N

CT437
COMPUTER SECURITY AND FORENSIC COMPUTING

STREAM CIPHERS

Dr. Michael Schukat

Lecture Overview
N

0 This slide decks covers the following topics:

o Stream Ciphers and their implementation in
m LFSR
®m NLFSR
m RC4

O Pseudorandom number generation principles

Recap: Block Ciphers versus

Stream Cighers
]

O In a block cipher the data (e.g. text, video, or a network
chke’r) to be encrzp’red is broken into blocks M1, M2, etc. of K
its length, each of which is then encrypted

O The encryption process is like a substitution on very big
characters — 64 bits or more

M1 M2 M3 Mn

S
PeaT

Cn

L]

.

.
™

encoding

decoding

0 In contrast, a stream cipher is a symmetric key cipher where
plaintext digits are combined with o pseudordnd%m cipher
digit stream (the keystream)

0 Normally,

O stream ciphers only process one bit or one byte at a time
O the combining operation is an exclusive-or (XOR)

Stream Ciphers

0 Stream ciphers typically provide a (pseudo) random stream key generator
that produces a pseudo-random digit sequence s; (i=1, 2, ...)

0 This stream is XORed dlgl’r by- d|8|’r with the plcun’rex’r X:

0 The plaintext stream can be recovered by reapplying the XOR operation
0 In modern stream ciphers, a digit is one bit (or one byte 2 later)

0 A random stream key completely destroys any statistically properties in
the plaintext message

O For a perfectly random keystream s., each y. has a 50% chance of being O or 1
0 But how can a pseudo-random sequence s; be generated?

' X; Si Yi

3 WA Vi insecure channel i >.\', 0 1 1
<L/ (e.g., Internet) 1 0 1

1 1 0

Stream Cipher Performance
B

0 Since an XOR operation of a single bit or byte can be done in
a single CPU cycle,

O the code size and complexity of a stream cipher mainly depends
on the code size and complexity of the random number generator

O the speed of a stream cipher mainly depends on the speed of the
random number generator

0 For comparison (based on some Intel Pentium architecture):

Cipher Key length Mbit/s

DES o6 36.95

3DES 112 13.32

AES 128 51.19

RC4 (stream cipher) (choosable) 211.34

0 Size and speed make stream ciphers very suitable for
resource constrained devices (e.g., mobile phones, loT devices)

One-Time Pad

0 The OTP is an encryption requires the use of a single-use pre-shared
key that is equal to the size of the message being encrypted

0 For the resulting ciphertext to be impossible to decrypt, the key
must...

O be at least as long as the plaintext (think of Vigenére and its weakness)
O be

® random (uniformly distributed in the set of all possible keys and independent of
the plaintext)

m entirely samgled from a non-algorithmic, chaotic source such as a hardware
random number generator

® pattern-less

O never be reused in whole or in part (Coincidence counting -> next slide)
O be kept completely secret by the communicating parties

0 OTPs are not practical for practical reasons, therefore pseudo-
random generators (PRG) are used

0 PRGs are often based on Linear Feedback Shift Registers (LFSRs)

Example Coincidence Counting
B

0 Coincidence counting allows predicting the length of the key of a stream cipher, by
comparing the ciphertext against itself with different offsets

0 Assume ciphertext CXEKCWCOZKUCAYZEKW that has been encoded using a
stream cipher with an unknown key

0 Count the number of identical characters (matches) using different displacements of
ciphertext:

O Displacement = 1

CXEKCWCOZKUCAYZEKW
CXEKCWCOZKUCAYZEKW

Matches: O
o Displacement = 2

CXEKCWCOZKUCAYZEKW
CXEKCWCOZKUCAYZEKW

Matches: 1
o Displacement = 3

CXEKCWCOZKUCAYZEKW
CXEKCWCOZKUCAYZEKW

Matches: O

Example Coincidence Counting

0 If you line up the ciphertext with itself displaced by k (= key length) characters,
then you get a match in the ciphertext (offset by k places) if there is a match in the
plaintext (offset by k places)

O With the non-uniformity of the frequency distribution of English letters there's about a
6% chance that those two positions have the same letter (the index of coincidence)

0 In contrast, when you line up the ciphertext using a different displacement, the
index of coincidence is much smaller, i.e., 1/256, if ciphertexts are bytes

0 By counting the displacement over a long ciphertext stream, k can be determined

Displacement
O —-— N W AN U o N ®© ©

o
N
N

6 8 10 12
HMatches

Linear Feedback Shift Reqgisters

(LFSR)
N s

0 A LFSR consists of a binary shift register of some length along with a
linear feedback function (LFF) that operates on some of those bits

O The most commonly used LFF is the XOR operation
0 To get started the register is preset with a secret initialisation vector
0 Each time a bit is needed,

O a new bit is formed from the linear feedback function

o all bits are shifted by one position (shifted right in the example below) with the
new bit being shifted in

0 The bit shifted out is used as the (pseudo-random) output of the LFSR

0 A well-designed n-bit LFSR generates a pseudo-random sequence whose
length correlates to n

—P»| b32|b31 b7 | b6 | b5 | b4 | b3 | b2 | b1 —P»
Output
Bit

Example for an 8-Bit LFSR

O O O O o o o o O

Initialisation vector: 10100110 (B7 BO)
Feedback Function: B, XOR B, XOR B,
Right shift after each cycle (B, shifted out)

lteration O: 10100110

lteration 1: 01010011 >> O
lteration 2: 00101001 »>> 1
lteration 3: 00010100 >> 1
lteration 4: 10001010 >> 0O

Example VolP Encoding using a Stream
Cipher

e = e = = — = — — — o — e — e —
Sender Metwork Receiver

Sound Card

NIC

Bitwise Bitwise
encoding decoding

Stream Ciphers in Practice
I

0 In practice, one key is used to encrypt many messages
O Example: Wireless communication
O Solution: Use Initial vectors (1V)
0 E. [M] = [IV, M @ PRNG(key || IV)]
m |V is sent in clear to receiver
m |V needs integrity protection, but not confidentiality protection

® |V ensures that key streams do not repeat, but does not increase cost
of brute-force attacks

® Without key, knowing IV still cannot decrypt

O Need to ensure that IV never repeats! How?

Example for a 16-bit LFSR written in C
N

#include <stdint.h>
#include <stdio.h>
int main(void) {
vint16_t start_state = OxACE1u; /* Any non-zero start state will work. */
vint16_t Ifsr = start_state;
uint16_t bit, input, period = 0;
printf(“Enter LFSR IV as integer: ”); scanf(“%d”, &input);
if (input > 0) {
start_state = input;
Ifsr = start_state;
}
do
{ /*LFF:B15 XOR B13 XOR B12 XOR B10 */
bit = ((Ifsr >> 0) A (Ifsr >> 2) A (Ifsr >> 3) A (Ifsr >> 5)) & 1y;
Ifsr = (Ifsr >> 1) | (bit << 15);
printf(“%d”, bit);
++period;
} while (Ifsr 1= start_state);
printf(“\nPeriod of output sequence: %d \n”, period);

return O;

What is the Maximum Sequence Length

of a single LFSR?
n_

0 Consider a single n-bit LFSR with some feedback function
Each bit that is shifted out is intrinsically linked to the content of the LFSR

Each shift operation maps the register content to another (different) pattern,
as seen in the example, resulting in another bit shifted out

0 An n-bit LFSR allows for 2" different register content variations, with each
variation pushing out a O or a 1

0 Therefore, the longest cycle of non-repeating patterns is
2" — 1 iterations, with 2" the maximum length of the sequence
O Think of a 1-bit LFSR (n = 1):
m There are 2 different LFSR contents (“0” or “1”) possible
® The longest possible patterns are “10” or “0O1”; both have a length of 2"
m It just takes one iteration (2™') to reach all possible register contents (1 2 0 or 0 2 1)
0 However,
O poorly designed LFSR may result in cycles that are shorter

O the Index of Coincidence problem also applies to LFSR (and in fact to all stream
ciphers)

The Combined LFSR

0 A combined LFSR uses multiple LFSR in parallel, and combines
their respective outputs to generate a key stream

0 They work well on resource-constrained devices too

0 Example: A5/1, which was used for GSM voice communication:

0 The Global System for Mobile Communications (GSM) was a mobile
phone standard back in the 1990s

o In GSM, digitised phone conversations are sent as sequences of
frames

0 One frame is sent every 4.6 milliseconds and is 228 bits in length
® Voice samples are collected / digitised over 4.6 milliseconds and send in a block

o A5/1 is a combined LFSR-based algorithm that is used to produce
228 bits of key stream which is XORed with the frame

O It is initialised using a 64-bit key

Example A5/1

S =
0 3 independent LFSRs:

o LFSR 1
= 19 bits gief | i3 8 0
m LFF: B18 XORB17 XOR B16 XOR B13 |— i‘ (—‘
o LFSR 2: =D
m 22 bits 4
= LFF: B21 XOR B20 i 1g ol
o LFSR 3: Li
m 23 bits vy
m LFF: B22 XOR B21 XOR B20 XOR B7 i =TT .
0 The output bit is the XORed [
output of all 3 LFSRs B3 B3
L RN L

0 A LFSR is only shifted to the left,
if their clocking bit (B8, B10, and
B10 respectively) matches the
output bit;
otherwise, there is no shift, and
the same output bit value is used
again in the next cycle

Non-Linear Feedback Shift Registers

‘NLFSR:
e

0 NLFSR contain AND gates as well as XOR gates in
their feedback function

0 Example Trivium: A, B and C are three shift registers
with bit lengths of 93, 84 and 111 bits respectively

| S

_.éa 1 A 73 5 |9:| E] (] SR
: —
é_‘ | B i 75| |s: 5354 - {
& THR—-
| C £ &7 sl 111 1

(1=

Example for a 16-bit NLFSR in C
L, [e

#include <stdint.h>
#include <stdio.h>
int main(void)
{
vint16_t start_state = OxACE1u; /* Any non-zero start state will work. */
uint16_t Ifsr = start_state;
uint16é_t bit, period = 0;
do
{ /*FBF:B15 XORB13 XORB12 XORB10 XOR (B2 and B1)*/
bit = ((ifsr >> 0) A (Ifsr >> 2) A (Ifsr >> 3) A (Ifsr >> 5) A ((Ifsr >> 13) & (Ifsr >> 14))) & 1y;
Ifsr = (Ifsr >> 1) | (bit << 15);
printf(“%d”, bit)
++period;
} while (Ifsr 1= start_state);
printf(“\nPeriod of output sequence: %d \n”, period);

return O;

Pseudo-Random Number

generation: RC4
]

0 Instead of single bits, a generator algorithm can also
produce one byte (or one word) at a time

0 RC4 is an example for such an algorithm, it returns one
pseudorandom byte at a time

0 It was designed by Ron Rivest of RSA Security in 1987

0 RC4 was initially a trade secret, but in 1994 o
description of it was anonymously posted on the Internet

0 RC4 consists of a
0 key-scheduling algorithm (KSA) and o
O pseudo-random generation algorithm (PRGA)

RC4: The Key-Scheduling Algorithm

(KSA)
S s

0 The KSA requires a key (stored in key|]) of length
keylength

o keylength is somewhere between 1 and 256

0 Using the keyword, a 256-byte long permutation
vector S|] is generated:

for 1 from 0 to 255
~ Sli] = 1;
J = 0;
for 1 from 0 to 255
j := (j +S[i] + keyli mod keylength])
mod 256 ;
swap (S[1], S[3]);

RC4: The Pseudo-Random Generation
Algorithm (PRGA)

]
0 PRGA returns one byte at a time:
1 := 0;
J = 0;

while GeneratingOutput:
i := (1 + 1) mod 256;
j := (j +S[i]) mod 256;
swap (S[1i], S[jl);
output S[(S[i] + S[j]) mod 256]:

Security of RC4

0 Obviously not an LFSR-based design, but a more
general pseudo-random number generator design

0 Can also be efficiently implemented in software

O Very compact algorithm

0 However, it is not deemed safe
Gnymore! 3 Security

3.1 Roos's biases and key reconstruction from permutation
3.2 Biased outputs of the RC4

3.3 Fluhrer, Mantin and Shamir attack

3.4 Klein's attack

3.5 Combinatorial problem

3.6 Royal Holloway attack

3.7 Bar-mitzvah attack

3.8 NOMORE attack

Background: Pseudorandom Number

SURE.

Generators
24|
O Cl‘ypfogl‘dphiCCI”y s’rrong pseudorqndom number generaﬁon
i iall [TOUR OF ACCOUNTING ;
is essential! % NINE NINE f‘,gf) THAT'S THE
OVER HERE B NINE NINE | PROBLEM
WE HAVE OUR % NINE NINE ;| ThaTS WITH RAN-
RANDOM NUMBER :| RANDOM? DOMNESS
GENERATOR. : YOU CAN
§ NEVER BE
3

I &
10}as/s(® 2001 United F
—
Lo

0 Pseudorandom number generators (PRNG) are used in a
variety of cryptographic and security applications, including

O Stream cipher encryption =2 802.11 WEP
O Encryption keys (both for symmetric and public key algorithms)

Obvious Requirements for Random

Number Generators
T

0 Assume we toss a fair coin or throw a fair dice multiple
times. We expect the following from the resulting sequence:
0 Randomness, i.e. uniform distribution

O The distribution of values in the sequence (e.g. “head or tail”)
should be uniform; that is, the frequency of occurrence of
possible outputs should be approximately equal

0 Unpredictability, i.e. independence

O Successive members of the sequence are unpredictable; no
subsequence in the sequence can be inferred from the others

Types of Random Generators
N

0 A TRNG takes as input a source that
is effectively random

O The source is often referred to as an
entropy source

O The entropy source is drawn from the
physical environment of the computer,
e.g. a combination of keystroke timing
patterns, CPU temperature changes
and mouse movements

0 A PRNG uses just a seed (e.g. LFSR)

Source of
Lruoe
rando s Seed
Conversion Deterministic
to binary algorithm
Random Pseudorandom
bhit stream hit stream
(a) TRNG () PRNG

TRNG = true random number generator
PRNG = pseudorandom number generator
PRF = pseudorandom function

Context-
specific
Seed values

—) |

Deterministic
algorithm

—

value

() PRF

0 A PRF often also takes in a context-specific value, e.g.

O A secure end-to-end communication via TCP/IP may take in the endpoints’ IP addresses

0 However, PRNG and PRF are based on deterministic algorithms, therefore the “P”

Formal Requirements for

Pseudorandom Generators
=
0 Randomness
The generated bit stream must “appear” random even though it is
deterministic
This can be validated by applying a sequence of tests to the generator,
which determine (among others) the following characteristics:

O Uniformity: At any point in the generation of a sequence of random or
pseudorandom bits, the occurrence of a zero or one is equally likely;
The expected number of zeros (or ones) is n/2, with n being the
sequence length

O Scalability: Any test applicable to a sequence can also be applied to
sub-sequences extracted at random; if a sequence is random, then any
such extracted subsequence should also be random

O Consistency: The behavior of a generator must be consistent across
many starting values (seeds); it is inadequate to test a PRNG based on
the output from a single seed

Formal Requirements for

Pseudorandom Generators
N

0 Unpredictability
A stream of pseudorandom numbers should exhibit two forms of
unpredictability

O Forward unpredictability: If the seed is unknown, the next output bit in the
sequence should be unpredictable in spite of any knowledge of previous
bits in the sequence

O Backward unpredictability: It should not be feasible to determine the seed
from knowledge of any generated values; no correlation between a seed
and any value generated from that seed should be evident; each element
of the sequence should appear to be the outcome of an independent
random event whose probability is 0.5

NIST SP 800-22

0 The National Institute of Standards and Technology
(NIST) published the above report, “A Statistical Test
Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications”

O It lists 15 separate tests of randomness and
unpredictability

0 https://qgithub.com /terrillmoore /NIST-Statistical-Test-
Suite

A Statistical Test Suite for
Random and Pseudorandom
Number Generators for

Cryptographic Applications

https://github.com/terrillmoore/NIST-Statistical-Test-Suite
https://github.com/terrillmoore/NIST-Statistical-Test-Suite

	Slide 1: CT437 Computer Security and Forensic Computing Stream Ciphers
	Slide 2: Lecture Overview
	Slide 3: Recap: Block Ciphers versus Stream Ciphers
	Slide 4: Stream Ciphers
	Slide 5: Stream Cipher Performance
	Slide 6: One-Time Pad
	Slide 8: Example Coincidence Counting
	Slide 9: Example Coincidence Counting
	Slide 10: Linear Feedback Shift Registers (LFSR)
	Slide 11: Example for an 8-Bit LFSR
	Slide 12: Example VoIP Encoding using a Stream Cipher
	Slide 13: Stream Ciphers in Practice
	Slide 14: Example for a 16-bit LFSR written in C
	Slide 15: What is the Maximum Sequence Length of a single LFSR?
	Slide 16: The Combined LFSR
	Slide 17: Example A5/1
	Slide 18: Non-Linear Feedback Shift Registers (NLFSR)
	Slide 19: Example for a 16-bit NLFSR in C
	Slide 20: Pseudo-Random Number generation: RC4
	Slide 21: RC4: The Key-Scheduling Algorithm (KSA)
	Slide 22: RC4: The Pseudo-Random Generation Algorithm (PRGA)
	Slide 23: Security of RC4
	Slide 24: Background: Pseudorandom Number Generators
	Slide 25: Obvious Requirements for Random Number Generators
	Slide 26: Types of Random Generators
	Slide 27: Formal Requirements for Pseudorandom Generators
	Slide 28: Formal Requirements for Pseudorandom Generators
	Slide 29: NIST SP 800-22

