Lab Task: Camera Projection Matrix (P Matrix) Estimation

Objective: The objective of this lab is to estimate the camera projection matrix (P Matrix)
using images and corresponding 3D world coordinates. You will experiment by increasing
the number of points and use your own images taken from your mobile camera to perform
the estimation. You will also explore the visualization of the computed camera parameters
and understand the effect of using different numbers of control points.

Instructions:

Part 1. P Matrix Estimation Using Provided Code

1.

Use the provided code to estimate the P matrix using the given image and point
data.

2. Carefully read through and run the code, making sure you understand each step.
3.

Save the following results and visualizations in a PDF for submission:
o The computed camera matrix (P), intrinsic matrix (K), and rotation matrix
(R).
o The 3D plot shows the camera center, the world points, and the principal
axis.
o The image with projected 3D points and vanishing lines.

Part 2: Using Your Own Image from your camera for P Matrix Estimation

1.

Take a new image using your phone or another camera. Make sure to capture a
scene with clearly identifiable points, ideally in a structured environment like a
room or building corner.
Replace the image path in the code with the path to your new image.
Select a total of 24 points on the image that can be accurately mapped to 3D world
coordinates. Enter these coordinates as prompted.
Run the code to compute the P matrix for your image.
Save the following in your PDF submission:
o The image with the selected points plotted and labeled.
o The computed camera matrix (P), intrinsic matrix (K), and rotation matrix
(R).
The 3D visualization of the points and camera center.
The image with projected 3D points, including back-projected points and
points at infinity.

Part 3: Experiment and Reflect

1.

2.

Experience with different numbers of control points, such as using 12, 24, and 40
points for P estimation.
Reflect on the following questions:
o How does increasing the number of points affect the accuracy and stability
of the P matrix estimation?

o Isthere a noticeable difference in the accuracy of the back-projection when
using fewer points versus more points?

o What challenges did you encounter when manually selecting points and
entering 3D world coordinates?

o Include your reflections in your PDF report.

Submission Requirements:

e A single PDF document containing:
o Screenshots of the outputs for each part.
o Reflections on the impact of increasing the number of control points.
o Answers to the reflection questions.

Evaluation Criteria:

« Demonstration of understanding through reflections and analysis.
e Clarity and completeness of your PDF submission.

Optional Challenge:

« Take two different images of the same scene from different angles. Estimate the
P matrix for both images and compare the results. Are the intrinsic matrix (K)
values consistent between the two images? How does the rotation matrix (R)
differ? Include any observations in your report.

1. close all
2. clear all
3. clc
4. % Prompt user to load data or select points manually
5. choice = menu('Do you want to load points from the workspace_variables.mat file?', 'Yes',
‘No');
6.
7. if choice == 1
8. % Load points from .mat file
9. load('workspace_variables.mat');
10.
11. % Ensure the necessary variables exist in the loaded file
12. if exist('image_points', 'var') && exist('world_points', 'var')
13. disp('Points successfully loaded from workspace_variables.mat');
14. else
15. error('The loaded file does not contain the required variables "image_points" and

"world _points".');

16.

17. else

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
'bold");
44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.

numeric array

% Proceed with manual selection if user chooses "No"

% Load and display the image

img = imread('20241104_110446.jpg'); % Replace with your image file path
imshow(img); % Display the image

hold on; % Keep the image displayed while adding markers

% Initialize matrices to store 2D and 3D homogeneous coordinates
num_points = 36; % Set number of points

image_points = zeros(num_points, 3); % For 2D image points in homogeneous
coordinates

world_points = zeros(num_points, 4); % For 3D world points in homogeneous
coordinates

disp('Click on the image to select 96 points and enter their 3D world coordinates.');

for i = 1:num_points

% Use ginput to get one image point at a time
[x, y] = ginput(1);

% Store the 2D image coordinates in homogeneous form
image_points(i, :) = [x, y, 1];

% Plot the selected point on the image
plot(x, y, 'r+', 'MarkerSize', 8, 'LineWidth', 1.5);

% Display the current point number for reference
text(x, y, sprintf(' %d', i), 'Color', 'yellow', 'FontSize', 10, 'FontWeight',

% GUI prompt for 3D world coordinates

prompt = sprintf('Enter the 3D world coordinates for point %d (X, Y, Z):', i);
title = '3D World Coordinate Input';

dims = [1]; % Set single row dimension for the input dialog

default_input = {'@', '@', '@'}; % Default values for input fields

answer = inputdlg({'X:"', 'Y:', 'Z:'}, title, dims, default_input);

% Convert input to numeric values and store in homogeneous form
if ~isempty(answer)
world_coords = str2double(answer); % Convert cell array of strings to

55. world points(i, :) = [world_coords', 1]; % Store in homogeneous form [X Y Z

1]

56. else

57. error('3D coordinate input was canceled.'); % Handle case if input is
canceled

58. end

59. end

60.

61. % Release the hold on the image display

62. hold off;

63. end

64.

65. % Construct the matrix A for solving P using SVD

66. A =1[];

67. for i = 1l:num_points

68. X = world_points(i, :); % Homogeneous 3D coordinates [X Y Z 1]
69. x = image_points(i, 1); % x-coordinate of the 2D image point
70. y = image_points(i, 2); % y-coordinate of the 2D image point
71.

72. % Build the two rows for each point

73. rowl = [zeros(1, 4), -X, y * X];

74. row2 = [X, zeros(1, 4), -x * X];

75.

76. % Append the rows to A

77. A = [A; rowl; row2];

78. end

79.

80. % Compute the camera projection matrix P using SVD

81. [~, ~, V] = svd(A);

82. P = reshape(V(:, end), 4, 3)'; % Reshape the last column of V into a 3x4 matrix
83.

84. % Compute the camera center as the null space of P

85. [~, ~, V_P] = svd(P);

86. camera_center_h = V_P(:, end); % Last column of V

87. camera_center = camera_center_h(1:3) / camera_center_h(4); % Convert from homogeneous
88.

89. % Decompose P into K and R using QR decomposition on the first 3x3 part

99. M = P(:, 1:3); % The 3x3 submatrix of P

91. [Q, R] = gr(inv(M)); % Use QR decomposition

92. K = inv(R); % Intrinsic matrix

93. K = K / K(3,3); % Normalize K so that K(3,3) is 1
94. R = inv(Q); % Rotation matrix

95.

96. % Display computed matrices

97. disp('Computed camera matrix P:');

98. disp(P);

99. disp('Intrinsic matrix K:");

100. disp(K);

101. disp('Rotation matrix R:');

102. disp(R);

103. disp('Camera center (in world coordinates):');

104. disp(camera_center);

105.

106. % Visualization in 3D

107. figure 1;

108. scatter3(world_points(:,1), world_points(:,2), world_points(:,3), 'bo'); % Plot 3D points
109. hold on;

110. scatter3(camera_center(1l), camera_center(2), camera_center(3), 'ro', 'filled'); % Plot
camera center

111. quiver3(camera_center(1l), camera_center(2), camera_center(3), -R(3,1), -R(3,2), -R(3,3),
10, 'r'); % Plot principal axis

112. %title('3D Points, Camera Center, and Principal Axis');

113. xlabel('X");

114. ylabel('Y');

115. zlabel('z");

116. legend('3D Points', 'Camera Center', 'Principal Axis');

117. grid on;

118. hold off;

119.

120. % Back-project the 3D points onto the 2D image using the camera matrix P
121. projected_points = P * world_points"';

122.

123. % Convert from homogeneous coordinates to 2D by normalizing

124. projected_points = projected_points ./ projected_points(3, :);
125.

126. % Display the original image and overlay the back-projected points
127.

128. % Assuming P is already computed and available

129.

130. % Define the points at infinity along the axes

131. D x = [1; 0; 0; 0]; Point at infinity along X-axis

%
132. Dy = [0; 1; ©; O0]; % Point at infinity along Y-axis
133. D_z = [0; ©; 1; @0]; % Point at infinity along Z-axis
134. D o = [0; ©; ©; 1]; % World origin
135.

136. % Project these points using the camera projection matrix P

137. image_point_infinity_x = P * D_x;

138. image_point_infinity_y = P * D_y;

139. image_point_infinity_z = P * D_z;

140. image_point_origin = P * D_o;

141.

142. % Normalize the projected points to get 2D coordinates

143. image_point_infinity_x = image_point_infinity_x ./ image_point_infinity_ x(3);
144. image_point_infinity_y = image_point_infinity_y ./ image_point_infinity y(3);
145. image_point_infinity_z = image_point_infinity_z ./ image_point_infinity_z(3);
146. image_point_origin = image_point_origin ./ image_point_origin(3);

147.

148.

149. % Display the original image and overlay the points at infinity

150. figure(2);

151. imshow(img);

152. hold on;

153.

154. % Plot the actual image points in red

155. scatter(image_points(:, 1), image_points(:, 2),
Image Points');

156.

157. % Plot back-projected points in green

158. scatter(projected_points(1l, :), projected_points(2, :), 'gx', 'filled', 'DisplayName’,
'Back-Projected 3D Points');

159.

160. % Plot points at infinity with different markers and colors

161. scatter(image_point_infinity_x(1), image_point_infinity x(2), 'bx', 'LineWidth', 2,
'DisplayName’, 'Point at Infinity (X-axis)');

162. scatter(image_point_infinity_y(1), image_point_infinity y(2), 'gx', 'LineWidth', 2,
'DisplayName’, 'Point at Infinity (Y-axis)');

163. scatter(image_point_infinity_z(1), image_point_infinity_z(2),
'DisplayName’, 'Point at Infinity (Z-axis)');

164. scatter(image_point_origin(1l), image_point_origin(2), 'ko', 'filled', 'DisplayName’,
'World Origin');

165.

166. % Draw vanishing lines from world origin to points at infinity

ro', 'filled', 'DisplayName’, 'Actual

mx', 'LineWidth', 2,

167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.

plot([image_point_origin(1), image point_infinity_x(1)],
[image_point_origin(2), image_point_infinity_x(2)], .
'b--', 'LineWidth', 1.5, 'DisplayName', 'Vanishing Line (X-axis)');

plot([image_point_origin(1), image_point_infinity_y(1)],
[image_point_origin(2), image_point_infinity_y(2)],

g--', 'Linewidth', 1.5, 'DisplayName', 'Vanishing Line (Y-axis)');
% Draw a line connecting points at infinity in X and Y directions
plot([image_point_infinity x(1), image_point_infinity y(1)],
[image_point_infinity x(2), image_point_infinity y(2)],
‘m--', 'LineWidth', 1.5, 'DisplayName’', 'Line Between Infinity Points');

% Add title

% Create legend
legend show; % Show legend to display all categories

hold off;

