

• Goal is to design tests that exercise defects in the system
and to reveal problems

• Can’t test everything in a large system.
• Tradeoffs required with budget and time constraints.

Levels of testing
• Unit testing involves testing individual classes and

mechanisms.

• Integration testing involves testing groups of classes or
components and the interfaces between them.

• System testing involves integration testing the system as
a whole to check it meets the requirements.

Test-Driven Development (TDD)
• A software development process that relies on
the repetition of a very short development cycle

• The general rationale behind this methodology is
“first write the test, then the code” such that the
tests drive the development of your code

• Tries to find faults in participating objects and/or
subsystems with respect to the use cases from
the use case model.

Add new
test to test

suite

Run test
suite

Code
application

logic

Refactor
code

The TDD cycle

START

Red, Green, Refactor!
• A test will initially fail;

we write a minimal
amount of code to
make a test pass

• Refactor our
application and test
code before moving
on to the next one

• Build a test suite as
our implementation
progresses Image from www.codecademy.com

Use case descriptions for a shopping cart
Use case description: Add item(s) to cart

1. Customer adds items to their shopping cart by selecting the item to add and indicating the
number that they wish to add.

2. System confirms that items have been added successfully.

Use case description: Remove item(s) from cart
1. Customer performs “View shopping cart” use case
2. Customer selects an item to remove.
3. System removes the item from the cart such that the quantity of the item in the cart is 0.

Use case description: Update number of items in cart
1. Customer performs “View shopping cart” use case
2. Customer indicates the new number of a particular item that they wish to have in their cart.
3. System changes the number of the item in the cart and updates the display.

Use case description: View shopping cart
1. Customer indicates that they wish to view all of the items currently in their cart.
2. System displays items currently contained in the shopping cart

TDD example in Eclipse

Good practice to separate tests
from production code

Once you create a new folder for your tests,
you’ll need indicate that it should be used
as a source folder

Getting started…
• We start with an empty

ShoppingCart class

• Create our first Test Case by
right-clicking on the tests
package and selecting

New --> Junit Test Case

• You may be prompted to add
JUnit to your project. I’m
using JUnit 5 here

Test cases
• A test component is a part of the system that can be

isolated for testing
• could be an object, a group of objects, or one or more subsystems.

• Unit testing finds differences between a specification of
an object and its realisation as a component

• JUnit is a unit testing framework for test-driven
development in Java
• available in Eclipse out-of-the-box

Test cases
• A test case is a set of inputs and expected results that

exercises a test component with the purpose of causing
failures and detecting faults.

• Blackbox tests focus on the input/output behaviour of the
component (i.e., the functionality, not the internal aspects)

• Whitebox tests focus on the internal structure and
dynamics of the component

Our first test

Use case description: Add item(s) to cart
1. Customer adds items to their shopping cart by selecting the item

to add and indicating the number that they wish to add.
2. System confirms that items have been added successfully.

• Let’s start with the adding and item use case

• …and a test that’s “Red”
• Annotations tell

JUnit that this is a
test case

• The fail() assertion
explicitly causes a
test to fail

Let’s write some test code

Notice the red underline
as these haven’t been
implemented yet

• JUnit uses assertions to indicate
 assumptions about the outcome of a test
• If the assertion is correct, the test passes;
 otherwise, it fails
• assertTrue(boolean statement): We assume the statement is true for

an implementation that matches the specified requirement

Add new
test to test

suite

Run test
suite

Code
application

logic

Refactor
code

The TDD cycle in OO development

START

Add class
stubs to
model

You cannot even begin to
write a test if you don’t
have at least the definitions
and method names of the
classes that you are
testing!

Assert methods
• assertTrue(boolean test)

assertTrue(String message, boolean test)
• assertFalse(boolean test)

assertFalse(String message, boolean test)
• assertEquals(Object expected, Object actual)

assertEquals(String message, Object expected, Object actual)
• assertSame(Object expected, Object actual)

assertSame(String message, Object expected, Object actual)
• assertNotSame(Object expected, Object actual)

assertNotSame(String message, Object expected, Object actual)
• assertNull(Object object)

assertNull(String message, Object object)
• assertNotNull(Object object)

assertNotNull(String message, Object object)

• fail()
fail(String message)

16

Make your test compile

…but it should still fail as we
haven’t implemented any
functionality yet to make it
pass.

“Go green”: Write minimum code to pass
• This is obviously not the correct

implementation but it’s sufficient (the
minimum code) to make our test pass

• Let’s make our test more sophisticated
by adding a second item

• We’re back to red, indicating a
deficiency with our previous
implementation

We code again to make our test pass

• Our first meaningful test goes green!

Demo: Account
• It should be possible to

• Withdraw a non-negative amount from the account that doesn’t
exceed the balance

• Deposit a non-negative amount to the account
• query an account for its balance and account number

• An account must have an account number

• Use TDD to implement the withdraw functionality
• Write a test for making a valid withdrawal
• Red, Green, Refactor

• Use TDD to implement the “get account number”
functionality

