
CT437 

COMPUTER SECURITY AND FORENSIC COMPUTING

STREAM CIPHERS

Dr. Michael Schukat



Lecture Overview
2

 This slide decks covers the following topics:

 Stream Ciphers and their implementation in

◼ LFSR

◼ NLFSR

◼ RC4

 Pseudorandom number generation principles



Recap: Block Ciphers versus 

Stream Ciphers

 In a block cipher the data (e.g. text, video, or a network 
packet) to be encrypted is broken into blocks M1, M2, etc. of K 
bits length, each of which is then encrypted

 The encryption process is like a substitution on very big 
characters – 64 bits or more

 In contrast, a stream cipher is a symmetric key cipher where 
plaintext digits are combined with a pseudorandom cipher 
digit stream (the keystream)

 Normally,
 stream ciphers only process one bit or one byte at a time
 the combining operation is an exclusive-or (XOR)

encoding

decoding



Stream Ciphers

 Stream ciphers typically provide a (pseudo) random stream key generator 
that produces a pseudo-random digit sequence si (i = 1, 2, …)

 This stream is XORed digit-by-digit with the plaintext x: 
   yi = xi XOR si

 The plaintext stream can be recovered by reapplying the XOR operation

 In modern stream ciphers, a digit is one bit (or one byte → later)

 A random stream key completely destroys any statistically properties in 
the plaintext message
 For a perfectly random keystream si, each yi has a 50% chance of being 0 or 1

 But how can a pseudo-random sequence si be generated?



Stream Cipher Performance
5

 Since an XOR operation of a single bit or byte can be done in 
a single CPU cycle, 

 the code size and complexity of a stream cipher mainly depends 
on the code size and complexity of the random number generator

 the speed of a stream cipher mainly depends on the speed of the 
random number generator

 For comparison (based on some Intel Pentium architecture):

 Size and speed make stream ciphers very suitable for 

resource constrained devices (e.g., mobile phones, IoT devices)



One-Time Pad

 The OTP is an encryption requires the use of a single-use pre-shared 
key that is equal to the size of the message being encrypted

 For the resulting ciphertext to be impossible to decrypt, the key 
must…
 be at least as long as the plaintext (think of Vigenère and its weakness)
 be 

◼ random (uniformly distributed in the set of all possible keys and independent of 
the plaintext)

◼ entirely sampled from a non-algorithmic, chaotic source such as a hardware 
random number generator

◼ pattern-less
 never be reused in whole or in part (Coincidence counting -> next slide)
 be kept completely secret by the communicating parties

 OTPs are not practical for practical reasons, therefore pseudo-
random generators (PRG) are used

 PRGs are often based on Linear Feedback Shift Registers (LFSRs)



Example Coincidence Counting
8

 Coincidence counting allows predicting the length of the key of a stream cipher, by 
comparing the ciphertext against itself with different offsets

 Assume ciphertext CXEKCWCOZKUCAYZEKW that has been encoded using a 
stream cipher with an unknown key

 Count the number of identical characters (matches) using different displacements of 
ciphertext:

 Displacement = 1
CXEKCWCOZKUCAYZEKW
 CXEKCWCOZKUCAYZEKW
Matches: 0

 Displacement = 2
CXEKCWCOZKUCAYZEKW
  CXEKCWCOZKUCAYZEKW
Matches: 1

 Displacement = 3
CXEKCWCOZKUCAYZEKW
   CXEKCWCOZKUCAYZEKW
Matches: 0

 …



Example Coincidence Counting
9

 If you line up the ciphertext with itself displaced by k (= key length) characters, 
then you get a match in the ciphertext (offset by k places) if there is a match in the 
plaintext (offset by k places)

 With the non-uniformity of the frequency distribution of English letters there's about a 
6% chance that those two positions have the same letter (the index of coincidence)

 In contrast, when you line up the ciphertext using a different displacement, the 
index of coincidence is much smaller, i.e., 1/256, if ciphertexts are bytes

 By counting the displacement over a long ciphertext stream, k can be determined

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12

D
is
p
la

ce
m

e
nt

#Matches



Linear Feedback Shift Registers 

(LFSR)

 A LFSR consists of a binary shift register of some length along with a 
linear feedback function (LFF) that operates on some of those bits
 The most commonly used LFF is the XOR operation

 To get started the register is preset with a secret initialisation vector 

 Each time a bit is needed, 
 a new bit is formed from the linear feedback function

 all bits are shifted by one position (shifted right in the example below) with the 
new bit being shifted in

 The bit shifted out is used as the (pseudo-random) output of the LFSR

 A well-designed n-bit LFSR generates a pseudo-random sequence whose 
length correlates to n



Example for an 8-Bit LFSR

 Initialisation vector: 10100110 (B7 … B0)

 Feedback Function: B7 XOR B4 XOR B1
 Right shift after each cycle (B0 shifted out)

 Iteration 0:  10100110 

 Iteration 1:  01010011 >> 0

 Iteration 2:  00101001 >> 1

 Iteration 3:  00010100 >> 1

 Iteration 4:  10001010 >> 0

 …    …



Example VoIP Encoding using a Stream 

Cipher

Bitwise 

encoding
Bitwise 

decoding



Stream Ciphers in Practice
13

 In practice, one key is used to encrypt many messages 

 Example: Wireless communication

 Solution: Use Initial vectors (IV)

 Ekey[M] = [IV, M  PRNG(key || IV)]

◼ IV is sent in clear to receiver

◼ IV needs integrity protection, but not confidentiality protection

◼ IV ensures that key streams do not repeat, but does not increase cost 

of brute-force attacks

◼ Without key, knowing IV still cannot decrypt

 Need to ensure that IV never repeats! How? 



Example for a 16-bit LFSR written in C
14

#include <stdint.h>

#include <stdio.h>

int main(void) {

    uint16_t start_state = 0xACE1u;  /* Any non-zero start state will work. */

    uint16_t lfsr = start_state;

    uint16_t bit, input, period = 0;

    printf(“Enter LFSR IV as integer: ”); scanf(“%d”, &input);

    if (input > 0) {

       start_state = input;

       lfsr = start_state;

    }

    do

    {   /* LFF: B15 XOR B13 XOR B12 XOR B10 */

        bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5)) & 1u;

        lfsr = (lfsr >> 1) | (bit << 15);

        printf(“%d”, bit);

        ++period;

    } while (lfsr != start_state);

    printf(“\nPeriod of output sequence: %d \n”, period);

    return 0;

}



What is the Maximum Sequence Length 

of a single LFSR? 
15

 Consider a single n-bit LFSR with some feedback function

 Each bit that is shifted out is intrinsically linked to the content of the LFSR

 Each shift operation maps the register content to another (different) pattern, 
as seen in the example, resulting in another bit shifted out 

 An n-bit LFSR allows for 2n different register content variations, with each 
variation pushing out a 0 or a 1

 Therefore, the longest cycle of non-repeating patterns is 
2n – 1 iterations, with 2n the maximum length of the sequence

 Think of a 1-bit LFSR (n = 1): 

◼ There are 2 different LFSR contents (“0” or “1”) possible

◼ The longest possible patterns are “10” or “01”; both have a length of 2n

◼ It just takes one iteration (2n-1) to reach all possible register contents (1 → 0 or 0 → 1)

 However, 

 poorly designed LFSR may result in cycles that are shorter

 the Index of Coincidence problem also applies to LFSR (and in fact to all stream 
ciphers)



The Combined LFSR

 A combined LFSR uses multiple LFSR in parallel, and combines 
their respective outputs to generate a key stream

 They work well on resource-constrained devices too

 Example: A5/1, which was used for GSM voice communication:

 The Global System for Mobile Communications (GSM) was a mobile 
phone standard back in the 1990s

 In GSM, digitised phone conversations are sent as sequences of 
frames

 One frame is sent every 4.6 milliseconds and is 228 bits in length
◼ Voice samples are collected / digitised over 4.6 milliseconds and send in a block 

 A5/1 is a combined LFSR-based algorithm that is used to produce 
228 bits of key stream which is XORed with the frame

 It is initialised using a 64-bit key



Example A5/1

 3 independent LFSRs:
 LFSR 1

◼ 19 bits 

◼ LFF: B18 XOR B17 XOR B16 XOR B13

 LFSR 2:
◼ 22 bits

◼ LFF: B21 XOR B20

 LFSR 3:
◼ 23 bits

◼ LFF: B22 XOR B21 XOR B20 XOR B7

 The output bit is the XORed 
output of all 3 LFSRs

 A LFSR is only shifted to the left, 
if their clocking bit (B8, B10, and 
B10 respectively) matches the 
output bit; 
otherwise, there is no shift, and 
the same output bit value is used 
again in the next cycle



Non-Linear Feedback Shift Registers 

(NLFSR)
18

 NLFSR contain AND gates as well as XOR gates in 

their feedback function

 Example Trivium: A, B and C are three shift registers 

with bit lengths of 93, 84 and 111 bits respectively



Example for a 16-bit NLFSR in C
19

#include <stdint.h>

#include <stdio.h>

int main(void)

{

    uint16_t start_state = 0xACE1u;  /* Any non-zero start state will work. */

    uint16_t lfsr = start_state;

    uint16_t bit, period = 0;

    do

    {   /* FBF: B15 XOR B13 XOR B12 XOR B10 XOR (B2 and B1)*/

        bit = ((lfsr >> 0) ^ (lfsr >> 2) ^ (lfsr >> 3) ^ (lfsr >> 5) ^ ((lfsr >> 13) & (lfsr >> 14))) & 1u;

        lfsr = (lfsr >> 1) | (bit << 15);

        printf(“%d”, bit)

        ++period;

    } while (lfsr != start_state);

    printf(“\nPeriod of output sequence: %d \n”, period);

    return 0;

}



Pseudo-Random Number 

generation: RC4

 Instead of single bits, a generator algorithm can also 
produce one byte (or one word) at a time

 RC4 is an example for such an algorithm, it returns one 
pseudorandom byte at a time 

 It was designed by Ron Rivest of RSA Security in 1987

 RC4 was initially a trade secret, but in 1994 a 
description of it was anonymously posted on the Internet

 RC4 consists of a 

 key-scheduling algorithm (KSA) and a

 pseudo-random generation algorithm (PRGA)



RC4: The Key-Scheduling Algorithm 

(KSA) 

 The KSA requires a key (stored in key[]) of length 
keylength
 keylength is somewhere between 1 and 256

 Using the keyword, a 256-byte long permutation 
vector  S[] is generated:
for i from 0 to 255

  S[i] := i;
j := 0;
for i from 0 to 255
 j := (j + S[i] + key[i mod keylength])
         mod 256;
 swap(S[i],S[j]);



RC4: The Pseudo-Random Generation 

Algorithm (PRGA)

 PRGA returns one byte at a time:

i := 0;
j := 0;
while GeneratingOutput:
 i := (i + 1) mod 256;
 j := (j + S[i]) mod 256;
 swap(S[i],S[j]);
 output S[(S[i] + S[j]) mod 256];



Security of RC4

 Obviously not an LFSR-based design, but a more 
general pseudo-random number generator design

 Can also be efficiently implemented in software

 Very compact algorithm

 However, it is not deemed safe
anymore!



Background: Pseudorandom Number 

Generators
24

 Cryptographically strong pseudorandom number generation 

is essential!

 Pseudorandom number generators (PRNG) are used in a 

variety of cryptographic and security applications, including 

 Stream cipher encryption → 802.11 WEP

 Encryption keys (both for symmetric and public key algorithms)



Obvious Requirements for Random 

Number Generators
25

 Assume we toss a fair coin or throw a fair dice multiple 

times. We expect the following from the resulting sequence:

 Randomness, i.e. uniform distribution 

 The distribution of values in the sequence (e.g. “head or tail”) 

should be uniform; that is, the frequency of occurrence of 

possible outputs should be approximately equal

 Unpredictability, i.e. independence 

 Successive members of the sequence are unpredictable; no 

subsequence in the sequence can be inferred from the others



Types of Random Generators
26

 A TRNG takes as input a source that

is effectively random

 The source is often referred to as an 

entropy source

 The entropy source is drawn from the 

physical environment of the computer, 

e.g. a combination of keystroke timing 

patterns, CPU temperature changes

and mouse movements

 A PRNG uses just a seed (e.g. LFSR)

 A PRF often also takes in a context-specific value, e.g.

 A secure end-to-end communication via TCP/IP may take in the endpoints’ IP addresses 

 However, PRNG and PRF are based on deterministic algorithms, therefore the “P” 



Formal Requirements for 

Pseudorandom Generators
27

 Randomness 
The generated bit stream must “appear” random even though it is 
deterministic
This can be validated by applying a sequence of tests to the generator, 
which determine (among others) the following characteristics:

 Uniformity: At any point in the generation of a sequence of random or 
pseudorandom bits, the occurrence of a zero or one is equally likely; 
The expected number of zeros (or ones) is n/2, with n being the 
sequence length

 Scalability: Any test applicable to a sequence can also be applied to 
sub-sequences extracted at random; if a sequence is random, then any 
such extracted subsequence should also be random

 Consistency: The behavior of a generator must be consistent across 
many starting values (seeds); it is inadequate to test a PRNG based on 
the output from a single seed



Formal Requirements for 

Pseudorandom Generators
28

 Unpredictability

A stream of pseudorandom numbers should exhibit two forms of 

unpredictability

 Forward unpredictability: If the seed is unknown, the next output bit in the 

sequence should be unpredictable in spite of any knowledge of previous 

bits in the sequence

 Backward unpredictability: It should not be feasible to determine the seed 

from knowledge of any generated values; no correlation between a seed 

and any value generated from that seed should be evident; each element 

of the sequence should appear to be the outcome of an independent 

random event whose probability is 0.5



NIST SP 800-22
29

 The National Institute of Standards and Technology 

(NIST) published the above report, “A Statistical Test 

Suite for Random and Pseudorandom Number Generators 

for Cryptographic Applications”

 It lists 15 separate tests of randomness and 

unpredictability

 https://github.com/terrillmoore/NIST-Statistical-Test-

Suite 

https://github.com/terrillmoore/NIST-Statistical-Test-Suite
https://github.com/terrillmoore/NIST-Statistical-Test-Suite

	Slide 1:  CT437  Computer Security and Forensic Computing  Stream Ciphers
	Slide 2: Lecture Overview
	Slide 3: Recap: Block Ciphers versus Stream Ciphers
	Slide 4: Stream Ciphers
	Slide 5: Stream Cipher Performance
	Slide 6: One-Time Pad
	Slide 8: Example Coincidence Counting
	Slide 9: Example Coincidence Counting
	Slide 10: Linear Feedback Shift Registers (LFSR)
	Slide 11: Example for an 8-Bit LFSR
	Slide 12: Example VoIP Encoding using a Stream Cipher
	Slide 13: Stream Ciphers in Practice
	Slide 14: Example for a 16-bit LFSR written in C
	Slide 15: What is the Maximum Sequence Length of a single LFSR? 
	Slide 16: The Combined LFSR
	Slide 17: Example A5/1
	Slide 18: Non-Linear Feedback Shift Registers (NLFSR)
	Slide 19: Example for a 16-bit NLFSR in C
	Slide 20: Pseudo-Random Number generation: RC4
	Slide 21: RC4: The Key-Scheduling Algorithm (KSA) 
	Slide 22: RC4: The Pseudo-Random Generation Algorithm (PRGA)
	Slide 23: Security of RC4
	Slide 24: Background: Pseudorandom Number Generators
	Slide 25: Obvious Requirements for Random Number Generators
	Slide 26: Types of Random Generators
	Slide 27: Formal Requirements for Pseudorandom Generators
	Slide 28: Formal Requirements for Pseudorandom Generators
	Slide 29: NIST SP 800-22

