CS4423: Networks

Week 7, Part 1: Closeness and Betweenness Centrality

Dr Niall Madden

School of Maths, University of Galway

26 + 27 February 2025)

CS4423 — Week 7, Part 1: Closeness and Betweenness Centrality

• Assignment 1 Due 5pm Friday, 27th February.

Class Test 14:00, Thursday 6th March (Week 8)

Outline

Today's notes are split between these slides, and a Jupyter Notebook.

Centrality Measures (again) Eigenvector Centrality (again) Closeness Centrality

Normalised

Distance Matrix

- 4 Betweenness Centrality
 - Normalised
 - Examples

Slides are at:

https://www.niallmadden.ie/2425-CS4423

Centrality Measures (again)

Last week we learned about some centrality measures: Measures of centrality include:

- ► The degree centrality, c_i^D of Node i in G = (X, E) is the degree of i (i.e., the number of neighbours it has). So c_i^D = deg(i).
- ▶ The normalised degree centrality, C_i^D of Node *i* is $C_i^D = \text{deg}(i)/(n-1)$ where *n* is the order of the network.
- Eigenvector Centrality, which we'll recap now.

Then we'll look at:

- Closeness Centrality, and
- Betweenness Centrality.

Eigenvector Centrality

- 1. Let A be the adjacency matrix of a network. G.
- 2. We know, thanks to Perron-Frobenius, that A has a positive eigenvalue, λ , which is equal to the spectral radius of A.
- 3. There is a positive eigenvector, v associated with λ .
- 4. Choose *v* so that $v^T v = v_1^2 + v_2^2 + \dots + v_n^2 = 1$.
- 5. v_i is the **eigenvector centrality** of Node *i*.

Closeness Centrality

A node x in a network can be regarded as being central, if it is **close** to (many) other nodes, as it can then quickly interact with them.

Recalling the d(i,j) is the distance between Nodes *i* and *j* (i.e., the length of the shortest path between them). The we can use 1/d(i,j) as a measure of "closeness".

Definition (Closeness Centrality)

In a simple, *connected* graph G = (X, E) of order *n*, the **closeness** centrality, c_i^C , of Node *i* is defined as

$$c_i^{\mathcal{C}} = \frac{1}{\sum_{j \in X} d(i,j)} = \frac{1}{s(i)},$$

where s(i) is the **distance sum** for node *i*.

As is usually the case, there is a —Bfnormalised version of this measure.

Normalised closeness centrality The normalised closeness centrality of Node *i*, defined as $C_i^C = (n-1)c_i^C = \frac{n-1}{\sum_{j \in X} d(i,j)} = \frac{n-1}{s(i)}.$

Note: $0 \leq C_i^C \leq 1$. (*Why?*)

Example

Compute the normalised closeness centrality of all nodes in the graph on nodes $\{0, 1, 2, 3, 4\}$, with edges 0 - 1, 0 - 2, 0 - 3, 0 - 4, 1 - 2, 1 - 3.

In that example we effectively computed the **distance matrix** of the graph.

Distance Matrix

The **distance matrix** of a graph, *G*, of order *n* is the $n \times n$ matrix, $D = (d_{ij})$ such that $d_{ij} = d(i, j).$

We'll return to how to compute *D* tomorrow, but for now we note:

Betweenness Centrality

Consider the following graph (as the 3 - 1 Barbell Graph):

We can, I hope, convince ourselves, that, in a sense:

- Node 3 is the most central, in the sense that belongs to the most shortest paths.
- Node 0 (for example), is very much not central in that sense.

Definition (Betweenness Centrality)

In a simple, connected graph G, the **betweenness centrality** c_i^B of node *i* is defined as

 $c_i^B = \sum_j \sum_k \frac{n_i(j,k)}{n(j,k)}, \qquad j \neq k \neq i$

where n(j, k) denotes the *number* of shortest paths from node j to node k, and where $n_i(j, k)$ denotes the number of those shortest paths *passing through* node i.

Definition (Normalised Betweenness Centrality)

In a simple, connected graph G, the **normalised betweenness** centrality c_i^B of node *i* is defined as

$$C_i^B = \frac{c_i^B}{(n-1)(n-2)}$$