
University
ofGalway.ie

CT4101
Machine Learning

Dr. Frank Glavin
Room 404, IT Building

Frank.Glavin@UniversityofGalway.ie

School of Computer Science



University
ofGalway.ie

• What is Deep Learning?
• Artificial neurons
• Activation functions
• Artificial neural networks
• Handling categorial features
• Brief overview of deep learning libraries

Outline



University
ofGalway.ie

Deep learning is an approach to machine learning that is inspired by how the brain is 
structured and operates
Deep learning is a relatively new term that describes research on modern artificial neural 
networks (ANNs)

Artificial neural network models are composed of large numbers of simple processing units, 
called neurons, that typically are arranged into layers and are highly interconnected.
Artificial neural networks are some of the most powerful machine learning models, able to 
learn complex non-linear mappings from inputs to outputs.

ANNs generally work well in domains in which there are large numbers of input features 
(such as image, speech, or language processing), and for which there are very large datasets 
available for training

What is deep learning?



University
ofGalway.ie

• The history of ANNs dates to the 1940s
• The term deep learning became prominent in the mid 2000s
• The term deep learning emphasizes that modern networks are deeper 

(in terms of number of layers of neurons) than previous networks
• This extra depth enables the networks to learn more complex input-

output mappings

What is deep learning?



University
ofGalway.ie

The human brain is an incredibly powerful learning system.
Thanks to neuroscience we now know quite a bit about the structure of the brain.
For example, we know that the brain works by propagating electrical signals through a massive network 
of interconnected cells, known as neurons.
It is estimated that the human brain contains around 100 billion interconnected neurons

The human brain as inspiration



University
ofGalway.ie

This figure illustrates three interconnected neurons; 
the middle neuron is highlighted in black, and the 
major structural components of this neuron are 
labelled cell body, dendrites, and axon.
Also marked are the synapses connecting the axon 
of one neuron and the dendrite of another, which 
allow signals to pass between the neurons.
These synapses allow electrical signals to pass from 
the axon of one neuron to a dendrite of another
Dendrites are the neuron’s input channels, and the 
axon is the output channel

Neurons in the brain



University
ofGalway.ie

The big idea in deep learning is to develop computational models that are inspired by the structure and 
operations of the human brain.

The human brain is, of course, much more complex and sophisticated than even the most advanced deep 
learning models.

Because deep learning models are inspired by the human brain they are known as artificial neural networks
ANNs are designed (at least at a very abstract level) to mirror the structure of the brain, and the adoption 
of a learning mechanism based on adjusting the connections between neurons can be understood as 
mimicking Hebb’s theory of how the brain learns.

Relationship to deep learning



University
ofGalway.ieUniversity
ofGalway.ie

Neural Networks:
Artificial neurons



University
ofGalway.ie

The fundamental building block of a neural network is a computational model 
known as an artificial neuron
First defined by McCulloch and Pitts (1943) - trying to develop a model of the 
activity in the human brain based on propositional logic
They recognised that propositional logic using a Boolean representation 
(TRUE/FALSE or 1/0) and neurons in the brain are similar, as they have an all-or-
none character (i.e., they act as a switch that responds to a set of inputs by 
outputting either a high activation or no activation)
They designed a computational model of the neuron that would take in multiple 
inputs and then output either a high signal (1), or a low signal (0).

Artificial neurons



University
ofGalway.ie

The McCulloch and Pitts model has a two-part structure:
1. Calculation the result of a weighted sum (we refer to the result as 𝑧𝑧)
2. Passing the result of the weighted sum through a threshold activation 

function

In the first stage of the McCulloch and Pitts model, each input is multiplied by a 
weight, and the results of these multiplications are then added together.

This calculation is known as a weighted sum because it involves summing the 
weighted inputs to the neuron.

McCulloch and Pitts model



University
ofGalway.ie

𝒅𝒅 is a vector of size 𝑚𝑚 + 1 
inputs/descriptive features (𝒅𝒅[0] is a 
dummy feature always = 1)

𝒘𝒘 is a vector of 𝑚𝑚 + 1 weight, one 
weight for each feature (𝒘𝒘[0] is the 
weight for the dummy feature)

Note similarity to linear regression 
equation, although (networks of) 
artificial neurons can do much more 
than just tackle regression tasks

Weighted sum calculation



University
ofGalway.ie

The weights can either be excitatory (having a positive value, which increases the probability of the neuron 
activating) or inhibitory (having a negative value, which decreases the probability of a neuron firing)
𝒘𝒘[0] is the equivalent of the y-intercept in the equation of the line from secondary school geometry; in that 
the neuron this captures constant effects
𝒅𝒅[0] is a dummy feature used for notational convenience and is always equal to 1
This 𝒘𝒘[0] term is often referred to as the bias parameter because in the absence of any other input, the 
output of the weighted sum is biased to be the value of 𝒘𝒘[0]

Technically, the inclusion of the bias parameter as an extra weight in this operation changes the function 
from a linear function on the inputs to an affine function.
An affine function is composed of a linear function followed by a translation (i.e., the inclusion of the bias 
term means that the straight line would not pass through the origin)

Weights



University
ofGalway.ie

In the second stage of the McCulloch and Pitts model, the result of the weighted sum calculation, 𝑧𝑧, is then 
converted into a high or a low activation by passing 𝑧𝑧 through an activation function.

McCulloch and Pitts used a threshold activation function: if 𝑧𝑧 is greater than or equal to the threshold, the 
artificial neuron outputs a 1 (high activation), and otherwise it outputs a 0 (low activation).
This threshold is a number that is selected by the designer of the artificial neuron.

Using the symbol 𝜃𝜃 to denote the threshold, the second stage of processing in the McCulloch and Pitts 
model can be defined. We see that the neuron ‘fires’ when 𝑧𝑧 ≥ 𝜃𝜃

Threshold activation function



University
ofGalway.ie

φ (Greek lowercase letter ‘phi’) is the activation function of the neuron
𝒅𝒅 is a vector of 𝑚𝑚 + 1 descriptive features (𝒅𝒅[0] is a dummy feature always = 1)
𝒘𝒘 is a vector of 𝑚𝑚 + 1 weights (𝒘𝒘[0] is the weight for the dummy feature, also referred to as the bias)

Artificial neurons



University
ofGalway.ie

Arrows carry activations in the direction the 
arrow is pointing

The weight label on each arrow represents the 
weight that will be applied to the input carried 
along the arrow

φ (Greek lowercase letter ‘phi’) is the activation 
function of the neuron

Also referred to as a perceptron

Artificial neuron schematic



University
ofGalway.ie

The two-part structure of the McCulloch and Pitts model is the basic blueprint for modern 
artificial neurons

Key difference: how to set the weights?
In the McCulloch and Pitts model the weights were manually set (very difficult to do!)
In modern ML we learn the weights using data

Key difference: activation functions
McCulloch and Pitts considered the threshold activation function only
Modern artificial neurons use one of a range of different activation functions

McCulloch and Pitts vs. Modern Artificial Neurons



University
ofGalway.ie

Note that all of these are non-linear functions (we will discuss the implications of this later)

Example activation functions



University
ofGalway.ie

Logistic activation function

• Historically the logistic activation function was among the 
most commonly-used choices of activation functions

• Note that neurons are often referred to as units, and they are 
distinguished by the type of activation function they use.

• Hence a neuron that uses a logistic activation function is 
referred to as a logistic unit

• Logistic activation functions map any real number input to an 
output between 0 and 1



University
ofGalway.ie

Today the most popular choice of function for an activation 
function is the rectified linear activation function or 
rectifier

A unit that uses the rectifier function is known as a 
rectified linear unit or ReLU

The rectified linear function does not saturate (i.e., there is 
no maximum output value constraint)

Rectified linear activation function



University
ofGalway.ieUniversity
ofGalway.ie

Neural Networks:
Artificial neural networks



University
ofGalway.ie

An artificial neural network (also called a multi-layer 
perceptron or MLP) consists of a network of 
interconnected artificial neurons.

The neurons in the feedforward neural network to 
the right are organized into a sequence of layers
An artificial neural network can have any structure, 
but a layer-based organization of neurons is common

There are two types of neurons in this network: 
sensing neurons and processing neurons.

Artificial neural networks



University
ofGalway.ie

The two squares on the left of the figure represent 
the two memory locations through which inputs are 
presented to this network. These locations can be 
thought of as sensing neurons that permit the 
network to sense the external inputs.

Although we consider these memory locations as 
(sensing) neurons within the network, the inputs 
presented to the network are not transformed by 
these sensing neurons.

Artificial neural networks



University
ofGalway.ie

Circles in the network represent processing neurons 
that transform input using the previously described 
two-step process of a weighted sum followed by an 
activation function

Arrows connecting the neurons in the network 
indicate the flow of information through the network
Input to processing neurons can be:

• external input from sensing neurons
• the output activation of another processing 

neuron in the network
• a dummy input that is always set to 1 (the input 

from a black circle)

Artificial neural networks



University
ofGalway.ie

In feedforward networks there are no loops or cycles in 
the network connections that would allow the output of a 
neuron to flow back into the neuron as an input (even 
indirectly).

In a feedforward network the activations in the network 
always flow forward through the sequence of layers.
This ANN is fully connected because each of the neurons 
in the network is connected so that it receives inputs 
from all the neurons in the preceding layer and passes its 
output activation to all the neurons in the next layer
The depth of a neural network is the number of hidden 
layers plus the output layer

Artificial neural networks



University
ofGalway.ie

The number of layers required for a network to be considered deep is an open 
question
Cybenko (1988) proved that a network with three layers of (processing) neurons (i.e., 
two hidden layers and an output layer) can approximate any function to arbitrary 
accuracy.
So, here we define the minimum number of hidden layers necessary for a network to 
be considered deep as two; under this definition the network shown on the previous 
slide would be described as a deep network.
However, most deep networks have many more than two hidden layers.
Some deep networks have tens or even hundreds of layers

When is a neural network considered ‘deep’?



University
ofGalway.ie

It is not a coincidence that the most useful activation functions are non-linear.
Introducing non-linearity into the input to output mapping defined by a neuron enables an artificial neural 
network to learn complex non-linear mappings
This ability to learn complex non-linear mappings that makes artificial neural networks such powerful 
models, in terms of their ability to be accurate on complex tasks.
A multi-layer feedforward neural network that uses only linear neurons (i.e., neurons that do not include a 
non-linear activation function) is equivalent to a single-layer network with linear neurons; in other words, it 
can represent only a linear mapping on the inputs. This equivalence is true no matter how many hidden 
layers we introduce into the network.
Introducing even simple non-linearities in the form of logistic or rectified linear units is sufficient to enable 
neural networks to represent arbitrarily complex functions, if the network contains enough layers; in other 
words, if the networks are deep enough

Notes on activation functions



University
ofGalway.ie

All three functions have the same structure; they all take two inputs that can be either 
TRUE (1) or FALSE (0), and they return either TRUE (1) or FALSE (0).

Solid black dots represent FALSE outputs and clear dots represent TRUE outputs
AND returns TRUE if both inputs are TRUE (linearly separable)
OR returns TRUE if either input is TRUE (linearly separable)
XOR returns TRUE if only one of the inputs is TRUE (not linearly separable)

Linear Separability - examples from Boolean logic



University
ofGalway.ie

Shown on the right – a single layer neural network
Notorious finding in the history of ANNs - although the XOR function is 
very simple, a perceptron cannot represent it because it is not linearly 
separable
Minsky and Papert, 1969 published a book highly critical of perceptrons – 
set research back a decade!
The representational limitation of single-layer networks can be overcome 
by adding a single hidden layer to the network

Why is network depth important?



University
ofGalway.ie

Adding depth to a network comes with a cost.
As we see when we discuss the vanishing gradient problem, adding depth to a network can slow down the 
rate at which a network learns.
Therefore, when we wish to increase the representational power of a network, there is often a trade-off 
between making a network deeper and making the layers wider.

Finding a good equilibrium for a given prediction task involves experimenting with different architectures 
to see which performs best (i.e., we can treat the neural network architecture as a hyperparameter that 
must be optimised)

Overall, there is a general trend that deeper networks have better performance than shallower networks, 
but as networks become deeper, they can become more difficult to train

Network depth vs. learning rate



University
ofGalway.ie

Blame assignment problem – when learning neural 
network weights, how to calculate how much of the error 
in the entire network is due to an individual neuron
The backpropagation algorithm solves the blame 
assignment problem
At each learning step, once we have used 
backpropagation to calculate errors for individual 
neurons, we can then use gradient descent to update the 
weights for each neuron in the network
(we will not cover backpropagation or gradient descent)

Training neural networks



University
ofGalway.ie

For example, consider a regression problem where we predict a continuous target value based 
on the values of two independent attributes
We could use the feedforward network structure outlined earlier to tackle this

Example process:
• We initialise the weights randomly at first
• We make predictions and then use these to compute the error of the network using a 

loss function (e.g., sum of squared errors on training data)
• We use back propagation to compute errors on each neuron
• We use gradient descent to update neuron weights 
• We repeat this for multiple training steps (epochs) until convergence

Example learning process for a feedforward ANN
applied to regression



University
ofGalway.ie

Calculate predicted values and use the loss function 
(e.g., sum of squared errors) to calculate the error of 
the network

Flows of activations and errors



University
ofGalway.ie

At every epoch there is a small improvement in the network weights until convergence is reached 

Example learning process for a feedforward ANN
applied to regression



University
ofGalway.ie

The effect of the learning rate

• One important hyperparameter that must be set in ANNs (and 
many other ML algorithms) is the learning rate – this controls 
how large updates to the model weights are at each epoch

• Left: example of an appropriate learning rate. 
• Right: example of a learning rate set too high



University
ofGalway.ie

The errors for each individual neuron are calculated by 
backpropagating the error from the output layer through each 
hidden layer of the network

The magnitudes of these errors tend to decrease as we move 
from the output layer back to earlier layers in the network

This phenomenon is known as the vanishing gradient problem. 
This is a serious challenge for deep networks as these errors 
are the learning signals used to optimise individual neuron 
weights

Rectified linear activation functions can lead to quicker training 
times than logistic functions

The vanishing gradient problem



University
ofGalway.ieUniversity
ofGalway.ie

Neural Networks:
Handling categorical 
features



University
ofGalway.ie

To apply many ML algorithms to datasets with categorical descriptive features, it is first 
necessary to encode the categorical features as numerical features

This is necessary for many common ML algorithms including ones we have covered 
such as linear regression, neural networks, …

Some possible options:
Binary encoding: if the feature has only two possible values (e.g., TRUE/FALSE, 
yes/no), encode the positive examples as 1s and the negative examples as 0s
One-hot encoding: if the feature has >2 possible values

Handling categorical descriptive features



University
ofGalway.ie

A one-hot encoding is a vector-based representation of a categorial feature value
A one-hot vector has one element per level of the categorical feature.
For example, if a feature can take three levels (e.g., low, medium, high), then the 
vector would have three elements
It is known as a one-hot representation because at most one element in the vector will 
have the value 1 and all the other elements will be 0, with the value of the feature 
indicated by whichever element is 1.
For our three-level categorical feature we might decide that:

[1, 0, 0] indicates low
[0, 1, 0] indicates medium
[0, 0, 1] indicates high

One-hot encoding



University
ofGalway.ie

All the examples that we have looked at so far have been regression problems

To create a neural network that can predict a multi-level categorical feature, we 
make three adjustments:

1. we represent the target feature using one-hot encoding
2. we change the output layer of the network to be a softmax layer
3. we change the error (or loss) function we use for training to be the cross-

entropy function.

Handling categorical target features



University
ofGalway.ie

Note that the target feature Electrical Output has been one hot encoded

Classification example - Powerplant Dataset



University
ofGalway.ie

In a softmax output layer there is a single neuron for each level of the target feature.
E.g. if the prediction task is to predict the level of a categorical feature that can take three levels (e.g., low, 
medium, high), then the output layer of the network would have three neurons.
The activation function used by the neurons in a softmax layer is the softmax function; for an output layer 
with 𝑚𝑚 neurons, the softmax activation function is defined as above
The softmax activation function normalizes the z scores for a layer of neurons so that the sum of the 
activations of the neurons is 1
The softmax function will always return a positive value for every neuron because e z is always positive, 
even if z is negative

The softmax activation function



University
ofGalway.ie

Because softmax returns a normalized 
set of positive values across the 
output layer, we can interpret the 
activation of each neuron in the layer 
as a probability.
There is one neuron in an output 
softmax layer per target feature level, 
and so the softmax function returns 
one probability per level.
The final answer is the level whose 
neuron predicts the highest 
probability

Example neural network for the Powerplant Dataset



University
ofGalway.ie

Scikit-learn can be used to create basic MLPs for classification and regression tasks
E.g., sklearn.neural_network.MLPClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
E.g., sklearn.neural_network.MLPRegressor

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html 

Scikit-learn does not have GPU acceleration, and lacks many of the features of full dedicated deep 
learning libraries

More advanced deep learning libraries that include GPU acceleration include:
Tensorflow/Keras
Deeplearning4j

Libraries for neural networks

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

	CT4101�Machine Learning
	Outline
	What is deep learning?
	What is deep learning?
	The human brain as inspiration
	Neurons in the brain
	Relationship to deep learning
	Neural Networks:�Artificial neurons�
	Artificial neurons
	McCulloch and Pitts model
	Weighted sum calculation
	Weights
	Threshold activation function
	Artificial neurons
	Artificial neuron schematic
	McCulloch and Pitts vs. Modern Artificial Neurons
	Example activation functions
	Logistic activation function
	Rectified linear activation function
	Neural Networks:�Artificial neural networks�
	Artificial neural networks
	Artificial neural networks
	Artificial neural networks
	Artificial neural networks
	When is a neural network considered ‘deep’?
	Notes on activation functions
	Linear Separability - examples from Boolean logic
	Why is network depth important?
	Network depth vs. learning rate
	Training neural networks
	Example learning process for a feedforward ANN�applied to regression
	Flows of activations and errors
	Example learning process for a feedforward ANN�applied to regression
	The effect of the learning rate
	The vanishing gradient problem
	Neural Networks:�Handling categorical features�
	Handling categorical descriptive features
	One-hot encoding
	Handling categorical target features
	Classification example - Powerplant Dataset
	The softmax activation function
	Example neural network for the Powerplant Dataset
	Libraries for neural networks

