
CT420 REAL-TIME SYSTEMS

DESIGN CONSIDERATIONS REAL-TIME SAFETY-CRITICAL

SYSTEMS

Dr. Michael Schukat

Motivation for and Objectives of this

Lecture

 So far, we have addressed the real-time aspects of

RTSCS

◼ How must software systems be designed to meet RT

requirements?

◼ What APIs are available (i.e., POSIX)?

 In this lecture we focus on features that increase system

safety by increasing its reliability

Recall Case Study: The Boeing 737

Max 8 MCAS Problem

 On 29 October 2018, a just 2-months old Boeing 737 MAX 8 plane
crashed into the Java Sea 12 minutes after takeoff, killing all 189
passengers and crew

 The plane’s flight recorder showed the following vertical speed pattern
before the crash:

 Then on March 10, 2019, a 4-months old 737 MAX 8 crashed shortly after
take-off from Addis Ababa, killing all 149 passengers and 8 crew members
on board

 Evidence retrieved later suggested that again the aircraft's vertical speed after
take-off was unstable

 Shortly later, the entire fleet was grounded

The Boeing 737 Max 8

 The latest and most fuel-efficient version of the Boeing

737

 The 737 series is the highest-selling commercial jetliner in

history with more than 10,000 units built since 1967

 The Max 8 has longer engines than previous models, which sit

slightly forward and higher, therefore changing its centre of

gravity, making it more likely to pitch upward on take-off

Boeing’s Manoeuvring Characteristics

Augmentation System (MCAS)

 Source: https://theaircurrent.com/aviation-safety/what-is-the-
boeing-737-max-maneuvering-characteristics-augmentation-
system-mcas-jt610/

https://theaircurrent.com/aviation-safety/what-is-the-boeing-737-max-maneuvering-characteristics-augmentation-system-mcas-jt610/
https://theaircurrent.com/aviation-safety/what-is-the-boeing-737-max-maneuvering-characteristics-augmentation-system-mcas-jt610/
https://theaircurrent.com/aviation-safety/what-is-the-boeing-737-max-maneuvering-characteristics-augmentation-system-mcas-jt610/

Boeing’s Manoeuvring Characteristics

Augmentation System (MCAS)

 Source: https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-
missed-safety-issues-in-the-737-max-system-implicated-in-the-lion-air-crash/

https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-missed-safety-issues-in-the-737-max-system-implicated-in-the-lion-air-crash/
https://www.seattletimes.com/business/boeing-aerospace/failed-certification-faa-missed-safety-issues-in-the-737-max-system-implicated-in-the-lion-air-crash/

The Angle of Attack (AoA) Sensor

 In both crashes the incorrect airflow angles, reported from
only a single (faulty) AoA sensor, were processed

 Using multiple AoA sensors would have allowed to compensate
for this

 Note that the plane had in fact 2 AoA sensors installed

 Compare to Airbag design we discussed before

Other Issues that led to the Crashes

1. MCAS should not be able to repeatedly overwrite
pilot decisions

2. Pilots should have been trained how to manually
disable the MCAS in-flight
http://www.spiegel.de/wissenschaft/technik/boeing-737-max-
abstuerze-welche-rolle-spielten-die-piloten-a-1258835.html
(German article)

3. The Lion Air machine did not have dashboard instruments to show
both AoA readings, or to alert the pilots about a discrepancy
These were optional extras Lion Air did not want to pay for
http://www.spiegel.de/wissenschaft/technik/boeing-737-max-
fehlten-sicherheitsfunktionen-weil-sie-extra-kosten-a-
1259117.html (German article)

http://www.spiegel.de/wissenschaft/technik/boeing-737-max-abstuerze-welche-rolle-spielten-die-piloten-a-1258835.html
http://www.spiegel.de/wissenschaft/technik/boeing-737-max-abstuerze-welche-rolle-spielten-die-piloten-a-1258835.html
http://www.spiegel.de/wissenschaft/technik/boeing-737-max-fehlten-sicherheitsfunktionen-weil-sie-extra-kosten-a-1259117.html
http://www.spiegel.de/wissenschaft/technik/boeing-737-max-fehlten-sicherheitsfunktionen-weil-sie-extra-kosten-a-1259117.html
http://www.spiegel.de/wissenschaft/technik/boeing-737-max-fehlten-sicherheitsfunktionen-weil-sie-extra-kosten-a-1259117.html

Recap: Quality Requirements for RTSCS

 RTSCS must be time responsive

 RTSCS must be reliable

 The ability to behave in accordance with its specification

 RTSCS must be safe

 Conditions that lead to hazards do not occur

 RTSCS must be secure

 Protect itself against intentional or accidental access, use, modification or
destruction

 RTSCS must be usable

 Easy to learn, understand, and use

 RTSCS must be maintainable

 Return swiftly to an operational state after receiving repairs or
modification (e.g. plug in-and-forget)

Accident, Risk and Hazard
10

 Accident is a loss of some kind, such as injury, death, or
equipment damage

 Risk is a combination of the likelihood of an accident
p(a) and its severity s(a):

 Often numerical models are used with p(a) being based on
a probability distribution (i.e. 0 <= p(a) <= 1), and s
being or normed value (i.e. 0 <= s(a) <= 1): risk = p(a) *
s(a)

 Hazard is a set of conditions and/or events that leads
to an accident

Faults and Hazards

 Faults lead to hazards, which lead to accidents

 Faults are the manifestation of a:

 Failure

◼ Random non-performance of a component (e.g. wear and tear)

 Error

◼ Systematic; i.e. design fault or software fault (bug)

 Faults can be permanent, intermittent, or transient

Determining Failure Probability

 Assume a driver airbag system with N (= 5) independent

components, each with a fault probability of 5% over 10 years

of operation (i.e. 95% probability that component will function

ok after 10 years)

 Overall system failure probability after 10 years (assuming

statistical independence):

 1 – (Probability that ALL components ok)

 1- (1 - 0.05)5 = 1 – 0.773 = 0.227 = ~22.7%

 Components may include

 Sensors, actuators, controllers

 Their components, e.g. CPU, RAM, storage

Impact

Sensor
…

Airbag

Controller
…

Airbag

Module

The Bathtub Curve

 The bathtub curve is a
particular shape of a
failure rate graph

 Failure rate is the

frequency with which an

engineered system or
component fails over

time

 Component failures can
be pre-empted via

 Component redundancy

 Scheduled component
replacement

Fault Tree Analysis (FTA)
14

 FTA is a top-down (from hazard / event to basic fault

type), deductive failure analysis in which an undesired

state of a system is analysed using Boolean logic to

combine a series of lower-level events

 This analysis method is mainly used in safety

engineering and reliability engineering to understand

how systems can fail, to identify the best ways to

reduce risk and to determine (or get a feeling for)

event rates of a safety accident or a particular system

level (functional) failure

Fault Tree Analysis Symbology
15

Example Pacemaker
16

Example Pacemaker (Subset) Fault

Analysis
17

Making RTSCS safe: Fail-Safe

 Fail-safe describes a device or feature which, in the

event of failure, responds in a way that will cause no

harm or at least a minimum of harm to other devices or

danger to personnel

 Examples:

 Air brakes on railway trains and air brakes on trucks

 Luggage carts in airports

 Lawnmowers

Making RTSCS safe: Fail-Soft

 Pertaining to or noting facilities built into a system, as in

an automobile or a computer, for continuing operations

on an interim basis and probably with reduced

efficiency, if parts of the system fail

 Example: Fail-Soft of ECU via “Limp Mode”

Making RTSCS safe: Graceful

Degradation

 As size of faulty set increases, system must not

suddenly collapse, but must gracefully degrade

 Failures will eventually impact on (RTS) operation

 System perhaps operates with reduced functionality

 Avoid catastrophic failure

Example of graceful Degradation: The

Citroen CX

 Common hydraulic

system for steering,

brakes and suspension

 What goes first, second

and last when hydraulic

pressure drops?

M

Fault Types

 Permanent

 Easiest to detect

 Hardware failure or software design/code fault

 Intermittent

 Fault appears from time to time

 Loose wire, poor contacts, certain sequence of events

 Transient

 Fault appears but dies away with time

 α particle impact: non-destructive to memory

Transient Soft Errors due to Neutron

Strikes or α Particle Impacts

 The capacitor of a DRAM cells stores a single bit (0 = no charge, 1 = charged), while high DRAM integration
density result in very small capacitors

 An α particle penetrating a DRAM cell may have sufficient kinetic energy to distort the capacitor charge and
changes its state (chip-level soft error)

 α particles can be emitted from radioactively contaminated packaging

 As a result, high-end servers use DRAM with error detection/correction capabilities (→ information
redundancy)

D S
G

Information Redundancy
24

 Data Validity Checks of data at rest (i.e., in RAM, or in
secondary storage) can be achieved via:

 Cyclic Redundancy Check (CRC)
◼ Here blocks of data get a 16-bit or 32-bit check value attached, based

on the remainder of a polynomial division of their contents

◼ This identifies
◼ all single or dual bit errors

◼ a high percentage of multiple bit errors

◼ Widely used in data communication (e.g, TCP/IP)

 One’s complement

 Error correcting codes

 RAID

 Redundancy should be set every write access

 Data should be checked every read access

One’s Complement Data Validity Check
25

Example:

value: 00110100

onesComp: 11001011

Error Correcting Codes (ECC)
26

 ECC is redundant information added to the data /

message

 This allows detecting and correcting a limited

number of errors that may occur anywhere in the

message

 The American mathematician Richard Hamming

pioneered this field in the 1940s and invented the

first error-correcting code in 1950: the Hamming

(7,4) code

Hamming Distance

 Minimum number of bits to be toggled to convert one codeword into
another

 HD (ASCII) = 1

 HD (ASCII + Parity Bit) = 2

◼ even parity: Total number of “1”s is even number; odd parity: ditto

 A code with a given HD x may be able to

 detect (x – 1) bit errors

 correct (1 <= y < x / 2) bit errors

 Examples:

 ASCII

◼ “@”=6410 = 01000000

◼ “A”=6510 = 01000001

◼ Hamming Distance 1

 ASCII + even parity

◼ “@”=6410 = 01000000 1

◼ “A”=6510 = 01000001 0

◼ Hamming Distance 2

Hamming (7,4) Code

 Hamming (7,4) is an error-correcting code that

encodes four bits of data into seven bits by adding

three (even or odd) parity bits

Example: Hamming (7, 4) Code with

even Parity

d1 d2 d3 d4 p1 p2 p3

1 1 0 1 1 0 0

d1 d2 d3 d4 p1 p2 p3

0 1 0 1 1 0 0

d1 d2 d3 d4 p1 p2 p3

1 1 0 1 1 0 1

d1 d2 d3 d4 p1 p2 p3

0 1 0 0 1 0 0

Start

Correction of single

data bit error

Correction of single

parity bit error

Detection of double

data bit error

Hamming(7,4) has a HD of 3!

Problem

 Consider a Hamming (7, 4) code with even parity

 Does the Bitvector “1101: 010” (d1 - d4 : p1 - p3)

indicate a bit-error? If yes, which bit got flipped?

 Draw a Venn Diagram to figure it out…

Hamming(7, 4) Problem Solution

p1 = 0

p2 = 1

p3 = 0

d1 = 1

d2 = 1

d3 = 0

d4 = 1

Mass-Storage Redundancy via RAID

 Redundant Array of Independent Disks (RAID) is a data storage

virtualisation technology that combines multiple physical

disk drive components into one or more logical units for the

purposes of data redundancy and / or performance

improvement

 Data blocks are distributed across the drives in one of several ways, referred to

as RAID levels, depending on the required level of redundancy and performance

 Many RAID levels use a parity-based error protection scheme (see RAID-4),

example (with 12 bit / block):

 Block 1: 010001101001

 Block 2: 110011011010

 Block 3: 000100100101

 P Block: 100111010110 (bitwise EXOR, equivalent to even parity)

Mass-Storage Redundancy via RAID

 RAID storage systems require a dedicated RAID

controller, that supports the required RAID level

 See also the diagram on the next slide

 Normally such controllers are not shown in RAID diagrams

RAID 0

 Block-level striping without parity or mirroring

 data striping is the technique of segmenting logically

sequential data, such as a file, so that consecutive

segments are stored on different physical storage

devices

 2 or more drives (n) required

 No redundancy, but up to n-times R/W

performance increase

M

RAID 1

 Block-level mirroring without parity or striping

 2 or more drives (n) required

 (n − 1) drive failures can be compensated; here

each disk can

 diagnose catastrophic failures (e.g. head crash)

 detect (but not correct) sector-wise bit errors on platters

 No increase in R/W performance

RAID 4

 Block-level striping with single parity disk

 Single catastrophic drive failure can be

compensated (any drive can fail)

 RAID 4 provides good performance of random

reads, while the performance of random writes

is low due to the need to write all parity data to a single disk (Disk

3 in the diagram above)

 Minimum of 3 drives required

Drive Hot-Swapping in RAID

 In RAID a defect drive will be (ASAP)

 manually swapped for a new drive (hot-swap), or

 replaced by an idle drive (hot-spare) already in the system

 The new drive’s content is rebuild by the RAID controller while the
disk set is still operational

 Example RAID 4 with Disk 0 swapped:

 A1 = A2 EXOR A3 EXOR AP

 B1 = B2 EXOR B3 EXOR BP

 C1 = C2 EXOR C3 EXOR CP

 D1 = D2 EXOR D3 EXOR DP

RAID 5

 Similar to RAID 4, but:

 Block-level striping with distributed parity

 Distributed parity evens out the stress of a

dedicated parity disk among all RAID

members

 Write performance is increased since all

RAID members participate in the serving of

write requests

 Minimum of 3 drives required

Increasing Hardware Reliability
39

 Information redundancy protects against memory-
related faults

 However, it assumes that the underlying computer system
works satisfactorily

 Therefore, we need to determine ways for a system’s

 Fault detection

◼→ Watchdog

 Fault recovery

◼→ Failover

◼→ Redundancy

Watchdog
40

 Idea: Restart can be a
fail-safe state!

 Here the computer / CPU is
reset by the watchdog, unless
it is regularly (typically every
1ms to every 10s) triggered by the
CPU, for example using a PIO

 Requires validation that the
system is in safe state during
reset

 Watchdog can be internal or
external (as shown) component

Example for internal Watchdog

(Arduino Uno)
41

#define wdt_reset(); //resets WDT

#define wdt_disable(); //disables WDT

#define wdt_enable(timeout); //sets the
watchdog pre-scaler, using one of the
constants below:

#define WDTO_15MS 0

#define WDTO_30MS 1

#define WDTO_60MS 2

#define WDTO_120MS 3

#define WDTO_250MS 4

#define WDTO_500MS 5

#define WDTO_1S 6

#define WDTO_2S 7

#define WDTO_4S 8

#define WDTO_8S 9

Example for internal Watchdog

(Arduino Uno)
42

#include <avr/wdt.h>

void setup(){

Serial.begin(9600);

Serial.println("Setup started :");

delay(2000);

wdt_enable(WDTO_4S);

}

void loop(){

Serial.println("LOOP started ! ");

for(int i=0; i<=5; i++){

Serial.print("Loop : ");

Serial.print(i);

Serial.println();

delay(1000); }

wdt_reset();

//infinity loop to hang MCU

while(1){}

}

Watchdog Coding Challenge
43

 Consider the Arduino controls a chemical reactor in a
factory, where it is continuously operating. A watchdog
monitors the Arduino

 The control code is executed in loop(){}

 Every 3 months the reactor is turned off and serviced

 Here technicians need to establish, how many watchdog
resets occurred since the last service

 A watchdog reset occurs if the code within a single loop
iteration is not completed in time

 This value is stored in some non-volatile (Flash) memory

 This memory can store 32 integer values, and can be
accessed via

 int flash_read(int address) // address is between 0 and
31

 flash_write(int address, int value) // ditto

 The Flash memory is reset (all 0s) when the system is
deployed first and after each service

 Use as much as needed for your solution

 Hint: Use both the setup() and loop() routine

My Solution
44

loop() {

 flash_write(0, 1); // write a “1” to Flash cell #0

 // Execute loop code

 …

 flash_write(0, 0); // write a “0” to Flash cell #0

 wdt_reset();

}

setup() {

 if (flash_read(0) == 1) {// WDT reset occurred

 flash_write(1, flash_read(1) + 1); // increment counter

 flash_write(0, 0) // Reset flag

 …

Flash Memory Cell #0 Flash Memory Cell #1

1 == WDT reset; 0 == Ok #of WDT resets

Master-Slave Fail Over
45

 A watchdog reset may disable a single controller for too long, therefore a second controller in
stand-by mode may take over instead

 Here the equivalent of a watchdog reset pulse (the Alive signal) send by the active computer A
is monitored by the passive computer B

 If computer A fails to provide this pulse in time, a timeout will occur, causing computer B to take
over, while keeping computer A in a reset state

Computer A

(Active)

Computer B

(Passive)

Alive

Reset

Computer A

(Active)

Computer B

(Passive)

Alive

Reset

Computer A

(Reset)

Computer B

(Active)

Alive

Reset

Redundancy via Synchronously Operating

and Clocked independent Computers

 Example Moneypoint’s Burner

Management System Siemens

AS220

 Complex control system that manages

power plant

 Triple-redundant hardware

 RAM, ROM, CPU

 CPUs run in synchronously

 2-out-of-3 voters are used to

deal with single faulty component

AS220 EHF Mode Of Operation

CPU 1 CPU 2 CPU 3

2-out-of-3 2-out-of-32-out-of-3

2-out-of-3 2-out-of-3 2-out-of-3

2
-o

u
t-

o
f-

3

Inputs Outputs

Extension Units

EAVn

ZV1 ZV2 ZV3

ZV1 ZV2 ZV3

DB-In DB-In DB-In

DB-Out DB-Out DB-Out

C
e
n
tr

al
 U

n
it

I/
O

 L
ev

e
l

RAM

EPROM

1

RAM

EPROM

2

RAM

EPROM

3

Mostly 2 v 3 used

with 3 voters

Increasing Sensor Reliability

 The MCAS example showed that malfunctioning system

sensors can lead to hazards and accidents

 Therefore, multiple redundant sensors must be put in place

 The (MCAS) computer detects the sensor reading

discrepancy

 But…

 What degree of difference indicates a faulty unit?

◼ This has very much to be decided on a case-by-case basis

 How can one identify the faulty unit in the first place?

NMR: N-Modular Redundancy (Single

Voter)

P1

P2

P3

Voter

 Simple Design based

on identical sensors

P1, P2 and P3

 The voter determines

if a sensor is faulty,

i.e. returns incorrect

readings

 Good for dealing with

random faults only

 Only feasible if voter

has a much lower

failure probability

than P1, P2 and P3

Example NMR (Single Voter)

 N identical independent components,
each failure probability of 5%

 2v3 System → 2 units need to fail for
a complete system failure

 Overall system reliability: 1- (0.05)2
= 99.75%

 Compared to 95% system reliability
without redundancy

 This of course assumes that the voter
failure probability is negatable small

 How can such a voter be
implemented?

2 v 3

 Voter

Voter Types

 All voter types try to determine a correct sensor reading

 The top 3 voters may be used to identify faulty units

 Formalised majority voter (FMV)

 All inputs are equal, selects absolute (> 50%) majority

 Generalised median voter (GMV)

 All inputs are equal, selects the median of the values

 Formalised plurality voter (FPV)

 All inputs are equal, partitions the set of inputs based on metric equality and

selects the output from the largest group, i.e. picks most common value

 Weighted averaging (WA)

 Combines the outputs in a weighted average (mean)

Case Study
52

 Consider a rocket engine as shown in the
diagram

 Its high-pressure fuel turbopump has to
operate within a certain fuel pressure
range that is constantly monitored by a
range of pressure sensors (not shown)

 Because of the extreme environment the
sensor readings have a significant error,
so the readings or multiple sensors are
processed using a voter

 The diagram on the next slide shows a
set of readings (in Megapascal)
provided by 5 pressure sensors

 The sensors have a different weight
depending on their perceived reliability

Calculate FMV, GMV, FPV and WA Output

for the Data below
53

Tag Input 1 Input 2 Input 3 Input 4 Input 5

Weight 0.2 0.3 0.1 0.3 0.1

Val 10 11 12 11 8

FMV

GMV

FPV

WA

• Calculate FMV, GMV, FPV and WA output for the data above

• Do not round results, i.e. return decimal values where appropriate

• Note that the weight row adds up to 1.0

Calculate FMV, GMV, FPV and WA output

for the Data below
54

Tag Input 1 Input 2 Input 3 Input 4 Input 5

Weight 0.2 0.3 0.1 0.3 0.1

Val 10 11 12 11 8

FMV n/a

GMV 11

FPV 11

WA 10.6 (rounded 11)

• Calculate FMV, GMV, FPV and WA output for the data above

• Do not round results, i.e. return decimal values where appropriate

• Note that the weight row adds up to 1.0

Increasing Software Reliability
55

 System faults may not only be the result of hardware

issues, but can be a consequence of software problems

 Again, redundancy approaches can help, i.e.

 Static software redundancy

 dynamic software redundancy

 Let’s start with a case study first (Ariane 5)

The Ariane Rocket Family

 Ariane is a series of a

European civilian

(ESA) expendable

launch vehicles for

space launch use

 GTO =

geosynchronous

transfer orbit

https://en.wikipedia.org/wiki/Geostationary_transfer_orbit
https://en.wikipedia.org/wiki/Geostationary_transfer_orbit

The Ariane 5 Accident

 Ariane 5 is a now retired European
heavy-lift space launch vehicle

 The launch vehicle had 82 consecutive
successful launches between 2003 and
2017

 However, its maiden flight on 4 June
1996 resulted in self-destruction after
37 seconds because of a malfunction in
the control software

 See
https://www.youtube.com/watch?v=gp
_D8r-2hwk

V

https://www.youtube.com/watch?v=gp_D8r-2hwk
https://www.youtube.com/watch?v=gp_D8r-2hwk

One Bug – One Crash

 Steering was controlled by the on-board computer, which mistakenly thought

the rocket needed a course change because of numbers coming from the

inertial guidance system (IGS). The IGS uses gyroscopes and accelerometers

to track motion

The numbers looked like bizarre flight data, but were actually a diagnostic

error message. The guidance system had in fact shut down!

 This shutdown occurred 36.7 seconds after launch, when the guidance

system's own computer tried to convert one piece of data - the sideways

velocity of the rocket - from a 64-bit format to a 16-bit format. The number

was too big, and an overflow error resulted. When the guidance system shut

down, it passed control to an identical, redundant unit, which was there to

provide backup in case of just such a failure. But the second unit had failed in

the identical manner a few milliseconds before, as it was running the same

software

Ariane 5 Flight Controller
59

On-board

computer
Thruster

control

IGS 1

Accel

erom

eter

Gyro

IGS 2

Accel

erom

eter

Gyro

The Ariane 5 Accident: Root Cause

Analysis

 The software for the IGS was originally written for the

Ariane 4 rocket and re-used for Ariane 5

 However, Ariane 5 is a more powerful rocket than

Ariane 4, resulting in a sideways velocity that was not

anticipated when the IGS was originally build, causing

a numeric overflow

 As a result, the booster nozzles got incorrectly aligned

by the on-board computer, which led to a rapid

change of attitude, which caused the launcher to

disintegrate due to aerodynamic forces

Software Redundancy

 The most certain and effectual check upon errors

which arise in the process of computation is to cause

the same computations to be made by separate and

independent computers, and this check is rendered still

more decisive if their computations are carried out by

different methods

Static Software Redundancy

 N version programming (N>=2)

 Independent generation of N functionally equivalent programs from same spec

 Assumption: Developed independently→ will fail independently

 N versions run concurrently

 Voter makes decision

 Impacts on performance and synchronisation issues may have to be

considered

 Good match for NMR

 Also

 Use of a common language may lead to common errors

 Different compilers/hardware minimise risk of common failure

N-Version Programming

function /

method

often identical

input vectors:

in1 = in2 = in3

output

vectors

N-Version Programming: Example

Factorial

int fac_v1(int a) {

int res = 1, i;

for (i = 2; i <= a; i++)

 res *= i;

return res;

}

int fac_v2(int a) {

int res = 1, i;

for (i = a; i > 1; i--)

 res *= i;

return res;

}

int fac_v3(int a) {

if (a < 2) return 1;

else return (a * fac_v3(a - 1));

}

Voter

N-Version Programming Issues

 Redundant code runs regardless of whether faults are present

 Additional CPU-resources required

 Redundant code may have different execution times, may cause
synchronisation problems

 Initial spec may provide common failure mode regardless of subsequent
strategies

 This requires the creation of diverse and equivalent specifications so that
programmers can design software which do not share common faults

 Teams of programmers may have similar bad habits and/or biased
programming techniques

 Especially if same language is used (think of pointers in C)

 Overall, very costly process → limited application (e.g. avionics, military)

Dynamic Software Redundancy

 In this approach, redundant components run only under fault conditions

 This assumes that a fault can be detected, e.g. via overflow, out-of-bounds, or

acceptability checks

 After a fault has been detected, backward recovery takes place:

 Go back and restore system to safe state prior to error

 Avoid problem on repeat by using different implementation

Recovery Block Approach

Version 1

Version 2

Version N

Acceptance Test

Acceptance Test

Acceptance Test

pass

pass

pass

fail

fail

Recovery Point

Recovery Block Approach via Java

Exception Handling

 Consider three versions, i.e.

◼ getElement()

◼ fallbackToSimilar()

◼ fallbackToParent();

 If getElement() throughs a

NotFoundException object,

fallbackToSimilar() will be called

 If fallbackToSimilar() throughs a

NotFoundException object,

fallbackToParent() will be called

Summary
69

 Hardware-, software-, and information redundancy
are the building blocks for RTSCS

 They increase system reliability and subsequently
system safety

 They can be found in many industries including

 Automation

 Avionics (next slides)

 Military

 Medical device

 Robotics

Final Example: Airbus 340

 Hardware & software redundancy

 NMR redundancy with

◼ 3 main flight controllers

◼ 2 backup flight controllers (that replace

faulty unit on-the-fly)

 Software developed by different teams

and on different platforms

Final Example: Boeing 777

 Hardware Redundancy

 Motorola

 AMD

 Intel

◼ Example Pentium FDIV bug

 Ada programming language

used, but different compilers

https://en.wikipedia.org/wiki/Pentium_FDIV_bug

	Slide 1: CT420 Real-Time Systems Design Considerations Real-time safety-critical systems
	Slide 2: Motivation for and Objectives of this Lecture
	Slide 3: Recall Case Study: The Boeing 737 Max 8 MCAS Problem
	Slide 4: The Boeing 737 Max 8
	Slide 5: Boeing’s Manoeuvring Characteristics Augmentation System (MCAS)
	Slide 6: Boeing’s Manoeuvring Characteristics Augmentation System (MCAS)
	Slide 7: The Angle of Attack (AoA) Sensor
	Slide 8: Other Issues that led to the Crashes
	Slide 9: Recap: Quality Requirements for RTSCS
	Slide 10: Accident, Risk and Hazard
	Slide 11: Faults and Hazards
	Slide 12: Determining Failure Probability
	Slide 13: The Bathtub Curve
	Slide 14: Fault Tree Analysis (FTA)
	Slide 15: Fault Tree Analysis Symbology
	Slide 16: Example Pacemaker
	Slide 17: Example Pacemaker (Subset) Fault Analysis
	Slide 18: Making RTSCS safe: Fail-Safe
	Slide 19: Making RTSCS safe: Fail-Soft
	Slide 20: Making RTSCS safe: Graceful Degradation
	Slide 21: Example of graceful Degradation: The Citroen CX
	Slide 22: Fault Types
	Slide 23: Transient Soft Errors due to Neutron Strikes or α Particle Impacts
	Slide 24: Information Redundancy
	Slide 25: One’s Complement Data Validity Check
	Slide 26: Error Correcting Codes (ECC)
	Slide 27: Hamming Distance
	Slide 28: Hamming (7,4) Code
	Slide 29: Example: Hamming (7, 4) Code with even Parity
	Slide 30: Problem
	Slide 31: Hamming(7, 4) Problem Solution
	Slide 32: Mass-Storage Redundancy via RAID
	Slide 33: Mass-Storage Redundancy via RAID
	Slide 34: RAID 0
	Slide 35: RAID 1
	Slide 36: RAID 4
	Slide 37: Drive Hot-Swapping in RAID
	Slide 38: RAID 5
	Slide 39: Increasing Hardware Reliability
	Slide 40: Watchdog
	Slide 41: Example for internal Watchdog (Arduino Uno)
	Slide 42: Example for internal Watchdog (Arduino Uno)
	Slide 43: Watchdog Coding Challenge
	Slide 44: My Solution
	Slide 45: Master-Slave Fail Over
	Slide 46: Redundancy via Synchronously Operating and Clocked independent Computers
	Slide 47
	Slide 48: Increasing Sensor Reliability
	Slide 49: NMR: N-Modular Redundancy (Single Voter)
	Slide 50: Example NMR (Single Voter)
	Slide 51: Voter Types
	Slide 52: Case Study
	Slide 53: Calculate FMV, GMV, FPV and WA Output for the Data below
	Slide 54: Calculate FMV, GMV, FPV and WA output for the Data below
	Slide 55: Increasing Software Reliability
	Slide 56: The Ariane Rocket Family
	Slide 57: The Ariane 5 Accident
	Slide 58: One Bug – One Crash
	Slide 59: Ariane 5 Flight Controller
	Slide 60: The Ariane 5 Accident: Root Cause Analysis
	Slide 61: Software Redundancy
	Slide 62: Static Software Redundancy
	Slide 63: N-Version Programming
	Slide 64: N-Version Programming: Example Factorial
	Slide 65: N-Version Programming Issues
	Slide 66: Dynamic Software Redundancy
	Slide 67: Recovery Block Approach
	Slide 68: Recovery Block Approach via Java Exception Handling
	Slide 69: Summary
	Slide 70: Final Example: Airbus 340
	Slide 71: Final Example: Boeing 777

