
CT3536 Games Programming

Terrains
Particle Emitters

Some C# Collection Classes

Terrains.

Terrains

Unity terrains offer a lot of
features:
• Heightmap import
• Heightmap randomisation and

sculpting tools
• Terrain texture painting
• Trees
• Plants

• To add a Terrain GameObject to a Scene, select GameObject > 3D Object >
Terrain. This also adds a corresponding Terrain Asset which stores data about it.

• The landscape is initially a large, flat plane.
• With the exception of the tree placement tool and the settings panel, all the tools

on the toolbar provide a set of “brushes” and settings for brush size and opacity.

https://docs.unity3d.com/Manual/script-Terrain.html

https://docs.unity3d.com/Manual/script-Terrain.html

Terrain Height Tools

• Raise/Lower Height
• Paint Holes
• Set Height
• Smooth Height
• Different brushes can be used to create various effects:

• For example, you
can create rolling
hills by increasing
the height with a
soft-edged brush
and then cut steep
cliffs and valleys by
lowering with a
hard-edged brush.

Terrain Textures
• Terrain textures should tile seamlessly
• One texture acts as the base for the whole terrain
• Other textures are painted on top, with variable opacity ('splat maps')

Trees

• Trees are
"painted" onto
the terrain

• You must define
tree prefabs to
use

• There are several tree formats supported (e.g.
SpeedTree) which allow such things as
randomised variations, and wind effects

• See: https://docs.unity3d.com/Manual/terrain-Trees.html

https://docs.unity3d.com/Manual/class-Tree.html

https://docs.unity3d.com/Manual/terrain-Trees.html
https://docs.unity3d.com/Manual/class-Tree.html

Grass/Plants
These are textures (with
transparency) rendered
as billboards, i.e. single
quads which rotate to
face the camera

Particle Emitters

• Particles are a standard approach in games for flexible
and efficient creation of special effects such as fire,
smoke, explosions, sparks, rain, etc..

• Based on the concept of textured billboards which are
emitted according to a defined shape and pattern, with
defined behaviour / changes to each particle's size,
colour, position over time

• In Unity, use the new ParticleSystem component,
rather than the older ParticleEmitter component (but
Particle Emitter is the more usual term for the concept,
in game development)

• https://docs.unity3d.com/ScriptReference/ParticleSystem.html
• https://docs.unity3d.com/Manual/ParticleSystems.html

https://docs.unity3d.com/ScriptReference/ParticleSystem.html
https://docs.unity3d.com/Manual/ParticleSystems.html

Particle Emitters

• Add a ParticleSystem component to a Game Object
• A particle system has a lot of settings! But this makes it

hugely flexible and powerful (+ it has been heavily
optimised in the core game engine for efficient
rendering)

• A good place
to start is the
free "Unity
Particle Pack"
asset on the
Unity asset
store

ParticleSystem Example

Adding a flame emitter to use when our Asteroids game
Spaceship has its engines engaged

N.B. I have
attached the
ParticleSystem
component to
an otherwise
empty Game
Object nested
inside the main
spaceship.
This allowed me
to rotate and
position it
correctly Using a cone-shaped emission

Final Settings

Code Changes (Spaceship class)
- Turns the flames on/off as user presses/releases the Up arrow

Add inspector setting:

public ParticleSystem flameParticleSystem;

Change at the start of the Update() method:

void Update () {
if (Input.GetKey (KeyCode.UpArrow)) {

rigidBody.AddForce (transform.forward * (rigidBody.mass *
Time.deltaTime * 500f));

if (!flameParticleSystem.isPlaying)
flameParticleSystem.Play ();

}
else if (flameParticleSystem.isPlaying)

flameParticleSystem.Stop ();

Particle Collision Callbacks
We can use particle collision callbacks to calculate flamethrower
damage to enemies, and spread fire on the floors and walls

This script will receive
OnParticleCollision() callbacks
when the particles hit things

Some C# Collection Classes
My three favourite collection classes provided by C#:
• List

• Dynamically add/remove items from a list
• Iterate the list
• Random-access the list by index

• LinkedList
• Dynamically add/remove items from a list where this

will be done very frequently (i.e. add/remove is very
efficient)

• Iterate the list
• Dictionary

• Dynamically add/remove items from a collection which
is indexed by any nominated data type, e.g. String or
(sparse) Integer, or even Object

