
CT230 DATABASE SYSTEMS
Introductions
Semester 1
2022

WELCOME!
Fáilte roimh go léir!

Module Code:
CT230
Module Name:
Database
Systems

LECTURE TODAY … INTRODUCTIONS

• Me

• You

• CT230:
•Learning outcomes and course outline
•Systems and tools we will use
•Some information on how lectures, labs, assessment and exam
will work this year

• Introduction to Database Systems

ME!

Dr Josephine Griffith (She/Her)
Room 405 Computer Science Building (formerly IT building)
School of Computer Science
College of Science & Engineering
Josephine.Griffith@universityofgalway.ie

mailto:Josephine.Griffith@universityofgalway.ie

YOU … 140 students taking this class
at the latest count !

• 2BCT
• 2BA, 2BDA, 2BDS, 2BFD, 2BFS, 2BGM, and possibly others
once registration is finished

• 3CSM

• 3BP, 3BLE
• Erasmus Visiting Students: 1EM

You all belong here !You all belong here !You all belong here !You all belong here!

HOW ARE “WE” GOING TO DO THIS ….
• We are required to exclusively deliver on-campus
lectures and on-campus labs

• Attendance at lectures will be logged – though won’t
be correct until probably week 3 when registration is
hopefully finalised - please only sign in if you really
are here!

• I generally provide summary videos of core concepts
as a study/revision aid.

BLACKBOARD “QWICKLY” SIGN IN …

• Need to be registered and on
Blackboard to sign in
• I know not everyone will be
registered fully today – that’s
ok.
• Go to Blackboard and CT230
and click on “Quickly
Attendance” in Content Area
• I will give code …

USING MENTI FOR QUESTIONS
We will use menti.com to ask questions (2-
way!).

I will try take a regular break from
lectures to try answer some of the
questions but all valid questions will be
answered eventually.

Note to treat each other (and me!) with
respect and be careful of our tone. We
have a diverse group – which is fantastic!
– let’s make sure everyone feels they
belong and that we don’t waste anyone’s
time.

FOR NON-PUBLIC QUESTIONS

I will try finish 5 minutes early for the first few weeks so I will
have extra time for questions.

As we have to vacate the lecture theatre in time for the next
class, I can wait outside the lecture theatre (downstairs) if we
run out of time.

Email is always an option:

josephine.Griffith@universityofgalway.ie

You can arrange to come talk to me in person by setting up
an appointment.

I will also attend some labs and you can ask me questions
there.

LET’S NOW START TALKING ABOUT THE
MODULE …

CT230 DATABASE SYSTEMS

LEARNING OUTCOMES
– A folder for each of these on Blackboard
– A number of lectures associated with each

COURSE TOPICS
(not the order we will follow)
•LO1: Database fundamentals:
•Data, Information & Database Systems
•The Relational Model
•LO2: Database fundamentals: File Organisations
•L03: Database programming: SQL for database creation and
manipulation (DDL)

•LO4: Database fundamentals: Relational Algebra
•L05: Database programming: SQL for database retrieval and
manipulation (DML)

•LO6: Database design: Entity-Relationship Modelling
•LO7: Database design: Normalisation
•LO8: Database programming: Query Processing and Optimisation

Lectures

Lecture materials will be
posted before lectures on
Blackboard

In person lectures for 12
weeks in AM200 (Fottrell
theatre)
•Tuesday 2-2.50pm
•Wednesday 12-12.50pm

LECTURE NOTES

CT230 module on Blackboard will contain all the
materials.

Note that there will be a mixture of notes, videos,
worked examples, code, etc. for this module.

Ideally use a (paper or electronic) notebook for the
course or have a good process for working on exercises
on laptop.

Notepad++ is a good editor (rather than using MS word
or equivalent)

C/A: Labs and Tests
Starting week 3 (19/09/2022)

Each lab session will have a lab tutor

3BP, 3BLE: Mon 4-6 IT101

2BCT: Tue 3-5 IT101

3CSM: Thur 10-12 IT106

2BA and other BA programmes: Thur 10-2 IT106
– any 2 hours – to be organised

Visiting Students: Pick any time that suits and let
me know please (by email)

IMPORTANT RE LABS

•Physical Labs will not start until week 3.
•You can start getting prepared for labs based
on our lectures.
•It is important that you have your CS account
set-up and are able to connect to the CS
server before labs begin.
•A schedule of labs and tests will be available
soon on Blackboard and I will discuss in detail
once available.

CS ACCOUNTS

•Everyone should have an ISS account which
you use to access Blackboard, Library,
Computer Suites, etc.

•For this module you also need a CS account to
access the CS intranet to get your own mySQL
database:

•http://www2.it.nuigalway.ie/accounts/
•All information will be in “Setting up
your Databases”

ASSESSMENT INFORMATION

CT230 is assessed via a Semester 1 written exam and C/A
throughout the semester.

The breakdown of the final mark is:

o 20% C/A

o 80% Exam

EXAM

• Examined in December 2022 (Exams office
will generate exam timetable in November)

• Exam will be two hours duration* and will be
in person (not online).

• Will discuss the format of the exam closer to
the time - many past exam papers exist as
examples.

* unless you have a LENS report

ATTENDANCE AT LECTURES, LABS,
COMPLETION OF ASSIGNMENTS AND TESTS

In addition to gaining up to 20% of the final mark,
some exam questions become much easier if you
have completed the assignment work

Plagiarism is not acceptable and will result in a 0
mark

RECOMMENDED BOOK
Fundamentals of database systems

By Ramez Elmasri and Sham Navathe
 Any edition is fine
 Editions 3, 5 and 6 available in library at

Main Library Open Access (005.74 ELM)

SOME GENERAL COMMENTS ON THE YEAR

It starts now!

If you have problems, the sooner I (and in general
“we”) find out the more we can help.

Spend some time now:
 thinking of your priorities and time commitments and how you
will manage these for the semester.
 Thinking of your triggers – how you will know if things are
going well or not going well – and what you will do.
 Thinking about how to organise your notes and materials and
lecture sessions and meet your deadlines.

TOMORROW’S LECTURE

• 12 noon here in AM200

• Topic: Introduction to Database Systems

• Have a great day!

TOPIC:
THE RELATIONAL MODEL

CT230
Database
Systems

Recall …
why learn about relational DBMS?

90% of industry/enterprise/business applications
are STILL Relational DBMS or Relational DBMS
with extensions (e.g. OO Relational).

Majority of industry applications require:
Correctness
Completeness
Efficiency (Complex optimisation techniques and
complex Indexing structures).

Relational DBMS provide this.

OUR NOTATION
case not significant;
spaces not allowed

employee(fname, minit, lname, ssn, bdate, address, gender, salary,
superssn, dno)

department(dname, dnumber, mgrssn, mgrstartdate)

dept_locations(dnumber, dlocation)

project(pname, pnumber, plocation, dnum)

works_on(essn, pno, hours)

dependent(essn, dependent_name, gender, bdate, relationship)

DA
TA

BA
SE

 SC
HE

MA

SETTING UP YOUR DATABASE …

See supplemental notes and video will be
added before labs next week ….

TOPIC:
Defining and working with the
Relational Model

See

Elmasri and Navathe book

Chapter 7

RELATIONAL DATA MODEL
• Collection of relations (often called tables) where

each relation contains tuples (rows) and attributes
(columns).

• Closely related to file system model at (we use in our
own programming)

• Relations are named: e.g., relation ‘employee’:

employee(fname, minit, lname, ssn, bdate, address, gender, salary, superssn, dno)

o Relation = table

o Attributes = columns and these are (mostly always) fixed
(e.g., fname, minit, lname …) and do not change

* The number of attributes of a relation is referred to as its grade or
degree

o Tuples = rows which contain the data and there is
variable number of these

* The number of tuples of a relation is referred to as its cardinality.

ATTRIBUTES/COLUMNS

Each attribute belongs to one domain and has a single:
 name
data type
 format

e.g.,

Name: bDate

Type: date

Format: yyyy/mm/dd

NAMING COLUMNS
(ATTRIBUTES)

• case not significant in SQL

• no spaces allowed

• no reserved keywords (e.g. date) allowed

• as usual, if picking names yourself - choose meaningful
variable name

• if given the names of relations and attributes, use exactly
what you are given

DATA TYPES
As with many programming languages must specify the data
type of all attributes (columns) defined

Common data types used are:

o varchar(N), N an integer (for strings)

o date

o int

o double

Often specify the sizes especially for
integers and strings

Will discuss in more detail when we start to
create tables

NULL

oIn some cases we wish to allow the possibility of a NULL value
although they will often require extra handling (e.g. checking for
=NULL).

oIn other cases we want to prevent NULL being entered as a value
and specify NOT NULL as a constraint on data entry.

Null valued-attributes: values of some
attribute within a particular tuple may be
unknown or may not apply to a particular
tuple … null value is used for these cases.

NULL is a special marker used in SQL to
denote the absence of a value

ATOMIC ATTRIBUTES

Example: Attribute address of type varchar(100) Null

Should only contain one address “3 Cherry Road, Carlow”

Rather than “3 Cherry Road, Carlow; Apt 12 Corrib Village,
Galway”

An atomic attribute is an attribute which
contains a single value of the appropriate
type. Generally meaning, “no repeating
values of the same type”

The relational model should only have atomic
values

COMPOSITE ATTRIBUTES

Example:

Name = FirstName, Middle Initial, Surname

We often want to decompose a composite attribute into atomic
attributes unless there is a very good reason not to (e.g. why is
address not decomposed in to street, city, county, etc.?)

A composite attribute is an attribute that is
composed of several more basic/atomic
attributes.

MULTI-VALUED ATTRIBUTES
A multi-valued attribute is an attribute which has lower and
upper bounds on the number of values for an individual entry.

(the opposite of an atomic attribute)

Example:

qualifications

phone numbers

The relational model should NOT store multi-valued attributes –
database design/re-design should be used to deal with this
issue by creating more attributes (columns) or more tables.

DERIVED ATTRIBUTES

A derived attribute is an attribute whose
value can be determined from another
attribute

Example:

from bdate can derive age

It is a good idea to not directly store
attributes which can be derived from other
attributes.

RECALL ….

• We said that the Relational Data Model consists of a
collection of relations (tables)

• Tables are cross-linked

COLLECTION OF RELATIONS

A relational database usually contains many relations
(tables) rather than storing all data in one single
relation.

A relational database schema, S, is a definition of a
set of relations that are to be stored in the database,
i.e.,

S = {R1, R2, …. , Rn}

e.g., S = {employee, department, works_on,
dept_locations, project, dependent}

Formal definition of “schema”

A relational schema R is the definition of a table in
the database. It can be denoted by listing the table
name and the attributes:

R(A1, A2, ….. , An)

where Ai is an attribute.

e.g. with n=3, that is, 3 attributes:

works_on(essn, pno, hours)

RECALL:
Database schemas and instances

Similar to types and variables in programming
languages.

Schema: the logical structure of a database.

Instance: the actual content of the database at some
point in time

LINKING TABLES …

Two VERY (very, very) important concepts within the
relational model which allow tables to be linked and
cross-referenced are:

o PRIMARY KEY attributes

o FOREIGN KEY attributes
We will define
and discuss
these
tomorrow!

QUESTIONS?/ISSUES?

PRIMARY KEYS
Fundamental concept of Primary Keys:

All tuples (row) in a relation must be distinct

To ensure this must have:

 one of more attributes/columns whose data values will
always be unique for each tuple - these attributes are called
key attribute(s) and are used to uniquely identify a tuple in the
relation.

There may be a few possibilities for primary key – these are
called Candidate keys

One candidate key is ultimately chosen as the primary key as
part of the Design stage

DEFINITION:
PRIMARY KEY

A primary key is defined as one or more attributes, per table
where:

o there can be only one such primary key per table

o the primary key can never contain the NULL value

o all values entered for the primary key must be unique (no
duplicates across rows)

• Often primary keys are used as indexes (*will discuss later)

• We use the convention (in writing) that attributes that form the
primary key are underlined

EXAMPLES
(Company schema):
Adminer

What is the primary key of
these tables?

See menti.com

Consider the works_on table:

A table to hold details on which projects an
employee works on and the number of hours
worked on each project:
works_on(essn, pno, hours)

Primary Key? “ one of more attributes/columns whose data values
will always be unique for each tuple.”

An employee can work
on more than one
project

A project can contain more
than one employee

essn pno hours

123456789 1 32.5

123456789 2 7.5

333445555 2 10

SOME SAMPLE DATA FROM works_on
TABLE ….

ALL DATA FROM THE
works_on TABLE ….

works_on(essn, pno, hours)

QUESTION: What are suitable primary
keys for the following tables?

module(code, name, department, semester,
exam_duration, ECTS)

student(ID, FirstName, LastName, HomeAddress,
HomePhone)

car(EngineNo, CarReg, Make, Model, Year)

FOREIGN KEYS

Fundamental concept of Foreign Keys:

o Allows data in tables to be linked and cross-
referenced by matching the same data values in both
tables

Note:

o Matching must take place to primary or candidate keys

o There may be a few different links across the same
tables

DEFINITION: FOREIGN KEY

A foreign key is an attribute, or set of attributes,
within one table that matches or - links to - the
candidate key of some other table (possibly the same
table)

More formally - Given relations r1 and r2, a foreign
key of r2 is an attribute (or set of attributes) in r2
where that attribute is a candidate key in r1. relations
r1 and r2 may be the same relations

FOREIGN KEY TERMINOLOGY
Often use the terminology of:
parent, master or referenced table/relation for the
relation containing the candidate key(s)
 child or referencing table/relation for the relation
containing the foreign key
For example:

In company schema, department is parent/master
table (containing PK dnumber) and employee is
child/referencing table (with FK dno)

employee

dno is a foreign key in
relation employee
linking to dnumber in
department

department

EXAMPLE: FOREIGN KEY

EXAMPLES (COMPANY SCHEMA): SEE menti.com
What is/are the foreign key(s) in the dependent table?
What is/are the foreign key(s) in the employee table?

SUMMARY: RELATIONAL MODEL

•Terminology and definitions associated with main
concepts of the relational model very important

•Company schema will be used extensively for much
of the course so a good understanding of it from
these lectures is very important

•VERY important you get access to the CS Intranet and
MySQL and import the company database this week
if you are registered.

•Next … how to create tables and add data to
tables…

INTRODUCTION TO SQL AND DATA
DEFINITION LANGUAGE (DDL)

CT230
Database
Systems

LABS NEXT WEEK ….
Mon 19th 4-6 in IT106
Tue 20th 3-5 in IT101
Thur 23rd 10-2 in IT106 – will have assigned time before
then
Please attend if you are able!

Nice working environment and you can get help if needed.

Main goals of the lab next week are:

•Becoming familiar with phpMyAdmin and/or Adminer.

•Becoming familiar with the company database.

•Creating tables – GUI and DDL CREATE TABLE

•Adding data using INSERT INTO

SQL AND DDL

Relevant chapter in
recommended book:

Elmasri and Navathe

Chapter 8 (3rd Edition)

QUESTIONS?

SQL:

Structured

Query

Language

A special purpose programming language for
relational database systems

FEATURES OF SQL:
o SQL is based on relational algebra:

All relational, set and hybrid operators are supported but
SQL has additional operators to allow easier query
development.

o SQL has been standardised since 1987 (SQL-86/SQL-87)

o The American National Standards Institute (ANSI) and the
International Standards Organization (ISO) form SQL
standards committees. Many vendors also take part.

o Recent standards include XML-related features in addition to
many others (e.g., JSON data types etc.)

ANSI/ISO SQL
Despite standards there can be lack of portability between
database systems due to:
Complexity and size of standards (not all vendors will
implement all of the standard).
Vendor wants to keep syntax consistent with their other
software products/OS or develop features to support user
base.
Want to maintain backward compatibility.
Want to maintain “Vendor lock-in”.

ANSI/ISO SQL

We will concentrate on the standardised SQL syntax that
should work across vendors:

Comprises three components:

DDL – data definition language

DCL – data control language

DML – data manipulation language

DCL: DATA CONTROL LANGUAGE

Used to control access to the database and to database
relations.

Role of database administrator.

Very important in multi-user systems.

Typical commands:

 GRANT

 REVOKE

Each of these can be used to:

Grant/revoke access to database.

Grant/revoke access to individual relations.

DDL:
DATA DEFINITION LANGUAGE

Standardised language to define the schema of a database.

Back-end of “Design” options on Interface (e.g. Create options).

Typical tasks: create, modify, and remove database objects such
as tables and indexes.

Common DDL keywords are:

CREATE

ALTER

DROP

ADD

CONSTRAINT

DML:
DATA MANIPULATION LANGUAGE

4 DML statements:

INSERT

SELECT

UPDATE

DELETE

insert data

query data

update data

delete data

BACK TO DDL COMMANDS:

We use the DDL commands to mostly create tables
and add constraints to our database:

Common DDL keywords are:
CREATE
ALTER
DROP
ADD
CONSTRAINT

Create a table and it’s indexes and
constraints

Steps:

1. Specify table (relation) name.

2. For each attribute in the table specify:
 Attribute Name (e.g., ssn)
 Data Type (e.g., bigint).
 Any constraints (e.g. not null).

3. Specify Primary key of table: choose one or more attributes.

4. Specify Foreign keys if they exist and assuming the attributes and table you
are referencing exists (may have to return to this step).

** Steps 1-3 MUST be completed for all tables.

Recall:
what is a
primary

key?

Recall:
what is

a foreign
key?

DATA TYPES
3 MAIN TYPES: strings, numeric and date/time

The main ones you will use:

•char(size)

•varchar(size)

•bool/boolean

•tinyint, smallint(size), mediumint(size), int(size)/integer(size), bigint(size)

•double(size, d)

•float()

•decimal(size, d)

•date, datetime, timestamp, time, year

Important to pick a suitable data type and a
suitable size (based on the sample data)

Strings can contain letters, numbers, and special characters
size parameter specifies the maximum column length in
characters

char(size) FIXED length. size can be from 0 to 255. Default is 1

varchar(size) VARIABLE length. size can be from 0 to 65535

text string

Date/time

date Format: YYYY-MM-DD

time Format: hh:mm:ss

datetime Format: YYYY-MM-DD hh:mm:ss

year A year in four-digit format

… Important to pick a suitable data type and a
suitable size (based on the sample data) ctd.

Numeric Max size value is 255
(mySQL supports UNSIGNED numeric types but not all DBMS
do)

Integers See next slide

Bool/Boolean 0 is False; non zero is True

FLOAT Floating point number. 4 bytes, single precision

DOUBLE Floating point number. 8 bytes, double precision

DECIMAL(size, d)
or dec(size,d)

An exact fixed-point number.
size = total number of digits (max 65, default 10)
d = number of digits after the decimal point (max 30,
default 0).

INTEGERS

Type Bytes Range

tinyint 1 -128 to 127

smallint 2 -32768 to 32767

mediumint 3 -8388608 to 8388607

int 4 -2147483648 to 2147483647

bigint 8 -9223372036854775808 to
9223372036854775807

Note:
Number in brackets (for integers) only refers to display
not size

OTHERS

Unicode Char/String

Binary

Blob, Json etc.

AUTONUMBER
AUTO_INCREMENT in mySQL

Specifying an attribute to be “AUTO-INCREMENT” tells the DBMS to
generate a number automatically when a new tuple is inserted into a
table.

Often this is used for an “artificial” primary key value which is
needed to ensure we have a primary key but has no meaning for the
data being stored – using auto-increment means that the DBMS
takes care of inserting a unique value automatically every time a
new tuple is inserted.

By default, AUTO_INCREMENT is 1, and is incremented by 1 for each
new tuple inserted.

USING
phpMyAdmin GUI
to create a table
and PK

Steps:

1: In the “Structure” view, in the “Create table” section, enter the new table
name and number of columns and click the “Go” button.

2: In the new window, enter details of attributes (name and data types).
Specify the keys in the Index option – “Primary” (for primary keys) and “Index”
for Foreign keys (if they exist) and choose “Save”. Note you may wish to view
the SQL generated by choosing the “Preview SQL” option.

USING phpMyAdmin GUI to create
Foreign keys

Steps:

3. Specify the FK by choosing the “Relation view” and choose the name, table
and attribute that the FK references. Keep the ON DELETE and ON UPDATE as
the default “RESTRICT” and choose save. (Note you might want to check
“Preview SQL” again).

4. Look in Designer View to see the changes made.

USING GUI TO CREATE A TABLE
with Adminer

Steps:

1 and 2: Choose Create Table option and enter table name and details on
attributes (name and data types). Choose the Save option.

3. Click on the table you created and choose the Alter Indexes option and
specify Primary Key Index. Choose the Save option.

4. If there are foreign key(s) and the table being referenced exists, choose
Add foreign key option and specify foreign keys. Choose the Save option. Else
return to this step when other table(s) are created.

Using SQL DDL to create a table with index and
constraints – when only one attribute is part of
primary key

Syntax 1 (equivalent when only one Primary Key):

CREATE TABLE tablename

(attribute1 datatype [NOT NULL] [PRIMARY KEY],

attribute2 datatype [DEFAULT NULL],

attribute3 datatype,

….. ,

FOREIGN KEY (attributename) REFERENCES tablename(attributename)

);

Using SQL DDL to create a table with index and
constraints – when more than one attribute is
part of primary key
(See company2022.sql for examples!)

Syntax 2:

CREATE TABLE tablename

(attribute1 datatype [NOT NULL],

attribute2 datatype [DEFAULT NULL],

attribute3 datatype,

….. ,

PRIMARY KEY(attributename(s)),

FOREIGN KEY (attributename) REFERENCES tablename(attributename)

);

Naming the constraints …

Syntax 3 (name the constraints):
CREATE TABLE tablename

(attribute1 datatype [NOT NULL],

attribute2 datatype [DEFAULT NULL],

attribute3 datatype,

….. ,

CONSTRAINT constraintname PRIMARY KEY (attributename),

CONSTRAINT constraintname FOREIGN KEY (attributename)
REFERENCES tablename(attributename)

);

Looking at DDL code for department

CREATE TABLE `department` (

`dnumber` int(20) NOT NULL PRIMARY KEY,

`dname` varchar(50) DEFAULT NULL,

`mgrssn` bigint(20) DEFAULT NULL,

`mgrstartdate` date DEFAULT NULL)

ENGINE=InnoDB DEFAULT CHARSET=latin1;

NOTE: CONSTRAINTS: FOREIGN KEYS:

FOREIGN KEY (attributename) REFERENCES tablename(attributename)

Need to specify:
* Keyword FOREIGN KEY to indicate it is a foreign key constraint
and the attribute name or attribute names that will be the foreign
key in current table. If there is more than one attribute they should
be separated by commas. Attribute names should be enclosed in
brackets.

* Keyword REFERENCES to specify attribute it references by
specifying the table name and the attribute name. Again attribute
name(s) should be in brackets. Table name is outside the
bracket.

Constraint examples from COMPANY
Schema for works_on table

CONSTRAINT pk_works_on PRIMARY KEY (essn, pno),

CONSTRAINT fk_works_on_employee FOREIGN KEY (essn)
REFERENCES employee(ssn),

CONSTRAINT fk_works_on_project FOREIGN KEY(pno)
REFERENCES project(pnumber)

Looking at DDL code in company
sqlfile

Note that:

•For this SQL dump the Foreign Keys were created
after the tables, and after the data was entered
(using INSERT INTO commands).

•Generally, it is better to create ALL the structure
first and only then enter the data.

•Sometimes you can only add Foreign keys after
all the tables have been created

USING ALTER TO MODIFY DESIGN

Remember: Cannot create a foreign key link unless the
attribute it is referencing already exists

If you want to create everything but foreign keys initially
you can add a foreign key later using the ALTER TABLE
command

SYNTAX FOR ALTER COMMAND:

To add a constraint:
ALTER TABLE tablename

ADD CONSTRAINT constraintname FOREIGN KEY
(attributename) REFERENCES
tablename(attributename);

To add an attribute (column) constraint:

ALTER TABLE tablename

ADD attributename DATATYPE;

Looking at DDL code for Foreign Key
constraint in department
ALTER TABLE `department`

ADD KEY `mgrssn` (`mgrssn`),

ADD CONSTRAINT `department_ibfk_2`

FOREIGN KEY (`mgrssn`) REFERENCES `employee` (`ssn`);

HOW TO WORK WITH DDL IN ADMINER?

Choose:

1. Choose SQL
command option

2. Once you have
typed in the SQL in
the displayed editor
choose the Execute
option

(or CTRL+Enter)

* Note you may want
to save your query

HOW TO WORK WITH
DDL IN phpmyadmin

Choose:

1. Choose SQL tab at
the top

2. Type/Copy and
Paste SQL in to the
editor

3. Click “Go”

(or CTRL+Enter)

Looking at DML INSERT INTO code in
company2022.sql file

Note that:

• Tuples are enclosed in brackets () and tuples are
separated by commas

•Data type, format and order must correspond exactly
to the data type, format and order specified when
creating the tables.

•Strings, including dates, should be enclosed in single
quotes

•Numbers are not enclosed in quotes

Looking at DML INSERT code for Foreign
Key constraint in department
INSERT INTO `department`

(`dnumber`, `dname`, `mgrssn`, `mgrstartdate`) VALUES

(1, 'Headquarters', 888665555, '2019-06-19'),

(4, 'Administration', 987654321, '2015-01-01'),

(5, 'Research', 333445555, '2018-05-22');

IMPACT OF SETTING DATA TYPES,
CONSTRAINTS (E.G., “NOT NULL), PRIMARY
KEYS AND FOREIGN KEYS …
The DBMS has (Very!) strict checking of all constraints –
and will not allow data to be entered if the data does not
comply with the constraints set … this is one of the main
advantages of a DBMS in terms of data correctness but it
sometimes makes working with data entry difficult!

Consider the following examples ….

DOMAIN CONSTRAINTS
Definition: The value of each attribute A must be an atomic
value from the domain dom(A).

o Can be tested easily by DBMS for data entry

o Queries can also be tested.

o Example attributes:

•fname

•minit

•bdate

Essentially: data types and formats must match to that specified

ENTITY INTEGRITY CONSTRAINTS
(PRIMARY KEY CONSTRAINTS)

Definition: The primary key should uniquely
identify each tuple in a relation. This means:

• No duplicate values for primary key allowed

• Null values not allowed for primary key

• Example:

•ssn in employee table

•essn and pno in works_on table

Essentially: “no null or missing values for primary key”

NOTE:

As we already discussed, Null values may not be
permitted for other attributes also. e.g., name of
student may be constrained to be NOT NULL

•We often see this constraint when filling out
forms online (*required) and the constraint is
often necessary for many non-key attributes

•However, we should be careful of only adding
‘NOT NULL’ constraints in the databases in our
own assignments when they are really
necessary

Essentially: “no unmatched foreign keys”

REFERENTIAL INTEGRITY CONSTRAINTS

Definition: Specified between two relations and require the
concept of a foreign key. The constraint ensures that the
database must not contain any unmatched foreign keys.

Therefore a relationship involving foreign keys MUST be
between attributes of the same type and size

In addition, a value for a foreign key attribute MUST exist
already as a candidate key value.

employee

Any referential integrity constraints problems with dno
(a foreign key in relation employee) linking to dnumber in
department?

department

EXAMPLE (AGAIN):

SEMANTIC INTEGRITY CONSTRAINTS

Specified and enforced using a constraint specification
language

Two types:

state constraints: e.g., “the maximum number of hours an
employee can work on all projects per week is 39”

transition constraints: e.g., “the salary of an employee can
only increase”; “the date entered for order delivery must
not be in the past”

We will not use semantic integrity constraints

Consider the MySQL database and the associated data
(company2022.sql):

Are there any unmatched foreign keys?

Are foreign and primary keys of same type and size?

SETTING CONSTRAINTS

o Domain constraints are set
automatically once the data type is
chosen

o Entity constrains are also set
automatically once a primary key has
been chosen

o Usually default constraints are set
for foreign keys but these can be
changed

UPDATE OPERATIONS AND CONSTRAINT
VIOLATIONS

The DBMS must check that constraints are not violated
whenever update operations are applied.

Three basic update operations on tables where constraints
must be checked:

• insert

•delete

•modify

1. INSERT OPERATION

Provides a list of attribute values for a new tuple t that is
to be inserted in to a relation R

This can happen directly via the interface or via a query

If a constraint is violated DBMS will reject insertion; usually
with an explanation

Examples:
Using the company database state the problems, if any, with the
following insertions to the database:

INSERT INTO employee VALUES

('Ciara', 'F', 'Smith', NULL, '1993-05-03', '2345 Tudor Heights, TX', 'Female', 40000,
NULL, 4);

INSERT INTO employee VALUES

('Tony', 'D', 'Burns', 523523523, '1983-05-03', '34 Sycamore Drive, TX', ‘2000',
50000, NULL, 4);

INSERT INTO employee VALUES

('Tony', 'D', 'Burns', 523523523, '1983-05-03', '34 Sycamore Drive, TX', 'Male',
50000, NULL, 14);

INSERT INTO employee VALUES

('Ciara', 'F', 'Smith', 4444555, '1993-05-03', '2345 Tudor Heights, TX', 'Female',
40000, NULL, 4);

Trying this with Adminer:
1. Choose the “SQL command” button on LHS

2. A SQL editor is displayed on RHS

3. Type or copy and paste query in to editor

4. Choose “Execute” command

Trying this with phpMyAdmin
1. Choose the “SQL” tab on the top

2. A SQL editor is displayed in the middle of the screen

3. Type or copy and paste query in to editor

4. Choose “Go” button

2. DELETE OPERATION

A delete operation can only violate referential integrity
constraints, i.e., if the tuple being deleted is referenced by
the foreign keys from other tuples.

DBMS can:

reject deletion, with explanation

attempt to cascade deletion

modify referencing attribute

EXAMPLE: DELETE THE TUPLE JUST
INSERTED (WITH SSN = 4444555)

DELETE FROM employee

WHERE ssn = 4444555;

3. UPDATE OPERATION

An update operation is used to change the values of one
or more attributes in a tuple of a table

Issues already discussed with insert and delete could arise
with this operation, specifically:

• if a primary key is modified … same as deleting one
tuple and inserting another tuple in its place

• if a foreign key is modified … DBMS must ensure that
new value refers to an existing tuple in the reference
relation.

CASCADE UPDATE AND DELETE

Whenever tuples (rows) in the referenced (master)
table are deleted (or updated), the respective tuples
of the referencing (child) table with a matching
foreign key column will be deleted (or updated) as
well.

Note that if cascading DELETE is turned on there could be
many deletions performed with the following query:

DELETE FROM employee

WHERE SSN = 123456789;

PROBLEM SHEETS/EXAM

oIn problem sheet 1 you will practice DDL (and using the
GUI (Create Table option) if you wish)

o In other assignments you will be asked to work with the
DDL commands

o In exam, you will be asked for DDL commands but not
any GUI questions

Therefore … it is important to know both approaches.

You try … Try adding these tables to the
company database (choosing suitable data
types):
These two tables keep track of products ordered by employees.

The product table contains a unique product id (the primary key of the
table), name of the product, the unit price of the product and a
description of the product).

The empOrder table contains the SSN of each employee who ordered
a product, the ID of the product they ordered (productID) and the
date they made the order. Note that ssn and productID are the
primary keys, ssn is a foreign key to ssn in table employee and
productID is a foreign key to id in table product:

product(id, name, unitPrice, description)

empOrder(ssn, productID, orderDate)

SQL DML STATEMENT
CT230
Database
Systems

QUESTIONS?

Recall: SQL:

Structured

Query

Language

A special purpose programming language for relational
database systems

Recall: ANSI/ISO SQL

Standardised SQL which comprises three
components:

DDL – data definition language

DCL – data control language

DML – data manipulation language

DML: DATA MANIPULATION LANGUAGE

4 DML statements:

INSERT

SELECT

UPDATE

DELETE

insert data

query data

update data

delete data

DML SUPPORTS CRUD OPERATIONS

CRUD operations are the four basic functions we wish to perform
on persistent data:

Create: insert a new tuple (INSERT)

Read: retrieve some data (SELECT)

Update: modify some data (UPDATE)

Delete: delete some data or a tuple (DELETE)

* we have already seen examples of INSERT, UPDATE and
DELETE

Notes:
• The order of the clauses cannot be changed
• SELECT and FROM are always required, other clauses are optional

SELECT
Basic syntax for an SQL select query to READ data
consists of 6 clauses:

SELECT [DISTINCT] <attribute list>

FROM <table list>

WHERE <condition>

GROUP BY <group attributes>

HAVING <group condition>

ORDER BY <attribute list>

NOTES ON SQL CLASS WORK:

For SQL SELECT work all examples with have a unique (!)
number to ease cross-reference between lecture notes,
your own attempts, and examples on Blackboard.

SELECT FROM WHERE

SELECT [DISTINCT] <attribute list>

FROM <table list>

WHERE <condition>

<attribute list> list of attribute (column) names (separated by
commas) whose values will be retrieved by the query

<table list> list of table names (separated by commas) containing
the attributes

<condition> Boolean expression that identifies the tuples to be
retrieved by the query

WHERE clause: Boolean condition

For each tuple (row) in the table(s) which are part
of query:

o tuple is checked to see if condition is true for this
tuple
 If true, tuple is part of the output
 If not true, tuple is not part of the output

COMPARISON OPERATORS:

The comparison operators are:
= <= < > >= !=

Conditions can be compounded by used of Boolean

AND, OR

Conditions can be negated with NOT

(Note: In some versions of SQL (e.g. in MS) the != operator
is written as <>)

RECALL: SQL is case insensitive …

But linux is case sensitive …. and
web1.cs.nuigalway.ie is a linux server

Therefore need to be careful with table names in
particular as

EMPLOYEE != employee

condition

tableattribute

SELECT fname, minit, lname

FROM employee

WHERE salary > 55000;

What is output? … how many employees? … menti.com

First SELECT Examples

Using the COMPANY relational database instance of the
COMPANY SCHEMA develop SQL queries for the following:

1. List the names of all employees who earn more than 45000

employee(fname, minit, lname, ssn, bdate, address, gender, salary, superssn,
dno)

mySQL …

** Attribute names are separated by commas
** Numbers are NOT enclosed in quotes
** Strings are enclosed in quotes

NOTE:

Using AND and OR … SEE menti.com
What is the difference in output between these
two versions of the query:

SELECT fname, minit, lname

FROM employee

WHERE dno != 5 AND salary > 45000;

SELECT fname, minit, lname

FROM employee

WHERE dno != 5 OR salary > 45000;

employee(fname, minit, lname, ssn, bdate, address, gender,
salary, superssn, dno)

Recall: BOOLEAN ALGEBRA:

In order for the Boolean AND of three conditions to be
true, each individual condition (a, b, c) must be true.

Evaluation usually proceeds from Left to Right
evaluating the TRUTH or each condition before
returning True or False.

CODING STYLE

• Complying with coding style rules is crucial for a career in
computing.

• Clean code is focused and understandable.

• Usually SQL keywords are capitalised and table and
column names are mostly kept in lowercase unless
combining words and not using an underscore

• Code should be organised horizontally and vertically (and
not all written on one line).

• Code blocks are separated by a semi-colon.

• Use comments (#, --, /* and */) to explain code.

Note: strings MUST BE enclosed in single quotes

2 EXAMPLES TO TRY … menti.com
employee(fname, minit, lname, ssn, bdate, address, gender, salary, superssn, dno)

department(dname, dnumber, mgrssn, mgrstartdate)

dept_locations(dnumber, dlocation)

project(pname, pnumber, plocation, dnum)

works_on(essn, pno, hours)

dependent(essn, dependent_name, gender, bdate, relationship)

Example 2: Write a query to list the names of all
projects located in Stafford
Example 3: Write a query to list the address and
birth date of the employee with name John B Smith

Are these solutions correct?
#3: Write a query to list the address and birth
date of the employee with name John B Smith

SELECT bdate, address

FROM employee

WHERE fname = 'John B Smith’;

SELECT bdate, address

FROM employee

WHERE ssn = 123456789;

Be VERY careful of
getting the “right”
result using the “wrong”
query

CALCULATED OR DERIVED FIELDS

Can specify an SQL expression in the SELECT clause which
can involve numerical operations on numeric fields and
counting operations on non-numeric fields

Example 4: Produce a list of monthly salaries for staff,
showing staff ID and the salary details

employee(fname, minit, lname, ssn, bdate, address, gender,
salary, superssn, dno)

WILL THIS WORK?
Example 4: produce a list of monthly salaries for
staff, showing staff ID (ssn) and the monrthly salary
details

SELECT ssn, salary/12

FROM employee;

employee(fname, minit, lname, ssn, bdate, address, gender,
salary, superssn, dno)

TIDYING UP THE OUTPUT ….
1. Using Keywords CAST, AS and DECIMAL(x, y) to specify the
total number of digits (x) and number of digits (y) after the
decimal point when working with real numbers :

SELECT ssn, CAST(salary/12.0 AS DECIMAL(8, 2))

FROM employee;

2. Using Keyword AS to rename output:

SELECT ssn, CAST(salary/12.0 AS DECIMAL(8, 2))

AS mthlySalary

FROM employee;

USING KEYWORD DISTINCT

Keyword DISTINCT automatically removes duplicates
from the returned result set.

Should be careful of using with large result sets as
can be an expensive operation to perform (not a
problem for our small examples).

QUESTION … how do you think DISTINCT could be
implemented?

EXAMPLE 5:
Produce a list of all salaries

SELECT salary

FROM employee;

EXAMPLE 6:
Produce a list of DISTINCT salaries

SELECT DISTINCT salary

FROM employee;

NOTE:

To retrieve all attribute values of selected tuples, you do
not have to explicitly list all the attribute names ….
Instead can use SELECT *

May need to be careful of using this when you begin to
join multiple tables or in real-world applications

SELECT *

FROM employee;

MORE EXAMPLES TO TRY:
SEE menti.com

#7: Retrieve the address of the employee whose SSN is
123456789

#8: Retrieve all details stored on all employees in the employee
table who work in department 4.

#9. List all locations where departments are (no need to list the
department as well)

#10. Retrieve the salary and name of all employees working in
department 5

SOME NEW OPERATORS:

BETWEEN : range search, including endpoints of range

IN : tests if a data value matches one of a list of values

(NOT IN)

LIKE : allows string comparison, when equality is too strict

IS NULL : allow an explicit search for NULL

Set Operators:

UNION, INTERSECTION,

MINUS/DIFFERENCE

EXAMPLE 11: Retrieve names of all
employees whose salary is between
50000 and 80000

-- option1:

SELECT fname, minit, lname

FROM employee

WHERE salary >= 50000 AND salary <= 80000;

-- option 2:

SELECT fname, minit, lname

FROM employee

WHERE salary BETWEEN 50000 AND 80000;

end points
included in
range

SUMMARY

The 3 most important keywords in Database Programming:

SELECT

FROM

WHERE

Practice with your own company database until questions
1-11 make sense to you!

MORE SQL OPERATORS, WORKING
WITH STRINGS AND SUB-QUERIES

CT230
Database Systems 1

CONCATENATING STRINGS AND ORDERING OUTPUT

Although we want to store atomic attributes as much as possible we may not
want to display string values in a way different to how they are stored

For example, for query #10. Retrieve the salary and name of all employees
working in department 5, compare the outputs:

KEYWORDS TO MODIFY OUTPUT …
AS

… Used to rename any output in SELECT

… can also be used to re-name (alias) tables in FROM

CONCAT

… concatenate strings

… similar usage to other programming languages

CAST

… CAST(expression AS datatype(length))

ORDER BY

… last clause in SQL to order output results

ORDERING THE OUTPUT WITH
ORDER BY

Syntax:

ORDER BY <attribute list>

Allows the results of a query to be ordered by values
of one or more attributes

Either ascending (ASC) or descending (DESC).

The default order is ascending.

** Must be last clause of the SELECT statement.

Note: ORDER is a reserved keyword!

TIDYING UP SQL CODE … Example 11 again

SELECT

fname,

minit,

lname

FROM

employee

WHERE

salary BETWEEN 50000 AND 80000;

EXAMPLE 11: Retrieve names of all employees whose salary is between
50000 and 80000

TIDYING UP OUTPUT… #11 again
SELECT

CONCAT(fname, ‘ ’, minit, ‘ ’, lname) AS Name

FROM

employee

WHERE

salary BETWEEN 50000 AND 80000

ORDER BY

lname;

EXAMPLE 12: Produce a list of salaries for all staff, produced in
descending order of salary (outputting ssn, names and salary)

TOP AND LIMIT (EXAMPLE 13)
SELECT TOP N clause is used to specify the number of tuples/rows (N) to return but it
is not supported by mySQL. Instead mySQL supports a LIMIT N clause which has the
same functionality. The LIMIT clause is listed at the end of the query.

Example 13: List the employees with the top 3 salaries

SELECT

ssn, CONCAT(fname, ‘ ‘ , lname) AS Name , salary

FROM

employee

ORDER BY

salary DESC

LIMIT 3;

NOTE: SINGLE AND DOUBLE QUOTES

MySQL usually allows single and double quotes to be used interchangeably.

Generally, single quotes should be used for strings (varchar(), text, etc.)

HOW TO DEAL WITH APOSTROPHES IN STRINGS ….

We must be careful because an opening quote could be accidently closed by an
apostrophe.

To overcome this, if there is an apostrophe in a string it should be replaced by
two apostrophes side-by-side (general rule for all special characters – have two
of the character) or \

e.g., Find the salary for the employee with surname O’Grady

SELECT salary

FROM employee

WHERE lname = ‘O’’Grady’;

N.B. Must also take care of this when inserting string data using INSERT INTO

Example from company database:

EXAMPLE 14: Using the operator Is Null retrieve names
of all employees who Do Not have a supervisor
(superssn IS NULL)

SELECT

FROM

WHERE

IS NULL : allow an explicit search for NULL

WORKING WITH STRINGS AND PATTERN
MATCHING

SQL is case insensitive (apart from table names as mentioned if on linux server)

Case insensitivity also applies to string searching

However, often when working with strings we do not look for an exact match (i.e. an exact
match using “=“)

To support partial matching often use pattern matching characters and LIKE with wildcard
characters % and _

Symbol Description Example (fname)

% Represents 0 or more characters j% finds John, Joyce,
James, Jennifer

_ Represents a single character j___ finds John only

EXAMPLES (#15) … what is the difference?

CAN USE REGEXP FOR MORE COMPLICATED STRING
MATCHING

Symbol Description

^ Matches position at the beginning of the searched string

$ Matches position at the end of the searched string

[] Matches any character inside the square brackets

[^] Matches any character not inside the square brackets

* Matches preceding character 0 or more times

+ Matches preceding character 1 or more times

| Or

{n} Matches preceding character n number of times

EXAMPLE 16a: Find the names of employees whose
first names begin with jo or ja

EXAMPLE 16b: Find the names of employees whose
first names end with n

EXAMPLE 17: Find employees (name and address) who
live in Houston

EXAMPLE 18:
Version 1: List the details (name and birth date) of the children of the
employee with SSN 333445555

Version 2: List the details (name and birth date) of the children of Franklin T
Wong

What is the difference?

For version 2, we need two tables and we need to explicitly link the two tables
as part of the query (that is the employee and dependent tables) in order
to meet this request or to use a sub-query

HOW TO ACCESS DATA ACROSS MULTIPLE TABLES?

3 potential approaches*:

• Joins

• Subqueries

• Union queries

* not all suitable for all problems

SUBQUERIES

• A subquery is a query within another query
• Also called a nested query

• The subquery usually returns data that will be used in the main
query

• Data returned from the subquery may be a set of values or a
single value

• Subqueries can be used with the SELECT, INSERT, UPDATE, and
DELETE statements

When to use a sub-query?

•Needed when an existing value from the database needs to be
retrieved and used as part of the query solution.

•Needed when an aggregate function needs to be performed and
used as part of a query solution.

•Can (sometimes) replace a join of tables (where appropriate).

Subqueries in SELECT

Subqueries can be used as part of the WHERE and HAVING
clauses of an outer SELECT

SELECT …………

FROM …………

WHERE X

(SELECT ……

FROM ………

WHERE …………);

Nested SELECT statement is called a subquery
SELECT statement which contains subquery is called an
outer query

Some connector between outer
query and subquery

SUBQUERY SAMPLE FORMAT:

subquery

outer query

CONNECTING OUTER AND INNER QUERIES (1 OF 2)

If subquery returns only one value then can use operators such as:

=, !=, >, >=, <, <=

If subquery could return more than one value (i.e., a list of values)
then need connectors such as:

IN, ANY, ALL to check through the values from the subquery.

CONNECTING OUTER AND INNER QUERIES (2 OF 2)

The keyword NOT can also be used where appropriate (often with
IN, e.g., NOT IN)

In addition can have a more general condition using:

Exists: True if there exists at least one value in the result from a
subquery

Not Exists: True if there is nothing in the result form a subquery (i.e.
it is empty).

CONNECTORS: ANY, ALL

Used with basic mathematical operators: =, !=, >, <, >=, <=

For example,

=ALL

>ANY
ALL: the condition is true if the comparison is true for every (ALL) values
returned by the subquery.
ANY: the condition is true if the comparison is true for at least one (ANY)
value returned by the subquery.

CONNECTOR: IN

Checks for equality.

Can be used for a list of values or a single value.

Does not require any additional mathematical operator.

The IN condition is true if the comparison is true for at least one
value returned by the subquery, i.e. “a value is IN the subquery”.

Returning to EXAMPLE 18:
Version 2: List the details (name and birth date) of the children of Franklin T
Wong?

Using a sub-query:

•The sub-query should query the employee table to find the ssn of the employee
Franklin T Wong.

•The outer query can then use the ssn returned by the subquery to check if the
ssn exists (as an essn) in the dependent table. If/when a match is found return
the name and birth date of the children.

EXAMPLE 18 ctd.

•“The sub-query should query the employee table to find the ssn of the
employee Franklin T Wong”

SELECT ssn
FROM employee
WHERE fname = 'Franklin' AND minit = 'T' AND lname = 'Wong';

•The outer query can then use the ssn returned by the subquery to check if the
ssn exists (as an essn) in the dependent table. If/when a match is found return
the name and birth date of the children (not spouse).

SELECT dependent_name, bdate
FROM dependent
WHERE relationship != ‘spouse’ AND essn =

PUTTING THIS TOGETHER ….

TRY …. EXAMPLE 19: Using a subquery method, list the staff
(names) who work in department named ‘headquarters’

Steps:

1. Use a subquery to get John B Smith’s department (a single number)

2. Use outer query to find who else is in that department number

* Be careful not to return “John B Smith” in the answer – i.e. he is in his own
department!

EXAMPLE 20: Using subqueries, list the names of all
employees who are in the same department as employee
John B Smith

You try ….

#21 Retrieve the name and salary of all employees who work on a project for
greater than 20 hours.

#22 Retrieve the names of employees who have no dependents (Hint: using
NOT IN to connect the queries).

SUMMARY

•Working with strings is an important part of SQL coding.

•Writing code that is easy to read – and that produces easy-to-read output is
also very important.

•We can nest queries so that we can access data across multiple tables (Sub-
queries). It is very important to use the correct connector between outer and
inner queries (often there is more than one suitable option).

SQL SELECT STATEMENT
Aggregate Functions

GROUP BY & HAVING clauses

CT230
Database
Systems

AGGREGATE FUNCTIONS

Aggregate functions are only supported (can only be
used) in SELECT clause and HAVING clause, even if
we would like to use them elsewhere! (e.g as part of a
condition in where clause)

oKeywords SUM, AVG, MIN, MAX work as expected
and can only be applied to numeric data

oKeyword COUNT can be used to count the number of
tuples/values/rows specified in a query

oCan also use mathematical operations as part of an
aggregate function on numeric data (e.g., *, +, -, /).

USING SUM, MAX, MIN, AVG

Example 23: Find the total number of hours worked on
projects in the company, the maximum and minimum hours
worked by an employee on a project and the average
number of hours worked.

DOES THIS MAKE SENSE?

SELECT ssn, SUM(salary) AS answer

FROM employee;

EXAMPLE 24 What is the output?

SELECT

SUM(salary)/12

FROM

employee;

To Do: Tidy up the output …

WORKING WITH COUNT()

• Very useful aggregate function

• Counts the number of tuples/rows in a result

• Can only be used in SELECT and HAVING clauses, as with
all aggregate functions

• Similar to count() and counta() in Excel and other
spreadsheets

EXAMPLE 25:
How many employees earn over 60000

** Note:
o Do not want the employee names
o Want to count how many there are
o Want a number returned…so we use count()
SELECT

COUNT(*) AS 'num earning > 60k'

FROM

employee

WHERE

salary > 60000;

NOTE:

Whatever is in the output it is the tuples/rows
which are counted …. therefore it is not
necessary to specify the attribute name

SELECT

COUNT(*) AS 'num earning > 60k'

FROM

employee

WHERE

salary > 60000;

MORE COUNT() EXAMPLES:

Example 26: Using a sub-query find how many employees
work on project with name ‘ProductY’?

Example 27: Using a sub-query find how many children
employee John Smith has?

Example 28: Find the yearly salary payments the
company must make if everyone receives a 2% (.02) pay
rise

Example 29: Find the number of employees working for
the research department

USING A SUB-QUERY TO RETURN AN
AGGREGATE VALUE

Example 30: Name the employees who earn greater than
the average employee salary in the company

Only a
subquery
will work

here

EXAMPLE 30 VARIATIONS
Will these work?

YOU TRY …

Example 31:

How many employees earn the minimum salary in the
company?

SELECT [DISTINCT] <attribute list>

FROM <table list>

WHERE <condition>

GROUP BY <group attributes>

HAVING <group condition>

ORDER BY <attribute list>

GROUP BY
HAVING

Recall:

GROUP BY

Syntax:

GROUP BY <group attributes>

o The GROUP BY clause allows the grouping (combining)
of rows of a table together so that all occurrences within a
specified group are collected together.

o Aggregate functions (min, max, avg, sum, count) can then
be applied to the groups.

Example 32:
List the dno of each department

-- version 1

SELECT dno

FROM employee

GROUP BY dno;

-- version 2

SELECT DISTINCT dno

FROM employee;

The GROUP BY clause specifies the group and the aggregate
function is applied to the group.

• COUNT(*) can be used to count the number of rows (tuples) in
the specified groups.

• AVG, SUM, MIN, MAX can be used to find average, sum, min
and max of a numerical value in a specified group.

The aggregate function is not mentioned in the GROUP BY clause,
but is specified in the SELECT clause.

USING AGGREGATE FUNCTIONS
WITH GROUP BY :

* IMPORTANT *

You must GROUP BY ALL attributes mentioned in the
SELECT clause unless they are involved in an
aggregation.

EXAMPLE 33: List the department number and
the number of employees in each department

SELECT dno, COUNT(*) AS numEmps

FROM employee

GROUP BY dno;

SELECT dno, SUM(salary) AS sum_salary

FROM employee

GROUP BY dno;

EXAMPLE 34: List the department number and
the total salary in each department

You try … EXAMPLE 35: For each
department, retrieve the department number,
the number of employees in the department,
and the average salary of the department

SELECT

FROM

GROUP BY

EXAMPLE 36:
List the number of dependents of each employee who has
dependents

SELECT dno, salary

FROM employee

GROUP BY dno;

Why is this wrong?

Recall:

•GROUP BY must contain all attributes in the SELECT clause
that are not part of an aggregate function

•In the example, we cannot leave “salary” without a group

Syntax:

HAVING <group condition>

The HAVING clause is used in conjunction with GROUP BY and allows
specification of conditions on groups.

N.B. The column names used in the HAVING clause must also appear
in the GROUP BY list or be contained within an aggregate function,
i.e., you cannot apply a HAVING condition to something that has not
been calculated already.

HAVING

Example 37: For each department that has more than 1
employee, retrieve the department number, the number of
employees in the department and the average salary of the
department.

SELECT dno,

COUNT(*) AS numEmps,

AVG(salary) AS avgSalary

FROM employee

GROUP BY dno

HAVING COUNT(*) > 1

Example 37: Tidying Output …

SELECT dno,

COUNT(*) AS numEmps,

CAST(AVG(salary) AS DECIMAL(10, 2)) AS avgSalary

FROM employee

GROUP BY dno

HAVING COUNT(*) > 1

EXAMPLE 38: List the project number and the
number of employees who work on the project
for projects that have 2 or more employees

SELECT

FROM

GROUP BY

HAVING

ORDER BY

SUMMARY
Apart from Joins, have covered some of the most important aspects of
SQL DDL and DML SELECT statements – with these you can build and
query many databases.
Important to know:

• DDL CREATE TABLE
• DML INSERT INTO
• DML SELECT:
• Single table queries
• Multiple table queries with sub-queries (To Do: Joins)
• Aggregate functions
• Working with strings (LIKE, %, REGREP, etc.)
• Tidying Output (AS, CAST)

TOPIC:
ENTITY RELATIONSHIP MODELS

CT230
Database
Systems 1

TOPIC:
Designing Tables with ER Models

See

Elmasri and Navathe book

Chapter 3 & Chapter 9

(3rd Edition)

DATA MODELS

Data models are concepts to describe the structure of
a database. They comprise

• High level or logical models;

• Representational/Implementation data models;

• Physical Data models

Data models allow for database abstraction

DATA DESIGN and
ENTITY RELATIONSHIP MODELS

Entity Relationship Models:

oProvide a way to model the data that will be
stored in a system.

oThe models are then used to create tables in the
relational model.

ENTITY RELATIONSHIP (ER) MODELS

ER models are a top-down approach to database
design.
They are used to identify:
1. the important data to be stored in database

called entities.

2. the relationships between the entities.
3. the attributes of entities.
4. the constraints of relationships and entities.

Software to
Create ER
Models

A comprehensive drawing package by Microsoft - MS
Visio - supports the drawing of a large set of diagrams,
including database ones. This is worth getting with your
free Microsoft access.
Many other similar packages available:
Edraw: https://www.edrawsoft.com/entity-
relationship-diagrams.php
Astah: http://astah.net/
Lucidchart: www.lucidchart.com

https://www.edrawsoft.com/entity-relationship-diagrams.php
http://astah.net/
http://www.lucidchart.com/

NOTATION

A number of different notations can be used to
represent the same model.

The original notation (Chen) uses diamonds,
rectangles and ellipses.

It is easier to hand-draw so useful in an exam
situation.

It is less implementation oriented than other
notations.

lecturer departmentbelongs
to

ER MODEL NOTATIONS CTD.

There are many notations in use, some of the more
common:

Chen Notation

 IE Crow’s foot Notation

UML

 Integrated Definition 1, Extended (IDEF1X)

Different software products often have their own
minor variations of the above.

COMPANY ER MODEL EXAMPLE

Consider the ER diagram (Chen’s notation) of the
Company Schema ….

gender

gender

SOME DEFINITIONS:
Entity type: group of objects, with the same properties,
which are identified as having an independent existence
…

e.g.,

staff

customer

product

employee

staff

customer

product

Entity
Instance:
One employee,
e.g. John B Smith Entity Type: employee

ENTITY INSTANCE AND ENTITY TYPE

• An entity type is a collection of entity instances
that share common properties or characteristics

• An entity instance or entity occurrence is a single
uniquely identifiable occurrence of an entity type
(e.g., row in a table).

employee departmentworks for/
has

RELATIONSHIP TYPE:

A set of meaningful relationships among entity
types
e.g.,
employee “works for” department
department “has” employee

RELATIONSHIP OCCURRENCE (INSTANCE):
A uniquely identifiable association which includes
one occurrence from each participating entity
type; reading left to right and right to left.

e.g.

Left-to-Right: John Smith “works for” Research
department

Right-to-left: Research department “has” John
Smith

employee departmentworks for
/has

ATTRIBUTES

Attributes are a named property or characteristic of an
entity.

Each entity has a set of attributes associated with it.

Several types of attributes exist:

Key

Composite

Derived

Multi-valued

ATTRIBUTE NOTATION

Chen: An oval enclosing
the name of the
attribute

Crow: Listed in the
entity box

staff

Lname
SSN

KEY ATTRIBUTES

•Each entity type must have an attribute or set of
attributes that uniquely identifies each instance from
other instances of the same type.

•A candidate key is an attribute (or combination of
attributes) that uniquely identifies each instance of an
entity type.

•A primary key (PK) is a candidate key that has been
selected as the identifier for an entity type.

•Notation: Underline attribute name chosen as primary
key

PK NOTATION: SSN PRIMARY KEY

staff

Lname
SSN

COMPOSITE AND SIMPLE (ATOMIC)
ATTRIBUTES

A composite attribute is an attribute that is composed of
several more basic/atomic attributes.

If the composite attribute is referenced as a whole only,
then there is no need to subdivide it into component
attributes, otherwise you should divide it:

Minit
Lname

Name
Address

STORED AND DERIVED ATTRIBUTES

A derived attribute is an attribute whose value
can be determined from another attribute.

For Chen’s notation, the notation is a dotted oval.

For crow’s foot notation, derived attributes can be
represented by enclosing the attribute in [], e.g.,
[age].

MULTI-VALUED ATTRIBUTES

A multi-valued attribute is an attribute which has
lower and upper bounds on the number of values
for an individual entry.

For Chen’s notation, one oval inside another.

For crow’s foot notation, multi-valued attributes
can be represented by enclosing the attribute in
{}, e.g., {skills}, {phoneNums}, etc.

Can you identify …..

gender

gender

menti.com … list all multi-valued
attributes?

gender

gender

menti.com … list all derived attributes?

gender

gender

NAMING

•The choice of names for entity types, attributes,
relationship types and roles is not always straight-
forward.

•Should choose names that convey as much as possible
the meanings attached to the constructs.

•These names will subsequently be used as table
names and attribute names in database so important
to choose good names.

•Remember, should not use sql keywords (order, date,
etc.)

QUESTION: What attributes might you
have for these entities?

Subject/Module

Person

Exam … see menti.com

Bank account

Book … see menti.com

Film

MORE ON ENTITIES:
STRONG AND WEAK ENTITIES

Strong: an entity type whose existence is not dependent
on some other entity type.

Weak: an entity type whose existence is dependent on
some other entity type (does not have key attributes of
its own)

EXAMPLE:
In the company schema the
dependent relation contains data
of dependents for each
employee.

dependent is a weak entity
because two tuples can only be
distinguished based on employee
SSN.

An alternative would be to have
a unique ID for each dependent
(e.g. their own SSN) and the
dependents could be a strong
entity

gender

MORE ON RELATIONSHIPS

Whenever an attribute of one entity type refers
to another entity type, some relationship exists.

The degree of a relationship type is the number
of participating entity types.

Relationship types may have certain constraints.

NOTATION

For Chen’s notation: A Diamond shape is used to
name the relationship. 1 and M/N are used for
the “1” and “many” sides respectively.

For Crow’s foot notation: The crow foot is used as
the representation of "many”, and one line is used
for the representation of “1”.

M/N

EXAMPLE: A department has many staff

department staff
has/

belongs
to

M1

MORE ON RELATIONSHIPS

With Chen’s notation, relationships may have attributes

Attributes are drawn “off” the diamond shape of the
relationship.

CARDINALITY RATIO

Specifies the number of relationship instances that
an entity can participate in.

The possible cardinality ratios for binary
relationship types are:

1:1, One to One

1:N, One to Many

M:N, Many to Many

EXAMPLE: 1:1

At most one instance of entity A is associated with one
instance of entity B

Example: One employee has one office

Chen notation:

EMPLOYEE OFFICEHAS
1 1

J. Griffith Room 405

S. Hill
Room 428

F. Glavin Room 404

EMPLOYEE OFFICEHAS
1 1

hasemployee office

EXAMPLE: 1:N
For one instance of entity A, there are 0, 1 or many
instances of entity B

Chen Notation:

department staff
has/
belong to

1 N

Crow’s foot notation:

History
Kevin O' Sullivan

Maths

CS Frank Glavin

Pádraig Lenihan
Róisín Healy

has/
belong todepartment

staff

department staff
has/
belong to

1 N

Graham Ellis

John Burns

Rachel Quinlan
Josephine Griffith

EXAMPLE: M:N
For one instance of entity A, there are 0, 1 or
many instances of entity B and

For one instance of entity B, there are 0, 1 or
many instances of entity A

employee projectworks_on/
has

M N

Staff

PK SSN

 Fname
 Lname
 Address
 Dno

Project

PK,FK1 SSN
PK ID

 Name

has / works on

J. Smith
Project 2

F. Wong

J. English Project 3

Project 1

Project 4

works_on/
has

employee projectworks_on/
has

M N

employee
project

Project 5

ASIDE: Structural constraints on
relationships

Often we may know the min and max of the
cardinalities
 e.g., limit to number of books which can be borrowed

Structural constraints specify a pair of integer
numbers (min, max) for each entity participating in
a relationship

Examples: (0, 1) ,(1,1), (1, N), (1, 7)

We will not model this in our examples

CASS QUESTION –
See menti.com

In a hospital, patients are assigned to wards;
wards have patients. What is the cardinality of
the relationship?

TOTAL AND PARTIAL PARTICIPATION

Total Participation: all instances of an entity must
participate in the relationship, i.e., every entity
instance in one set must be related to an entity
instance in the second set via the relationship.

Partial Participation: some subset of instances of
an entity will participate in relationship, but not
all, i.e., some entity instances in one set are
related to an entity instance in the second set via
the relationship.

NOTATION FOR PARTICIPATION
CHEN’S NOTATION

Double parallel lines for Total Participation
Single line for Partial Participation

 In both cases, lines drawn from the participating
entity to the relationship (the diamond) to
indicate the participation of instance from that
entity in the relationship

EXAMPLES

EMPLOYEE manages DEPARTMENT

EMPLOYEE works_for DEPARTMENT

EXAMPLES:
Total and partial participation

EMPLOYEE manages/
managed by DEPARTMENT

EMPLOYEE works_for/
has

DEPARTMENT

NOTATION FOR PARTICIPATION
CROW’S FOOT NOTATION

Use the idea of Ordinality/Optionality
Optionality of 0: if an entity A has partial
participation in a relationship to entity B then this
means A is associated with 0 or more of the other
entity so optionality sign goes beside B.
Optionality of 1: if an entity A has full participation
in a relationship to entity B then this means A is
associated with at least 1 or more of B so
optionality sign goes beside B.

(and vice versa when looking at participation of B in
relationship)

CROW’S FOOT NOTATION

Bar for Optionality of 1:

Circle (or ‘o’) for Optionality of 0

In Crow’s foot notation, there is no diamond so there is a
direct relationship line between the entities. On this line:
The optionality drawn beside entity A refers to how an
instance of entity B is related to entity A.
That is, whether B can be involved partially (0) or not
(1)

Example in Following Right to Left
Relationships:

is of 0 or more

is of 1 or more

is of 1 and only 1

is of 0 or 1

WHICH IS CORRECT FOR THIS RELATIONSHIP?
Total or partial participation?
See menti.com

EMPLOYEE
M NWORKS_ON/

HAS
PROJECT

EMPLOYEE
M N

WORKS_ON/
HAS

PROJECT

Staff

PK SSN

 Fname
 Lname
 Address
 Dno

Project

PK,FK1 SSN
PK ID

 Name

has / works on

Staff

PK SSN

 Fname
 Lname
 Address
 Dno

Project

PK,FK1 SSN
PK ID

 Name

has / works on

Describe the relationship in words in
the following: See menti.com

Customer Order

submits / submitted by

CUSTOMER
1 NSUBMITS/

SUBMITTED BY ORDER

See menti.com
Describe the relationship in words in the
following:
Does it look correct?
How would you fix it?

EMPLOYEE
1 SUPERVISES/

IS SUPERVISED
BY

N

See menti.com
What is the relationship between these
entities?

• Cars and people

• Students and library seats

• Students and subjects

• Exams and Locations

• Customers and Bank accounts

• Books and Authors

• Cinema and films/movies

NOTE:

A weak entity type always has a total participation
constraint

Need to show the “identifying relationship”

EMPLOYEE
1 N

dependents_of DEPENDENT

CHEN’S NOTATION FOR WEAK ENTITY

Double rectangle for Entity

Double diamond for Relationship

Weak entity has full participation in the
relationship

CROW’S FOOT NOTATION FOR WEAK
ENTITY:
Can represent the Weak Entity as a normal entity
but do not choose any attributes as primary keys.
For an attribute that partially determines the entity
instances, choose the ‘required’ option
Represent the relationship between entities with a
solid line (usually)
This indicates it is an “identifying” relationship

answer

 option_num
 description

belongs to / has

In general, with entities:

There may be two valid solutions, one with a
weak entity and one without.

There is not a huge difficulty if you do not
identify weak entities in a solution as long as all
entities have primary attributes.

May be slightly non-optimal in terms of
introducing an additional primary key that is not
needed but not a huge problem for us at this
level.

Entities or multi-valued attributes?

Sometimes it may not be clear whether something
should be modelled as a multi-valued attribute or
an Entity.

Both may be equally correct as long as you have
represented all the information you were asked to.

When you map either case to tables in a
database you might see very little difference
between the two approaches.

CLASS EXAMPLE 1
A database is to be created to hold information on lecturers,
departments, courses and modules.

Lecturers are associated with only one department. Each lecturer in
addition has an associated staff id, title, name, office number and
building. Each lecturer teaches a number of modules and a number of
lecturers may teach one module.

Each module has an associated unique code (e.g. CT230), name,
semester taught, semester examined, ECTs and zero or more
prerequisites (which are modules). For example, CT103 and CT102
may be a prerequisite for CT2101.

Each module is part of one or more course instances (e.g. 2BA, 2BCT,
2BFS, 3BP). Each course has an associated name and code.

Each course is controlled by a department, and a department can
control a number of courses. Each department has an associated
name, and may have a number of different locations; each
department has one head of department.

CLASS QUESTION:

Using Chen’s notation, create an ER model to
accurately model the above information. Show all
entities, relationships, attributes, cardinalities, and
total and partial participations. State any
assumptions you make.

STEPS:

Identify entities.

Identify relationships between entities.

Draw entities and relationships.

Add attributes to entities (and relationships if
appropriate).

Add cardinalities to relationships.

Add participation constraints (total or partial) to
relationships.

Check all entities have primary keys identified.

MAPPING ER MODELS TO TABLES IN THE
RELATIONAL MODEL

Once you have your ER diagram you now need to
convert this into a set of tables so that you can
implement this in a relational model (e.g. as
MySQL tables using CREATE TABLE commands)
This stage is called Mapping ER Models to
Tables in the Relational Model and it specifies a
set of rules that must be followed in a certain
order.
The rules specified here are based on Chen’s
notation.

STEPS … Mapping ER models to tables
in the relational model

1. For each entity create a table R that includes
all the simple attributes of the entity.

2. For strong entities, choose a key attribute as
primary key of the table.

STEPS … Mapping ER models to tables
in the relational model

3. For weak entities R, include as foreign key
attributes of R the primary key attributes of the
table that corresponds to the owner. The primary
key of R is a combination of the primary key of
owner and the partial key of the weak entity type.

The relationship of the weak and strong entity
is generally taken care of by this step

STEPS CTD.… mapping ER models to
tables in the relational model

4. For each binary 1:1 relationship, identify entities
S and T that participate in relation.

•If applicable, choose the entity that has total
participation in the relation. Include as foreign key in
this table the primary key of other relation. Include
any attributes of the relationship as attributes of
chosen table.

•If both entities have total participation in the
relationship, you can choose either for the foreign key
and proceed as above or can map 2 entities, and
their associated attributes and relationship attributes
into 1 table.

5. For each binary 1:N relationship, identify the table S that
represents the N-side and T the table that represents the 1-
side.
• Include as a foreign key in S the primary key of table T

such that each entity on the N-side is related to at most
one entity instance on the 1-side. Include any attributes of
the relationship as attributes of S.

• For recursive 1:N relationships, choose the primary key of
the table and include it as a foreign key in the same table
(with a different name).

STEPS CTD.… mapping ER models to
tables in the relational model

STEPS CTD.… mapping ER models to
tables in the relational model

6. For each M:N relationship, create a new table S
to represent the relationship.

•Include as foreign key attributes in S the primary keys
of the tables that represent the participating entity
types – their combination will form the primary key of
S. Also include in S any attributes of the relationship.

•For a recursive M:N relationship, both foreign keys
come from the same table (give different name to
each) and become the new primary key.

STEPS CTD.… mapping ER models to
tables in the relational model

7. For each multi-valued attribute A of an entity S,
create a new table R. R will include:
•an attribute corresponding to A,
•primary key of S which will be a foreign key in
table R. Call this K.

•primary key of R is a combination of A and K

Map each of the following to tables in the
relational model:
wards and patients

Map each of the following to tables in the
relational model:
authors and books

Map each of the following to tables in the
relational model:
cars and people

Map each of the following to tables in the
relational model:
modules and students

CLASS WORK: Map the University model
created (Example 1) to tables in the
relational model

PROBLEM SHEET 4
An Irish holiday home rental company wishes to create an online database system to maintain information on
home owners who own holiday houses which the rental company rents on their behalf; customers who rent the
holiday homes, and the rental agreements. The data which should be stored is as follows:

Details stored on holiday houses are: a unique ID for each house, the address of the house (town, county and
Eircode), the number of bedrooms and bathrooms in the house and the maximum number of people the house
will accommodate. Two price details should be stored: low-season price per night and high-season/weekend
price per night. In addition a short description of the house amenities and surrounding amenities should be
stored.

Each house is owned by one home owner. A home owner may own many houses. Details stored on the home
owners are: a unique id, a username and password to login to the system, their name, address and telephone
number and their email address.

Customers can book one or more houses and a house can be booked many times. Details held on customers are:
unique ID, customer name, address, email address and phone number.

Details held on a booking are the dates the booking begins and ends, and the number of people wishing to
stay in the house as part of the booking. Any entered bookings must be confirmed by a company employee
(via phone or email). When the confirmation takes place, data should be stored to indicate that the
confirmation has taken place and to indicate the amount of money paid as a deposit. This database does not
currently hold any information on the check-in process and the payment of the balance due.

SUMMARY:

Important to Know:

o Basic definitions of entity, relationship, attribute (and different types),
cardinality and participation for Chen and Crow’s foot notation.

o Create ER Model (in Chen’s notation)

o Map from ER model in Chen notation to set of tables with associated
primary and foreign keys.

Common Errors:

o Missing Primary Keys for Entities.

o Missing cardinalities in Relationships.

o Only mapping entities to tables; not mapping relationships or multi-
valued attributes.

Returning to
SQL DML SELECT STATEMENT

Join and Union Queries

CT230
Database
Systems

RECALL EXAMPLE 18:
Version 1: List the details (name and birth date) of the
children of the employee with SSN 333445555

Version 2: List the details (name and birth date) of the
children of Franklin T Wong?

Now consider a 3rd version:

Version 3: List the details (name, birth date and
address) of the children of Franklin T Wong (assuming
the dependent’s address is Franklin Wong’s address)

RECALL sub-query solution to version 2:
List the details (name and birth date) of
the children of Franklin T Wong?

CAN WE MODIFY THIS TO GET THE SOLUTION TO
VERSION 3?
List the details (name, birth date and address) of the
children of Franklin T Wong (assuming the
dependent’s address is Franklin Wong’s address)

No – because we
need information from
two tables –we need
to use a join to join or
combine the two
tables so that the
information from both
is accessible and can
be displayed as the
output

JOINS

Joins combine multiple tables in to one table. This new
(temporary) table is then queried to return results so we can
return values from any of the tables which were joined.

Tables are joined by specifying links (or joins) across
attributes in the tables.

Joins are carried out on 2 tables at a time but many tables
can be joined, i.e., a third table can be joined to the table
that results from joining two tables.

SPECIFYING JOINS

1. In SQL must specify all the tables which are part of join in the
FROM clause

2. There are many different types of joins – all may not be
supported in the DBMS you are using – we will mostly use an
inner join which will always be supported.

3. Must then specify the join condition: for an inner join the condition
is foreign_key = primary_key/candidate_key.

4. The join condition can be specified in the FROM or WHERE
clause.

INNER JOINING TABLES:

The result of an inner join operation between two tables:

R(A1, A2, …, An) and

S (B1, B2, …, Bm)

is a table Q(A1, A2, …, An, B1, B2, …, Bm) where:

Q has one tuple for each combination of tuples
(one from R and S) whenever the combination
satisfies the join condition – the join will retrieve
ALL attributes in each table

CONSIDER:
INNER JOIN CONDITION FOR employee AND
dependent TABLES

Join condition: ssn = essn
Full query retrieving all employees and their dependents
(when they have dependents):

SELECT *

FROM employee INNER JOIN dependent

ON ssn = essn;

Result from joining employee and
dependent:

EXAMPLE 18 VERSION 3 JOIN SOLUTION
List the details (name, birth date and
address) of the children of Franklin T Wong

SELECT dependent_name, dependent.bdate, address

FROM employee INNER JOIN dependent ON

ssn = essn

WHERE relationship != ‘spouse’

AND fname = 'Franklin’

AND minit = 'T’

AND lname = 'Wong’;

NOTE:
When attributes with the same name, but from different tables,
are used in a join query, you need to specify the table name to
avoid ambiguity with respect to the attribute names.

Example: bdate in employee and dependent relations.

Can refer to both of these unambiguously as:

employee.bdate

dependent.bdate

If you do not do this, the DBMS does not know which one you
are referring to and gives an error:

EXAMPLE 39: Using an inner join, retrieve
the names and addresses of all employees
who work for the administration department

SELECT fname, lname, address

FROM ???

WHERE dname = 'administration’;

CONSIDER THE INNER JOIN CONDITION FOR
employee AND department USING
DEPARTMENT NUMBER

Join condition is: dno = dnumber

Full query retrieving all employees and their departments:
SELECT *

FROM employee INNER JOIN department

ON dno = dnumber;

EXAMPLE 39: Using a join, retrieve the names and
addresses of all employees who work for the
administration department

SELECT fname, lname, address

FROM employee INNER JOIN department

ON employee.dno = department.dnumber

WHERE dname = 'administration’;

Class Question: Can this be done with a sub-query?

Class Question: Can this be done with a sub-query?
(EXAMPLE 39: Retrieve the names and addresses of
all employees who work for the administration
department)

EXAMPLE 40: Retrieve the names and addresses of
all employees who work for the administration
department and the ssn of the manager of the
administration department

SELECT fname, lname, address, mgrssn

FROM employee INNER JOIN department

ON employee.dno = department.dnumber

WHERE dname = 'administration';

IMPLICIT AND EXPLICIT JOINS

The join condition can be specified implicitly or
explicitly as follows:

•An explicit join is specified in the FROM clause where
the tables to be joined are listed. The keyword INNER
JOIN is used for inner joins and the join condition is
listed also using keyword ON

•An implicit join is specified in the WHERE clause
without using the keyword ON. It is referred to as a
join condition. The tables must be listed in the FROM
clause, separated by commas. Other conditions can
also be specified in the WHERE clause as well as the
join condition.

IMPLICIT JOIN CONDITION IN
WHERE CLAUSE:

•No additional syntax to learn.

•All tables involved MUST be listed in FROM
clause.

•Condition to join tables is contained in the WHERE
clause. If there are other conditions, the join
condition is appended on with AND

• This is an INNER JOIN: all rows from both tables
will be returned whenever there is a match
between the attributes in the join condition

EXPLICIT JOIN CONDITION IN FROM
CLAUSE
Syntax for joining 2 tables:

SELECT [DISTINCT] <attribute list>

FROM <table>

[INNER/LEFT/RIGHT] JOIN <table>

ON <join condition>

WHERE <condition>

* Will mostly use INNER JOIN

EXAMPLE 18 AGAIN … USING AN IMPLICT JOIN
List the details (name, birth date and address) of the
children of Franklin T Wong

EXAMPLE 39 again: Retrieve the names and
addresses of all employees who work for the
administration department (using an implicit join)
SELECT fname, lname, address

FROM ??

WHERE dname = 'administration’;

Syntax of explicit join
with 3 tables

SELECT [DISTINCT] <attribute list>

FROM (<table>

[INNER/LEFT/RIGHT] JOIN <table>

ON <join condition>)

[INNER/LEFT/RIGHT] JOIN <table>

ON <join condition>

WHERE <condition>

Syntax of implicit join
with 3 tables

SELECT [DISTINCT] <attribute list>

FROM <table>,<table>,<table>

WHERE <join condition> AND

<join condition> AND

<condition>

Syntax of explicit join
with 4 tables

SELECT [DISTINCT] <attribute list>

FROM ((<table>

[INNER/LEFT/RIGHT] JOIN <table>

ON <join condition>)

[INNER/LEFT/RIGHT] JOIN <table>

ON <join condition>)

[INNER/LEFT/RIGHT] JOIN <table>

ON <join condition>

WHERE <condition>

Syntax of implicit join
with 4 tables

SELECT [DISTINCT] <attribute list>

FROM <table>,<table>,<table>,<table>

WHERE <join condition> AND

<join condition> AND

<join condition> AND

<condition>

EXAMPLE 41

For every project located in Stafford, list the
project number, the controlling department name,
and the department manager’s surname, address
and birth date.

SELECT pnumber, dname, lname, address, bdate

FROM project INNER JOIN department

ON project.dnum = department.dnumber

INNER JOIN employee

ON department.mgrssn = employee.ssn

WHERE plocation = ‘stafford’;

EXAMPLE 41

CLASS QUESTION:
> Re-write solution to example 41 using implicit joins?
> Can we re-write this using sub-queries?

DIFFERENT TYPES OF JOINS:
•Inner Join is the default when using Implicit Join

•An INNER JOIN includes the tuples from the first (left) of
the two tables only when they satisfy the join condition
and tuples from the second (right) table are only included
when they also satisfy the join condition

•For explicit joins, should explicitly state the join used:

For example joining employee and department on ssn
and mgrssn:
SELECT *

FROM employee INNER JOIN department ON

employee.ssn = department.mgrssn;

LEFT JOINS
Left (outer) joins include all of the tuples from the first (left) of two
tables – when they satisfy the join condition and even when they
don’t. Tuples from the second (right) table are only included when
they satisfy the join condition. Example:

SELECT *

FROM employee LEFT JOIN department ON

employee.ssn = department.mgrssn;

RIGHT JOINS

Right outer joins include all of the tuples from the second (right)
of two tables, even if there are no matching values for records
in the first (left) table. Tuples from the first (left) table are
included only if they satisfy the join condition. Example:

SELECT *

FROM employee RIGHT JOIN department ON

employee.ssn = department.mgrssn;

Graphical representation of
different types of joins (C.L. Moffat,
2008)

In MySQL only
INNER, LEFT and
RIGHT joins are
supported

EXAMPLE 42: What is the difference in the
output produced using INNER, LEFT and RIGHT joins
in the following?

SELECT *

FROM employee [INNER/LEFT/RIGHT] JOIN dependent

ON employee.ssn = dependent.essn;

SELF-JOINS AND ALIASES

A self-join is a normal SQL join that joins a table
to itself.

This is accomplished by using aliases to give each
“instance” of the table a separate name – the
keyword AS is used.

EXAMPLE 43: For each employee, retrieve the
employee’s name and the name of the employee’s
supervisor

Consider:

1. How to write the query if asked for the employee’s
name and supervisor’s SSN?

2. What should output look like? e.g., for John Smith:

First consider joining employee to itself …

Need two “copies” or instances of table employee…

Call them E (for employee) and S (for supervisor)

SELECT *

FROM employee AS e, employee AS s

WHERE e.superssn = s.ssn;

SELECT *

FROM employee AS e INNER JOIN employee AS s

ON e.superssn = s.ssn;

Why is this version better?
“For each employee, retrieve the employee’s name and the
name of the employee’s supervisor”

SELECT *

FROM employee AS e LEFT JOIN employee AS s

ON e.superssn = s.ssn;

EXAMPLE 43: For each employee, retrieve the
employee’s name and the name of the employee’s
supervisor

SELECT CONCAT(e.fname, ' ' , e.lname) AS employee,

CONCAT(s.fname, ' ' , s.lname) AS supervisor

FROM employee AS e LEFT JOIN employee AS s

ON e.superssn = s.ssn;

EXAMPLE 44: For each department, list the
department name, and the names, addresses and
the start date of all managers, ordered by
department name

SELECT

FROM

WHERE

ORDER BY ;

CAN SUB-QUERIES AND JOINS BE USED
INTERCHANGEABLY?

In some cases, yes, can replace a join of tables (where
appropriate) with a sub-query
But recall …

• Joins are needed when values across multiple tables must
be displayed.

•Sub-queries are needed when an existing value from a
table needs to be retrieved and used as part of the query
solution.

•Sub-queries are needed when an aggregate function
needs to be performed and used as part of a query
solution.

EXAMPLE 45: JOINS AND GROUP BY
List the employee name, and number of dependents of each
employee who has dependents

SELECT essn, fname, lname,

COUNT(*) AS numDeps

FROM employee INNER JOIN dependent

ON ssn = essn

GROUP BY essn, fname, lname;

SELECT essn, fname, lname, COUNT(*) AS numDeps

FROM employee INNER JOIN dependent

ON ssn = essn

GROUP BY essn;

Why won’t this work?

EXAMPLE 46: List the project name and the number of
employees who work on the project for projects that have 2
or more employees

SELECT pname,

COUNT(*) AS numEmps

FROM

GROUP BY

HAVING

UNION QUERIES

The keyword UNION is used to combine the results of two or
more queries or tables

MySQL does not support minus or intersection (intersect)
operators but the same functionality can be built using joins

For union queries, tables must be union compatible

UNION COMPATIBLE

Two relations are union compatible if the schemas of the
two relations match, i.e.,

same number of attributes in each relation and each pair
of corresponding attributes have the same domain

Example 47: Using both subqueries and union
queries (no joins) list all project numbers for projects
that involve a worker whose last name is ‘Wallace’ or a
manager, of the department that controls the project, with
last name ‘Wallace’

Steps:

First, consider two queries on their own and these can
be combined with a Union query:

Query 1. Finding the employees ‘Wallace’ working on
projects …

Query 2. Finding the manger ‘Wallace’ of a
department that controls project

-- employee

SELECT pno

FROM works_on

WHERE essn IN

(SELECT ssn

FROM employee

WHERE lname =
‘Wallace');

-- manager

SELECT pnumber

FROM project

WHERE dnum IN

(SELECT dnumber

FROM department

WHERE mgrssn IN

(SELECT ssn

FROM employee

WHERE lname =
‘Wallace'));

Example 47: Using both subqueries and union queries (no
joins) list all project numbers for projects that involve a worker
whose last name is ‘Wallace’ or a manager, of the department that
controls the project, with last name ‘Wallace’

EXAMPLE 47 Full solution

(SELECT pno

FROM works_on

WHERE essn IN

(SELECT ssn FROM employee

WHERE lname = ‘Wallace'))

UNION

(SELECT pnumber

FROM project

WHERE dnum IN (SELECT dnumber FROM department

WHERE mgrssn IN (SELECT ssn FROM employee

WHERE lname = ‘Wallace')));

MORE EXAMPLES

Example 48

Using a join, list all the locations of the research department

Example 49

For all projects located in ‘Houston’ list the name of the project and the
department which controls the project

Example 50

List the names of employees, and the number of hours they work, for
employees who work greater than the average number of hours

SUMMARY: JOINS AND UNION QUERIES

Important to know:

• How joins work in general

• How implicit and explicit inner joins work

• How left and right joins work

• When to use sub-queries and joins

• How Union queries work

TOPIC: NORMALISATION
PART 1

C230
Database
Systems

FUNDAMENTALS OF
DATABASE SYSTEMS
ELMASRI AND NAVATHE BOOK

See Chapter 14

(in 3rd Edition)

MOTIVATIONS

oWe can see from ER examples and mappings why we
get a particular grouping of tables.

However:

o What if different assumptions were made in the ER
model that leads to different – maybe larger (more
attributes/columns) tables?

oWhat happens over time as we need to add more
attributes to our tables to capture information that was
not part of the original requirements when creating the
ER model?

For example, what if:

The employee entity had extra attributes to
represent the department information?

For example, what if:

The employee entity had the dependent
information stored as attributes?

NORMALISATION

Normalisation rules gives us a formal measure of
why one grouping of attributes in a relation
schema may be better than another.

Normalised and un-normalised
databases

We can distinguish between normalised and un-normalised
databases

Both normalised and un-normalised databases have
advantages and disadvantages

If database is normalised:

No (or very little) redundancy.

No anomalies when inserting, deleting or modifying data.

If database is normalised:

More tables.

More foreign and primary keys to link tables

=> more complex queries (joins etc.)

DEFINITION: Redundancy

Unnecessary duplication of data in the database

e.g. if we included department details in Employee?

CONSEQUENCES OF
REDUNDANCY:

Space is wasted (due to duplication)

Data can become inconsistent due to potential problems
with update, insert and delete operations

DEFINITION: Duplication

Duplicated data can naturally be present in a database
and is not necessarily redundant.

For example, an attribute can have two identical values.

e.g., In company schema, ESSN in works_on may be
duplicated across many projects.

** Data is duplicated rather than redundant if when
deleting data, information is lost.

EXAMPLE 1:

For the company schema, consider the following alternative
schema for department which was initially created when
each department had only one location:

department(dnumber, dname, mgrssn, dlocation)

However, over time as the company grew, departments
were located in multiple locations:

2. What happens if a new manager is appointed to the
department with dnumber = 5?

Cannot be added unless we know where the
department will be located.

dnumber and dlocation

3 tuples will need to be modified in this case

3. What happens if we add a new department, say
“Development” with dnumber = 7?

Problems:

1. What can be used as
the primary key?

FIXING THESE PROBLEMS?

This does not seem a good grouping of
attributes …

We have seen, and worked with, a
better one which stores location in a
new table and uses dnumber as a
foreign key to link to the other
department information

EXAMPLE 2:

For the company schema, consider the following alternative schema
to store information on employees and the projects they work on:

employee(ssn, fname, lname, address, bdate, salary,
pno, pname, plocation)

And the following (partial) instance:

Problems?

1. What can be used as the key?

2. What happens if we want to update the database when a
new employee, Maria Browne, of 24 Cherry Drive, Voss, Houston,
joins the company (with ssn = 343434343)

ssn and pno

cannot be added unless she is given a project to work on

3. Update the database when ProductX and ProductY are
completed and details on the projects should be removed

4. Update the database with a new address for Franklin Wong

If we delete the relevant tuples, then all details on John
Smith will be lost

In this case, 4 tuples must be updated with the new address

FIXING THESE PROBLEMS?

This does not seem a good
grouping of attributes …

We have seen, and worked
with, a better one involving 3
tables

Note however the repetition of
ssn (as essn) and
pnumber/pno

NORMALISATION

Developed by Codd, 1972

• Takes each table through a series of tests to “verify”
whether or not it belongs to a certain normal form

• Normal forms to check:

• 1st, 2nd and 3rd normal forms (NF)

• Boyce-Codd normal form – strong 3NF

• 4th and 5th Normal Forms

• We will consider 1NF, 2NF and 3NF only in detail

NORMALISATION PROVIDES:

1. Formal framework for analysing relation schemas
based on keys and functional dependencies among
attributes.

2. Series of tests so that a database can be normalised to
any degree (e.g., from 1NF to 5NF).

3. But does not necessarily provide a good design if
considered in isolation to everything else.

WHY NORMALISE?

•Redundancy will be reduced or eliminated.

•Storage space will be reduced as a result.

•Task of maintaining data integrity is made easier.

However with normalisation, tables are usually added to
the schema and linked with foreign keys. Thus queries
become more complex as they often require data from
multiple tables (requiring joins or subqueries).

ALTERNATIVES?

Retain redundant data and maintain data integrity by
means of code consistency checks

In some applications the number of insertions may be very
small or non-existent (e.g. analysing past logs, transaction
data, weather data etc.) and in such cases the overhead
of normalised tables is generally not required.

DE-NORMALISATION

A process of making compromises to the normalised tables
by introducing intentional redundancy for performance
reasons (querying performance).

Typically, de-normalisation will improve query times at the
expense of data updates (insert, delete, update).

DEFINITION:
Functional Dependency

Functional dependency is one of the main concepts
associated with normalisation and describes the
relationship between attributes.

If A and B are attributes of a relation R, then B is
functionally dependent (FD) on A if each value of A is
associated with exactly one value of B.

i.e., values in B are uniquely determined by values of A

A → B :

FD from A to B

B is FD on A

A B

TERMINOLOGY:
FUNCTIONAL DEPENDENCY (FD)

NOTES ON NOTATION:

A → B does not necessarily imply B → A

A ↔ B denotes A → B and B → A

A → {B, C} denotes A → B and A → C

{A, B} → C denotes that it is the combination of A and B
that uniquely determines C.

TERMINOLOGY:
CANDIDATE KEY (CK)

Every relation has one or more candidate keys. A
candidate key (CK) is one or more attribute(s) in a relation
with which you can determine all the attributes in the
relation.

Recall we pick one such candidate key as the primary key
of a relation.

EXAMPLE 3: FINDING THE FUNCTIONAL
DEPENDENCIES – GIVEN THE PRIMARY KEY

For the company schema, consider the following alternative
schema to hold information on employees and projects:

emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

What are the functional dependencies?

oThink of this question as … “which attribute can be
uniquely determined from another attribute”

oBegin with any known PK or CK

Can represent these FDs graphically:

emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

ssn → ename

pnumber → {pname, plocation}

{ssn, pnumber} → hours

IMPORTANT TO NOTE:

A functional dependency is a property of a relation
schema R and cannot be inferred automatically but
instead must be defined explicitly by someone who knows
the semantics of R

i.e.

You will either be:

• explicitly given all FDs.

• given enough information about the attributes and the
domain to reasonably infer the FDs (perhaps having to
make certain assumptions).

2. Partial Functional Dependency:
A functional dependency {X,Y} → Z is a partial functional
dependency if some attribute (either X or Y) can be removed
from the LHS and the dependency still holds.

Note: There may be any number of attributes on LHS

1. Full Functional Dependency:
A functional dependency {X,Y} → Z is a full functional
dependency if when some attribute (either X or Y) is removed
from the LHS the dependency does not hold.

Note: There may be any number of attributes on LHS

TYPES OF FUNCTIONAL DEPENDENCIES

CONSIDER EXAMPLE 3 AGAIN:
emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

Are the following Full or Partial Functional Dependencies?

{ssn, pnumber} → hours

{ssn, pnumber} → ename

TYPES OF FUNCTIONAL DEPENDENCIES

3. Transitive Dependency:
A functional dependency X → Y is a transitive dependency
in the table/relation R if there is a set of attributes Z that
is neither a candidate key nor a subset of any key of R
and both:

X → Z and

Z → Y

hold.

EXAMPLE 4:
Consider information on employees and
departments

emp_dept(ename, ssn, bdate, address, dnumber,
dname, dmgrssn)

The functional dependencies are:

ssn → {ename, bdate, address, dnumber}

dnumber → {dname, dmgrssn)

EXAMPLE 4:
An example of a transitive dependency

The dependency:

ssn → dmgrssn

is transitive through dnumber because both the following
hold:

ssn → dnumber

dnumber → dmgrssn

But dnumber is neither a key or a subset of the key.

EXAMPLE 5:

Given the following table to hold student data:

student(id, name, course, assocCollege, courseCoordinator)

and the following Functional Dependencies:

id → name

id → course

course → assocCollege

course → courseCoordinator

EXAMPLE 5:
What is the candidate key?
What are the full dependencies?
What are the transitive dependencies?

Given the following table to hold student data:

student(id, name, course, assocCollege,
courseCoordinator)

and the following Functional Dependencies:

id → name

id → course

course → assocCollege

course → courseCoordinator

EXAMPLE 6:
Draw the functional dependency diagram
and find the candidate key

Consider the table R with 5 attributes

R(A, B, C, D, E)

and the following functional dependencies:

A → B

B → A

B → C

D → A

R(A, B, C, D, E)

and the following functional dependencies:

A → B

B → A

B → C

D → A

Inference rules for Functional
Dependencies

Typically the main obvious functional dependencies are
specified for a schema

– call these F.

However many others can be inferred from F

– call these closure of F: F+

FOR EXAMPLE:

F = { A → {B, C, D, E}

E → {F, G} }

Some other FDs which can be inferred:

A → A

A → {F, G}

E → F

etc.

Inference Rules for FDs:

1. Reflexive: Trivially, an attribute, or set of attributes, always
determines itself.

2. Augmentation: if X → Y can infer XZ → YZ

3. Transitive: if X → Y and Y → Z can infer X → Z

4. Decomposition: if X → YZ can infer X → Y

5. Union (additive): if X → Y and X → Z can infer if X → YZ

6. Pseudotransitive: if X → Y and WY → Z can infer WX → Z

*Note: Rules 1, 2 and 3 are together called Armstrongs’s Axioms

TOPIC:
NORMALISATION PART 2

C230
Database
Systems

FUNDAMENTALS OF
DATABASE SYSTEMS
ELMASRI AND NAVATHE BOOK

See Chapter 14

(in 3rd Edition)

DEFINITION:
Functional Dependency

Functional dependency is one of the main concepts
associated with normalisation and describes the
relationship between attributes.

If A and B are attributes of a relation R, then B is
functionally dependent (FD) on A if each value of A is
associated with exactly one value of B.

i.e., values in B are uniquely determined by values of A

A → B :

FD from A to B

B is FD on A

A B

TERMINOLOGY:
FUNCTIONAL DEPENDENCY (FD)

NOTES ON NOTATION:

A → B does not necessarily imply B → A

A ↔ B denotes A → B and B → A

A → {B, C} denotes A → B and A → C

{A, B} → C denotes that it is the combination of A and B
that uniquely determines C.

TERMINOLOGY:
CANDIDATE KEY (CK)

Every relation has one or more candidate keys. A
candidate key (CK) is one or more attribute(s) in a relation
with which you can determine all the attributes in the
relation.

Recall we pick one such candidate key as the primary key
of a relation.

EXAMPLE 3: FINDING THE FUNCTIONAL
DEPENDENCIES – GIVEN THE PRIMARY KEY

For the company schema, consider the following alternative
schema to hold information on employees and projects:

emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

What are the functional dependencies?

oThink of this question as … “which attribute can be
uniquely determined from another attribute”

oBegin with any known PK or CK

Can represent these FDs graphically:

emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

ssn → ename

pnumber → {pname, plocation}

{ssn, pnumber} → hours

IMPORTANT TO NOTE:

A functional dependency is a property of a relation
schema R and cannot be inferred automatically but
instead must be defined explicitly by someone who knows
the semantics of R

i.e.

You will either be:

• explicitly given all FDs.

• given enough information about the attributes and the
domain to reasonably infer the FDs (perhaps having to
make certain assumptions).

2. Partial Functional Dependency:
A functional dependency {X,Y} → Z is a partial functional
dependency if some attribute (either X or Y) can be removed
from the LHS and the dependency still holds.

Note: There may be any number of attributes on LHS

1. Full Functional Dependency:
A functional dependency {X,Y} → Z is a full functional
dependency if when some attribute (either X or Y) is removed
from the LHS the dependency does not hold.

Note: There may be any number of attributes on LHS

TYPES OF FUNCTIONAL DEPENDENCIES

CONSIDER EXAMPLE 3 AGAIN:
emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

Are the following Full or Partial Functional Dependencies?

See menti.com

{ssn, pnumber} → hours

{ssn, pnumber} → ename

TYPES OF FUNCTIONAL DEPENDENCIES

3. Transitive Dependency:
A functional dependency X → Y is a transitive dependency
in the table/relation R if there is a set of attributes Z that
is neither a candidate key nor a subset of any key of R
and both:

X → Z and

Z → Y

hold.

EXAMPLE 4:
Consider information on employees and
departments

emp_dept(ename, ssn, bdate, address, dnumber,
dname, dmgrssn)

The functional dependencies are:

ssn → {ename, bdate, address, dnumber}

dnumber → {dname, dmgrssn)

EXAMPLE 4:
An example of a transitive dependency

The dependency:

ssn → dmgrssn

is transitive through dnumber because both the following
hold:

ssn → dnumber

dnumber → dmgrssn

But dnumber is neither a key or a subset of the key.

EXAMPLE 5:

Given the following table to hold student data:

student(id, name, course, assocCollege, courseCoordinator)

and the following Functional Dependencies:

id → name

id → course

course → assocCollege

course → courseCoordinator

EXAMPLE 5:
What is the candidate key?
What are the full dependencies?
What are the transitive dependencies?

Given the following table to hold student data:

student(id, name, course, assocCollege,
courseCoordinator)

and the following Functional Dependencies:

id → name

id → course

course → assocCollege

course → courseCoordinator

EXAMPLE 6:
Draw the functional dependency diagram
and find the candidate key

Consider the table R with 5 attributes

R(A, B, C, D, E)

and the following functional dependencies:

A → B

B → A

B → C

D → A

R(A, B, C, D, E)

and the following functional dependencies:

A → B

B → A

B → C

D → A

Inference rules for Functional
Dependencies

Typically the main obvious functional dependencies are
specified for a schema

– call these F.

However many others can be inferred from F

– call these closure of F: F+

FOR EXAMPLE:

F = { A → {B, C, D, E}

E → {F, G} }

Some other FDs which can be inferred:

A → A

A → {F, G}

E → F

etc.

Inference Rules for FDs:

1. Reflexive: Trivially, an attribute, or set of attributes, always
determines itself.

2. Augmentation: if X → Y can infer XZ → YZ

3. Transitive: if X → Y and Y → Z can infer X → Z

4. Decomposition: if X → YZ can infer X → Y

5. Union (additive): if X → Y and X → Z can infer if X → YZ

6. Pseudotransitive: if X → Y and WY → Z can infer WX → Z

*Note: Rules 1, 2 and 3 are together called Armstrongs’s Axioms

IMPORTANT CONCEPTS

Duplicated Data versus Redundant Data

Problems with un-normalised tables and maintaining
redundant data

Trade off of un-normalised versus normalised tables

What is functional dependency – how to find it

What are full, partial and transitive dependencies – how
to find them

DEFINITION:
FIRST NORMAL FORM (1NF)

A table is in 1NF if it satisfies the following:

The table must not have any repeating groups

Repeating groups: a group of attributes that occur a
variable number of times in each record (non-atomic)

FIRST NORMAL FORM (1NF)

To ensure first normal form, choose an appropriate
primary key (if one is not already specified) and if
required, split table in to two or more tables to remove
repeating groups

EXAMPLE 7:

Consider information on customers (unique number, name,
address and their credit limit) and invoices issued to them
(unique invoice number, date of invoice and amount in
euros). Note that a customer can have many invoices issued
to them.

customer(cNo, name, street, city,
credLim, invNo, invDate, amount)

Repeating Groups?

First Normal Form?

EXAMPLE 7
customer(cno, name, street, city,
credLim, invno, invDate, amount)

To ensure 1NF, choose appropriate Primary Key ….

cNo and invNo as primary key giving:

customer(cNo, invNo, name, street,
city, credLim, invDate, amount)

check for partial dependencies and remove

DEFINITION:
SECOND NORMAL FORM (2NF)

A relation in 2NF must be in 1NF and satisfy the following:

Where there is a composite primary key, all non-key
attributes must be dependent on the entire primary key.

If partial dependencies exists create new relations to split
the attributes such that the partial dependency no longer
holds

EXAMPLE 7:
customer(cNo, invNo, name, street,
city, credLim, invDate, amount)

EXAMPLE 7:
customer(cNo, invNo, name, street,
city, credLim, invDate, amount)

EXAMPLE 7:
customer(cNo, invNo, name, street,
city, credLim, invDate, amount)

customerInvoice(cNo, invNo)

customer(cNo, name, street, city, credLim)

invoice(invNo, invDate, amount)

EXAMPLE 8:
Consider information on products that customers buy (e.g. the
contents of their online basket). Information stored on customers is:
unique customer number, name and address. The data stored on
the products ordered is: unique product number, product
description, unit price per product and quantity of each product
required by the customer. The schema is:

purchase(CNo, ProdNo, cname, street, city, prodDesc,
price, quantity)

QUESTIONS:

purchase(CNo, ProdNo, cname, street,
city, prodDesc, price, quantity)

 Is this table in first normal form?

 Draw a functional dependency diagram

 Is this table in second normal form?

 If not, what problems occur by the table not being in
2NF?

 If not, create a set of tables in 2NF

1NF?

purchase(CNo, ProdNo, cname, street,
city, prodDesc, price, quantity)

No primary key so not in 1NF.

A suitable primary key (using existing attributes) is a
composite key of CNo and ProdNo

Draw the Functional Dependencies:
purchase(CNo, prodNo, cname, street,
city, prodDesc, price, quantity)

Problems caused by purchase
table not being in 2NF:

purchase(cNo, prodNo, cname, street,
city, prodDesc, price, quantity)

Duplication of data:

•Every time a product is purchased by a customer the
customer name, street etc. is stored again

•Every time a product is purchased, its description and
price is stored again.

Create a set of tables in 2NF

Removing the partial dependencies means:

o Attributes that are partially dependent on the PK should
move to a new table;

o The attribute on which they were dependent should be
the PK of the new table but this attribute should not be
removed from the original table

Giving the tables:
purchase(cNo, prodNo, quantity)

customer(cNo, cname, street, city)

product(prodNo, prodDesc, price)

N.B. Make sure each table has its own PK

DEFINITION:
THIRD NORMAL FORM (3NF)

A relation is in 3NF if it is in 2NF and there are no
dependencies between attributes that are not primary
keys. That is, no transitive dependencies exist in the table.

EXAMPLE 8 extended:

Consider the following information stored per product: unique
product number (PK), product description and unit price and
the number of the product in stock; also stored is the unique
ID of the supplier of the product, and the supplier’s details:
name and address details:

product(prodNo, desc, price,
qty_in_stock, supplierNo, Sname,
Sstreet, Scity, SPostcode)

QUESTIONS:
EXAMPLE 8 extended
product(prodNo, desc, price,
qty_in_stock, supplierNo,Sname,
Sstreet, Scity, SPostcode)

 Is this table in first normal form?

 Draw a functional dependency diagram

 Is this table in second and third normal form?

 If not, create a set of tables in 3NF

DEPENDENCY DIAGRAM FOR EXAMPLE 8 EXTENDED

Creating tables?

prodNo, desc, price, qty_in_stock, supplierNo, Sname,
Sstreet, Scity, SPostcode

DEPENDENCY DIAGRAM FOR EXAMPLE 8 EXTENDED

Creating tables?

product(prodNo, desc, price, qty_in_stock, supplierNo)

supplier(supplierNo, Sname, Sstreet, Scity, Spostcode)

Note: how we are
creating links
between the tables
with Foreign Keys

BOYCE-CODD NORMAL FORM (BCNF)

Only in rare cases does a 3NF table not meet the
requirements of BCNF.

These cases are when a table has more than one
candidate key - depending on the functional
dependencies, a 3NF table with two or more overlapping
candidate keys may or may not be in BCNF.

If a table in 3NF does not have multiple overlapping
candidate keys then it is guaranteed to be in BCNF

SUMMARY: Steps to normalise to 3NF

 Identify appropriate Primary Key if not already given (this puts
table in to 1NF)
Draw diagram of Functional Dependencies from the primary key.
 Identify if dependencies are Full, Partial or Transitive.
Using diagram of functional dependencies from previous step:
Normalise to 2NF by removing partial dependencies – creating
new tables as a result. Ensure all new tables have Primary Keys
Normalise to 3NF by removing transitive dependencies (if they
exist), creating new tables as a result. Ensure any new tables
have Primary Keys and are in 2NF
Check that all resulting tables are themselves in 1NF, 2NF and
3NF (in particular, make sure they all have PKs of their own)

EXAMPLE 9:
An un-normalised staff relation has the following structure and
description (next slide):

staff(sNo, sName, sAddress, deptNo,
deptName, managerNo, skilliD, skillName,
sCourseDate, sCourseDuration)

9.1. Where does duplication result from this relation design?

9.2. What is a suitable Primary Key to ensure the staff table
is in 1NF?

9.3. What attributes are fully functional dependent on the
Primary Key?

Description 9(a):

staff(sNo, sName, sAddress, deptNo, deptName,
managerNo, skilliD, skillName, sCourseDate,
sCourseDuration)

A staff member has an associated number (sNo, which is unique for each
staff member), a name and an address and works in a particular
department. Each department has a number (unique), name and manager.
A department has many staff but a staff member can only work for one
department. A staff member can undertake a number of courses to gain
new skills for their job. skilliD uniquely identifies the skill, which has also a
name (skillName). For each skill, courses are offered on a regular basis
and staff can take the course at a date that suits them and complete the
course at their own pace. sCourseDate describes the date when a staff
member undertakes the course for a particular skill and sCourseDuration
describes the time that the staff member took to complete the course. A
staff member cannot undertake more than one course to acquire a new
skill.

FUNCTIONAL DEPENDENCIES

For each skill, courses are
offered on a regular basis and
staff can take the course at a
date that suits them and
complete the course at their own
pace

Description 9(b)

staff(sNo, sName, sAddress, deptNo,
deptName, managerNo, skilliD, skillName,
sCourseDate, sCourseDuration)

A staff member has an associated number (sNo, which is unique for
each staff member), a name and an address and works in a particular
department. Each department has a number (unique), name and
manager. A department has many staff but a staff member can only
work for one department. A staff member can undertake a number of
courses to gain new skills for their job. skilliD uniquely identifies the skill,
which has also a name (skillName). For each skill, courses are offered
once at a certain date and for a certain duration and staff must take
the course on that date: sCourseDate describes the date of the course;
sCourseDuration describes the length (in days) of the course. A staff
member can undertake as many different courses as they wish.

FUNCTIONAL DEPENDENCIES

For each skill, courses are
offered once at a certain date
and for a certain duration and
staff must take the course on
that date

EXAMPLE 10: Winter 2019 Exam Paper
question on Normalisation
A courier company keeps track of packages that are to be delivered to recipients,
by couriers, in the following table:

courier(packageID, recipientCode, recipientName,
recipientAddr, recipientMobile, instructions, dateRec,
dateDelivered, courierID, cName, cMobile)

Stored in the courier table are: a unique package id (packageID) which is
the primary key of the table, a code (recipientCode) which is unique to each
recipient, and the name, address and mobile number of the recipient of the
package (recipientName, recipientAddr and recipientMobile),
delivery instructions (instructions), the date the package was received by
the courier (dateRec), the date the courier delivers the package
(dateDelivered), and details of the courier who delivers the package: an ID
(courierID) which is unique to each courier, in addition to the courier’s name
(cName) and phone number (cMobile).

courier(packageID, recipientcode,
recipientname, recipientaddr, recipientmobile,
instructions, daterec, datedelivered,
courierid, cname, cmobile)

(i) By using the primary key given in the courier table, draw a functional
dependency diagram showing the functional dependencies between all
attributes and the key attribute. Clearly indicate on the diagram any full,
partial or transitive dependencies and state any assumptions made. (8)

(ii) Normalise the courier table to third normal form, explaining the steps
involved at each stage. (8)

QUERY PROCESSING AND
RELATIONAL ALGEBRA

CT230
Database
Systems I

RECOMMENDED TEXT:

See:

Chapter 18

Elmasri & Navathe

(3rd Edition)

DEFINITION: Query Processing

Transforms SQL (high level language) in to a correct and
efficient low level language representation of relational
algebra.

Each relational algebra operator has code associated with it
(a program) which, when run, performs the operation on the
data specified, allowing the specified data to be output as
the result.

Steps Involved in Processing a SQL Query:

• Process (Parse and Translate) and create an internal
representation of the query – may be an Operator Tree,
Query tree or Query graph (for more complicated queries).

• Optimise.

• Execute/Evaluate returning results.

How to Translate SQL to Relational
Algebra?

Must have:

oa meaningful set of relational algebra operators
(today’s lecture).

oa mapping (translation) between SQL code and
relational algebra expressions.

RELATIONAL ALGEBRA

Two formal languages exist for the relational model:

o Relational algebra (procedural)

o Relational calculus (non-procedural)

Both are logically equivalent

Note: the practical/implementation language of the relational
model is SQL (as we have seen)

Relational Algebra Operations

o A basic set of operations exist for the relational model.

o These allow for the specification of basic retrieval requests.

o A sequence of relational algebra (RA) operations forms a
relational algebra expression.

o RA operations are divided into two groups:
o operations based on mathematical set theory (e.g., union,
product etc.)
o specific relational database operations.

RELATIONAL ALGEBRA versus SQL

The core operations and functions (i.e., programs) in the
internal modules of most relational database systems are
based on relational algebra.

SQL is a declarative language …. It allows you specify the
results you require … not the order of the operations to
retrieve those results.

Relational Algebra is procedural - must specify exactly how
to retrieve results when using relational algebra.

RELATIONAL ALGEBRA EXPRESSIONS

o A valid relational algebra expression is built by
connecting tables or expressions with defined unary and
binary operators and their arguments (if applicable)

o Temporary relations resulting from a relational algebra
expression can be used as input to a new relational
algebra expression

oExpressions in brackets are evaluated first

oRelational Algebra operators are either Unary or Binary

Relational Algebra:
UNARY OPERATORS
o Selection
o Projection
o Rename
o Order
o Group

Each operation:
o takes one relation (table) or expression as input
o gives a new relation as a result

Selection operator

σ (sigma)

Used to select certain tuples (rows) from a relation R

Notation: σpR

where:

p: selection predicate i.e., a condition

R: relation/table name

The Selection (σ) operator in relational algebra is NOT
the same as the SELECT clause in an SQL query.

A SQL SELECT query could be equivalent to a

combination of relational algebra operators (σ, π and
JOIN)

NOTE:

EXAMPLE 1 (using company schema):
Find the projects with pno = 10 and hours
worked < 20

Returns the set:

{ (333445555, 10, 10.0), (999887777, 10, 10.0)}

σ (hours < 20 AND pno = 10)works_on

sigma (hours < 20 AND pno = 10) works_on

WORKING WITH THE RelaX CALCULATOR

There is no standard language for relational algebra like
there is for SQL.

One University group have developed a calculator that
supports a fairly common standard.

Note that it is CASE SENSITIVE.

Provides a number of datasets with the option of also
using your own dataset.

We will load in a version of the COMPANY schema

LOAD A DATASET:
Calculator: https://dbis-uibk.github.io/relax/calc/local/uibk/local/0

Go to “”Group Editor” Tab

Copy text from file on Blackboard and add

Then choose “Preview”

Then choose “Use group in Editor”

*Note: only stored temporarily

Example 1 in RelaX calculator:
Find the projects
with pno = 10 and hours worked < 20

NOTE:

•The degree of the relation resulting from a selection of table R
is the same as the degree of R, e.g., same number of
attributes/columns

The operation is commutative, i.e. a sequence of selects can be
applied in any order,

e.g.

σ (hours < 20 and pno = 10) works_on

σ (pno = 10 and hours < 20) works_on

EXAMPLE 2: (Using company database):
List the department numbers of departments
located in Houston

σ (dlocation = 'Houston') dept_locations

or can write as:
sigma (dlocation = 'Houston') dept_locations

PROJECTION OPERATOR
π Pi

Used to return certain attributes/columns

Notation: πA1, A2, …, Ak(R)

where:

A1 … Ak attribute names

R: relation/table name

Result is a relation with the k attributes listed in same order
as they appear in list. Duplicate tuples are removed from
the result.

** NOTE: Commutativity does not hold.

Returns:{5, 4, 1}

π dno employee

EXAMPLE 3: (Company schema):
List all the department numbers where employees
work

or can write as:

Pi dno employee

π mgrssn, dnumber department

EXAMPLE 4: List all managers (ssn) and the
departments (number) they manage

YOU TRY …

Example 5 Return all project locations which are in dept 5

Example 6 Return the names of all employees in
department 5

Example 7.List the names of all employees whose salary is
greater than 45000

RENAME OPERATORS:
RHO Ρ AND

Rename Operation (ρ)

Notation − ρ x (E)

Where the result of expression E is saved with name of x

You might want to do this to save typing a table name,

e.g., for table dependent might want to rename it as dep
as follows:

π dep.bdate (rho dep (dependent))

NOTE: ASSIGNMENT ALSO AVAILABLE
BUT NOT A RELATIONAL ALGEBRA OPERATOR

-- definition

Res1 = π dname department

-- execution

Res1

Order operator

τ (tau)

Used to order by certain columns from a relation R

Notation: τ A1, A2, …, Ak R

where:

A1, A2, …, Ak : are attributes with either asc or desc

R: relation/table name

τ lname asc (π fname, lname employee)

EXAMPLE 8: (Company schema):
List all the employee first names and surnames,
ordered by surname (asc)

or can write as:
τau lname asc (π fname, lname employee)

asc is default
ordering

Group By operator

γ (gamma)

Used to group by certain columns from a relation R

AGGREGATE FUNCTIONS SUPPORTED
(THOUGH NOT PART OF RELATIONAL ALGEBRA)

COUNT(*)

COUNT(column)

MIN(column)

MAX(column)

SUM(column)

AVG(column)

BINARY OPERATORS

General Syntax:

(child_expression) function argument (child_expression)

UNION OPERATOR: U

Notation: (R) U (S)

where R and S are relations/tables

Returns all tuples from R and all tuples from S

Notes:

• No duplicates will be returned.

INTERSECTION OPERATOR: n

Notation: (R) n (S)

where R and S are relations/tables

Result: returns all tuples from R that are also in S.

SET DIFFERENCE: -

Notation: (R) – (S)

where R and S are relations/tables

Result:

returns tuples that are in relation R but not in S

Note: (R) – (S) and (S) – (R) are not the same

UNION COMPATIBILITY

For union, intersection and minus, relations must be
union compatible, that is:

o schemas of relations must match, i.e., same
number of attributes and each corresponding
attributes have the same domain

EXAMPLE 9:
What is displayed in the results relation
following these operations?
(using ReLaX schema)

dep5_emps = σ dno = 5
employee
result1 = π ssn dep5_emps
result2 = π superssn
dep5_emps
result3 = result1 ∪ result2
result4 = result1 ∩ result2
result5 = result1 - result2
result5

ssn

123456789

333445555

666884444

453453453

result1

superssn

333445555

888665555

result2 result1 u result2

ssn

123456789

333445555

666884444

453453453

888665555

EXAMPLE 9: ctd.

ssn

123456789

333445555

666884444

453453453

result1

superssn

333445555

888665555

result2 result1 n result2

ssn

333445555

EXAMPLE 9 ctd.

ssn

123456789

333445555

666884444

453453453

result1

superssn

333445555

888665555

result2 result1-result2

ssn

123456789

666884444

453453453

EXAMPLE 8 ctd.

Notation: (R) x (S) where R and S are relations/tables

Returns: tuples comprising the concatenation (combination) of
every tuple in R with every tuple in S

Note:

No condition is specified

Example:

employee x department

CARTESIAN PRODUCT OPERATOR:
X (cross join)

EXAMPLE 10:

Given relations: R(A, B) and S(C, D, E):

Then R x S is?

A B
1 2
3 4

C D E
22 55 66
44 77 88
99 10 11

		A

		B

		1

		2

		3

		4

		C

		D

		E

		22

		55

		66

		44

		77

		88

		99

		10

		11

R x S =

A B C D E
1 2 22 55 66
1 2 44 77 88
1 2 99 10 11
3 4 22 55 66
3 4 44 77 88
3 4 99 10 11

A B
1 2
3 4

C D E
22 55 66
44 77 88
99 10 11

SR

		A

		B

		C

		D

		E

		1

		2

		22

		55

		66

		1

		2

		44

		77

		88

		1

		2

		99

		10

		11

		3

		4

		22

		55

		66

		3

		4

		44

		77

		88

		3

		4

		99

		10

		11

		A

		B

		1

		2

		3

		4

		C

		D

		E

		22

		55

		66

		44

		77

		88

		99

		10

		11

JOIN OPERATOR:

The Join operator is a hybrid operator – it
is a combination of the Cartesian product
operator (x) and a select operator (σ)

Tables are joined together based on the
condition specified

Example:

employee ⨝ ssn = mgrssn department

Cartesian product versus Join?

The main difference between a Cartesian product
operator and a join operator is that with a join,
only tuples satisfying a condition appear in the
result (as we have already seen)

In a Cartesian product operator, all combinations
of tuples are included in the result.

EQUI AND THETA JOINS

Notation: (R1) ⨝ p (R2)
where:
p: Join condition
R1 and R2: relations/tables

Result: The JOIN operation returns all combinations of
tuples from relation R1 and relation R2 satisfying the
join condition p

Note:
EQUI JOINS use only equality comparisons (=) in the
join condition p

EXTRA EXAMPLES ….

11. Write the relational algebra expression to find the names
of the employees in the Research department
12. Find the name(s) of Jennifer Wallace’s dependents
13. Find the name(s) of employees who work on projects which
are located in Houston

SUMMARY

Important to know:

• Unary relational algebra operators and how they work – especially,
σ and π

• Binary relational algebra operators and how they work – especially
x and ⨝

• How to combine binary operators (where order is significant) to
answer a question

• Using the ReLaX calculator

VERY Important not to confuse SQL and Relational Algebra

QUERY PROCESSING
AND OPTIMISATION

CT230
Database
Systems I

RECALL:
Definition of Query Processing

Transforms SQL (high level language) in to a correct and
efficient low level language representation of relational
algebra

Each relational algebra operator has code associated
with it which, when run, performs the operation on the
data specified, allowing the specified data to be output
as the result

Representing the relational algebra
solutions with a query tree

What is a tree?

A tree is a collection of data arranged as a
finite set of elements - called nodes - such
that:

The tree is empty or the tree contains a
distinguished node, called the root node, and
all other nodes are arranged in subtrees such
that each node has a parent node. Nodes
typically contain data and some pointers to
other nodes

TREES
Nodes may be:

root: no node points to it

inner: has parent and child nodes

leaves: has no child nodes

Tree data structures (a grouping of data) are used
frequently in computing allowing data to be stored in a
non-linear (non-list) way.

They are often (but not always) binary trees where each
node can have at most two child nodes

QUERY TREE

A query tree is a binary tree that corresponds to a relational
algebra expression where:

•(input): tables are at the leaf nodes

• relational algebra operators are at internal nodes

•(output/result): the root of the tree returns the result (often
with one final relational algebra operator)

The sequence of operations is directed from leaves to root
and from left to right – e.g. the bottom-most, left-most side of
tree is executed first

EXAMPLES: all dependent names

EXAMPLES:
employees from department 5 and their dependents

How to Translate SQL to Relational
Algebra?

•SELECT attributes corresponds to π

•Joins correspond to relational algebra joins with any join
conditions specified as part of the join

•Any conditions in a WHERE clause correspond to a sigma
relational algebra operator with associated conditions

•In addition, have rules for aggregate functions (sum, avg,
count, etc.) and GROUP BY, HAVING and subqueries but we
won’t consider these

Executing query represented by query tree: one
approach:
Materialization Evaluation

Traverse tree from bottom to top, left to right. At each
stage:

• Execute internal node operation whenever data for its
child nodes are available

• Replace the internal node operation (and all child nodes)
by the table resulting from executing the operation

Note: Results of operations are saved as temporary tables
and are used as inputs to other operators

HOW TO DRAW A QUERY TREE?
Must remember the order of execution – from bottom to top,
completing each level and then left to right of tree – therefore:

• the first operations – fetching tables – should be at the leaves
of trees.

• the last operator – often π or aggregate functions - should
be at the root of the table.

• joins must be applied to tables (2 at a time) and should be at
internal nodes.

• any other operators should be at one or more internal nodes.

IMPORTANT

When Joining or multiplying more than two tables … operators
can only be applied to 2 operands at a time

ANNOTATING TREE

Each relation algebra operation can be evaluated using
one of several different algorithms and each relational
algebra expression can be evaluated in many ways.

** An evaluation plan is an annotated
expression/query tree specifying the execution
strategy for a query.

EXAMPLE 1
Consider the following SQL solution and
relational algebra translation

SELECT fname, lname

FROM employee

WHERE dno = 5;

πfname, lname(σdno = 5 employee)

root

internal node

leaf node

Query tree
representation

SELECT fname, lname

FROM employee

WHERE dno = 5;

π fname, lname
(σ dno = 5 employee)

for each tuple in t1 retrieve fname, lname

linear search on condition. -write to t1

file scan: employee

Query tree representation with
evaluation plan

root
t1

How materialization evaluation works …

Example 2
UBIK database
https://dbis-uibk.github.io/relax/calc/local/uibk/local/0

Consider the following SQL query:

SELECT R.a, R.b

FROM R, S

WHERE d > 200 AND S.b=R.b

And the relational algebra translation:

π R.a, R.b σ d > 200 and S.b = R.b R ⨯ S

Example 3 UBIK database

Consider the following SQL query:

SELECT R.a, R.b

FROM R, S, T

WHERE S.d > 200 AND

S.b=R.b AND

S.d = T.d

And the relational algebra translation:

EXAMPLE 4:
Translating SELECT FROM WHERE
(with no subqueries) to Relational Algebra

Given a general SELECT statement of the form:

SELECT attributeList

FROM R1 INNER JOIN R2 ON joinCondition

WHERE condition

translates to:

πattributeList (σcondition(R1 JOINjoinCondition R2))

NOTE: An SQL statement may have many equivalent
relational algebra expressions.

Example 5: Consider the following (Company
Schema):

List all salaries greater than 50000

The SQL solution:

SELECT salary

FROM employee

WHERE salary > 50000;

retrieve tuples with salary > 50000

retrieve salary column

retrieve salary column

retrieve tuples with salary > 50000

Option 1:

πsalary (σ(salary> 50000) employee))

Option 2:

σ(salary > 50000)(πsalary employee)

Translating this SQL
to Relational Algebra

SELECT salary

FROM employee

WHERE salary >50000;

DIFFERENCES BETWEEN THESE?

πsalary (σ(salary> 50000) employee))

σ(salary > 50000)(πsalary employee)

EXAMPLE 6:

Given the following problem based on the Company schema
write the associated SQL code (using joins), a correct relational
algebra expression translation and a query tree representing
the relational algebra expression:

List the names of all employees who work on projects located
in Stafford

EXAMPLE 7:

Given the following problem based on the Company schema
write the associated SQL code (using joins), a correct relational
algebra expression translation and a query tree representing
the relational algebra expression:

List the location of all departments managed by manager
Franklin Wong

ISSUES TO CONSIDER WITH QUERY TREES:

•Size of temporary tables

•Algorithms used for execution plan

OPTIMISATION

• Different query trees for a given query can have
different costs

• Different evaluation plans for a given query can have
different costs

• Optimisation techniques attempt to choose the best
among a number of potential query trees

APPROACH 1:
Compare cost estimates across different solutions

• Cost is usually measured as the total elapsed time for
answering a query

• One approach is to calculate cost estimates for each
possible query tree

• The query tree with the lowest cost estimate should then
be chosen

How to calculate cost estimates?

Cost factors include CPU speed, disk access time, network
communication time, etc.

Disk access is typically the predominant cost and can be
measured by number of blocks read/number of blocks
written per query.

MAIN COST ESTIMATE USED:
Number of block transfers where each
block contains a number of records

Number of blocks transferred from disk depends on:

• Size of buffer in main memory - having more memory reduces
need for more disk accesses.

• Indexing structures used (primary, secondary, etc.)

• Whether all blocks of a file must be transferred or not
• e.g., if search can be done on primary key of index file or

on secondary index then only retrieve blocks that satisfy
search condition

•As is typical in Computing, often use worst case estimates,
knowing that any actual cost cannot exceed a worst case
estimate.

DBMS CATALOG

The DBMS catalog stores statistical information about each
table such as table sizes, indexes (and their depths) etc.

The statistical information on the tables and attributes
used in a query, can be found in the DBMS catalog and
these are used to calculate cost estimates also.

In DBMS catalog, for each table R
information is stored on:

o Number of tuples/records in table R

o Number of blocks containing tuples of table R

o Size of a record in bytes

o Blocking factor

o Information on number of distinct values per attribute
and number of values that would satisfy set of equality
operations on attribute (by having averages, min, max,
etc.)

o Information on indices (index types, index field values,
etc.)

Resulting in a set of cost estimates such that the best can be chosen
and the query tree with the lowest cost estimate can then be picked
as the single best query tree and evaluation plan.

2. For each query tree get cost estimates
using DBMS catalog

1. Generate query trees and evaluation
plans (maybe not all)

STEPS FOR APPROACH 1

THEREFORE:

To choose among plans, the optimiser has to estimate cost
of each evaluation plan.

Two aspects to this:

For each node of tree:

•estimate cost of performing associated operation

•estimate size of result and if it is sorted

APPROACH 1: SUMMARY

o Cost-based optimisation, while good, is expensive:

As query complexity increases so does the different
number of query trees and plans possible and each query
tree requires its own cost estimates

N.B. It is important that the amount of time an optimiser
spends on calculating the best solution (optimising) is not
longer than the amount of time which would elapse if
executing a solution picked at random

APPROACH 2:
Heuristic Optimisation

o Optimiser often uses heuristics to reduce the number of
choices that must be made in a cost-based fashion.

o Heuristic optimisation transforms the query-tree by using
a set of rules that typically (but not always) improve
execution performance.

o Some cost based estimation is also performed – as part
of the heuristic optimisation and to choose between a
reduced set of trees and/or evaluation plans.

STEPS FOR APPROACH 2:

1. Create a canonical query tree.

2. Apply a set of heuristics to the tree to create a more
efficient query tree.

3. Create cost estimates of this query tree, if appropriate,
to ensure best evaluation plan.

DEFINITION:
Canonical query tree

A canonical query tree is an inefficient query tree
representing relational algebra expressions which can be
created directly from the SQL solution following a
sequence of quick and easy steps:

Uses CARTESIAN product instead of JOINS

Keeps all conditions (σ) together in one internal node

π becomes root node

Steps to create a canonical query tree
with SELECT/FROM/WHERE clauses and no
sub-queries:

1. All relations in FROM clause become leafs of the tree.
They should be combined with a Cartesian product (x) of
the relations.

* Remember: Only 2 relations can be involved in a Cartesian
product at a time (binary tree)

2. All conditions in the WHERE clause and any JOIN conditions
in WHERE or FROM clause become a sequence of relational
algebra expressions in one inner node of the tree (with inputs
from previous step)

3. All conditions from the SELECT clause become a relational
algebra expression in the root node

EXAMPLE 8 with implicit join
List the names of employees in research department

SELECT fname, lname

FROM employee, department

WHERE dno = dnumber AND

dname = ‘Research’;

Creating the canonical query tree …

EXAMPLE 8 with explicit join
List the names of employees in research department

SELECT fname, lname

FROM employee INNER JOIN department ON

dno = dnumber

WHERE dname = ‘Research’;

Creating the canonical query tree …

CANONICAL TREE REPRESENTATION:

SELECT fname, lname

FROM employee INNER JOIN department

ON dno = dnumber

WHERE dname = ‘Research’;

NOTE:

This would be very inefficient if executed directly because
of the Cartesian product operations.

Recall Cartesian product:

R x S

Returns tuples comprising the concatenation of every tuple
in R with every tuple in S

CONSIDER EXAMPLE 7 AGAIN

Draw the canonical query tree for the SQL query in
Example 7:

List the location of all departments managed by manager
Franklin Wong

HEURISTIC OPTIMISATION

Heuristic Optimisation MUST transform this canonical
query tree into a final query tree that is efficient to
execute:

o In general, heuristic optimisation tries to apply the most
restrictive operators as early as possible in the tree
(furthest down the tree) and to reduce the size of the
temporary tables/results created that move “up” the
tree.

o Heuristic Optimisation must include rules for equivalence
among relational algebra expressions that can be
applied to the initial tree.

HEURISTIC OPTIMISATION ALGORITHM:
Input: A canonical query tree

Process:

1. Decompose any σ with AND conditions into individual σ

2. Move each σ operator as far down the query tree as possible.

3. Rearrange the leaf nodes so that most restrictive σ can be
applied first (using information from DBMS catalog) and so that
future JOINS are possible.

Note: “most restrictive” means those operators that result in
relations with the fewest tuples or with the smallest absolute size -
these operations should happen first – that is – at the lowest level
of the tree and on the left hand side of the tree.

4. Combine CARTESIAN PRODUCT operators with σ (sigma) to form
JOIN operators where appropriate (replacing all x)

5. Decompose π and move each π as far down the tree as possible,
possibly creating new π operators in the process.

(6. Identify subtrees that represent groups of operations that can be
executed by a single algorithm.)

(7. Add evaluation plan)

Output: An efficient query tree

Back to EXAMPLE 8:
List the names of employees in research
department

SELECT fname, lname

FROM employee INNER JOIN department

ON dno = dnumber

WHERE dname = ‘Research’;

OPTIMISATION HEURISTIC 1 & 2:
Decompose conditions and apply sigma (σ)
operators as early as possible

o “Move σ down tree” thus eliminating unwanted tuples.

o Heuristic 1 tries to reduce the size of the tables to be
combined as much as possible:

o Therefore, if a selection operator (σ) occurs after a
Cartesian product or a join, check to see if it can occur
before these operations

Example 8:
Move (σ) sigma

OPTIMISATION HEURISTIC 3:
Rearrange the leaf nodes so that most
restrictive sigma opeartors can be
applied first

If we don’t have any information from DBMS catalog

owe might leave nodes as they are

oUse database schema (number of columns) to make a
good estimate

oUse sample data (number of rows) and database schema
(number of columns) to make a good estimate

EXAMPLE 8:
REARRANGE LEAF NODES

OPTIMISATION HEURISTIC 4:
Replace Cartesian product (x) and
appropriate selects (σ) with JOIN
* First must ensure the leaf nodes are ordered such that
this can happen – if not re-order leaf nodes and ensure to
keep any select operators with the appropriate leaf node

σcondition(r1 X r2)

Is equivalent to:

R1 JOINcondition R1

EXAMPLE 8:
REPLACE X

OPTIMISATION HEURISTIC 5:
Apply Pi (π) operators as early as possible

o Motivation: “Move π down the tree” (project) to eliminate
unwanted columns

oThe heuristic ensures that the size of the tables to be joined are as
small as possible (reduces number of attributes/columns)

Therefore:

ofor each π check if that π can be carried out before the join

ofor each table check if additional π can be introduced (these may
not be stated explicitly in the query)

N.B. MUST ensure that all needed columns further up in the tree are
retained (even if they are not immediately necessary)

EXAMPLE 8:
Move Pi

EXAMPLE 9

Using the COMPANY relational schema and interpretation
as defined in lectures develop an SQL query to satisfy the
following information need:

“List the names of employees with salaries greater than
30000, who work on projects for greater than 25 hours
where the projects are located in Houston or Bellaire”

Using query optimisation heuristics develop a query tree
which represents an efficient evaluation strategy for the
developed query.

SELECT fname, minit, lname

FROM project, employee, works_on

WHERE pno = pnumber AND essn = ssn AND

hours > 25 AND salary > 30000 AND

(plocation = ‘Houston’ OR

plocation = ‘Bellaire’);

SQL SOLUTION:

CANONICAL QUERY TREE SOLUTION

π fname, minit, lname

(σ pno = pnumber AND essn = ssn AND

hours > 25 AND salary > 30000 AND

plocation = 'Houston' OR plocation = 'Bellaire'

(project x employee x works_on)

)

OPTIMISATION HEURISTIC 1 & 2:
Decompose conditions and apply sigma (σ) operators
as early as possible

OPTIMISATION HEURISTIC 3:
Rearrange the leaf nodes so that most
restrictive sigma opeartors can be applied
first and that future joins can be performed

OPTIMISATION HEURISTIC 4:
Replace Cartesian product (x) and appropriate selects
(σ) with JOIN

OPTIMISATION HEURISTIC 5:
Apply Pi (π) operators as early as possible

EXAMPLE 10: (Winter 2017)
(Given the movie schema from the exam paper)

(c) Using joins, create a SQL query to answer the following information
need. Using this SQL query, create a canonical query tree, explaining
the steps you take in creating the tree and highlighting what parts of
the SQL query are represented by the root, leaves and inner nodes of
the tree.

For movies of genre ‘Sci-Fi’, released in 2016 or 2017, with an average
rating greater than 7, list the movie title, movie category and the names
of the actors who star in the movie.

(d) Using the canonical query tree from part (c), and with respect to
heuristic-based optimisation, develop a query tree that represents an
efficient evaluation strategy for the SQL query. Explain the steps taken,
describing each heuristic used.

SCHEMA:
movie(id, title, relYear, category, runTime, director, studioName,
description, rating)

actor(aID, fName, surname, gender)

stars(movieID, actorID)

movGenre(movieID, genre)

For movies of genre ‘Sci-Fi’, released in 2016 or 2017, with
an average rating greater than 7, list the movie title, movie
category and the names of the actors who star in the movie.

SQL SOLUTION:
(Note: can use implicit or explicit joins)

SELECT title, category, fname, surname

FROM movie INNER JOIN movGenre ON id = movieGenre.movieID

INNER JOIN stars ON id = stars.movieID

INNER JOIN actor ON aid = actorID

WHERE genre = 'Sci Fi' AND

rating > 7 AND

(relYear = 2016 OR relYear = 2017);

SUMMARY: IMPORTANT TO KNOW

•Basic relational algebra operators.

•Mapping between relational algebra operators and SQL.

•Mapping between relational algebra expression and
query tree.

•Mapping from SQL to Canonical Query tree.

•Heuristic optimisation steps to map Canonical Query tree
to efficient query tree.

•N.B. Do not mix up SQL code and Relational Algebra
expressions

FILE
ORGANISATIONS

CT230
Database
Systems I

RECOMMENDED TEXT:

See:

Chapter 5

Elmasri & Navathe

(3rd Edition)

MOTIVATIONS

o Generally can assume for non-trivial relational
databases, that the entire database will not fit in main
memory (RAM)

o One of the DBMS’s tasks is to manage the physical
organisation (storage and retrieval) of the tuples (rows) in
each table in the database
oThis is called File Organisation

NOTE:

Newer database system architectures, in-memory
databases (such as SAP Hanna), manage their data
through virtual memory, relying on the Operating System
to manage the movement of data to and from main
memory through the OS paging mechanism.

DEFINITION: FILE ORGANISATIONS

A database file organisation is the way tuples (records)
from a table are physically arranged in secondary
storage to facilitate storage of the data and read/write
requests by users (via queries).

A number of factors to consider, including:

• Support of fast access of data – moving to/from secondary
storage

• Cost

• Efficient use of secondary storage space

• Provision for table growth (when new tuples added)

o Options?

o All stored together?

o Separated in some way based on some logical
grouping?

Concerning the physical storage of
tuples

More definitions:

File = collection of data stored in bulk

In DBMS we have referred to these files as tables or relations

In DBMS we know that such tables contain a sequence of
tuples, where each tuple contains a sequence of bytes and is
subdivided into attributes or fields. Each attribute contains a
specific piece of information. Associated with each attribute is
a data type

In File Systems, we refer to these tuples as records containing
fields

Size of records/tuples:

Fixed length: all records (tuples) in file (table) have exactly
same size

Variable length: different records (tuples) in file (table)
have different size

RECORDS

Each record often begins with a header, a fixed-length
region which stores information about the record such as:

o Pointer to the database schema

o Length of the record

o Timestamp indicating the time the record was last
modified or read

o Pointers to the fields of the record

File organisation issues:

How can these records be organised to:

• store in a compact manner on devices of limited
capacity?

• provide convenient and quick access by programs

BLOCKS

o Different terminology used but generally,

Block = Frame = Page

where records from a file are assigned to
Blocks/Pages/Frames

oIn relational DBMS use the terminology of a block

oTherefore, a table can also be defined as a collection of
blocks where each block contains a collection of records.

DEFINITION: Blocks

o A block is the unit of data transfer between secondary
storage and memory

o The block size B is fixed

o Records of a file must be allocated to blocks. Typically,
the block size is larger than the record size, so each block
will contain a number of records

o Some files may have very large records that cannot fit in
one block so span records over a number of blocks

oA number of blocks is typically associated with a table

BLOCKS

Blocks also have header information holding information
about the block such as:

o Links to one or more blocks associated with the table

o Which table (in the schema) the blocks belong to

o Timestamp of last access to block (read or write)

Example: Records assigned to blocks for the table
with block header shown:
dept_locations(dnumber, dlocation)

header record 1 record 2 record 3

header record 4 record 5

Block 1

Block 2

Example: Records assigned to blocks for the table
with block and record header shown:
dept_locations(dnumber, dlocation)

Header info 1, ‘Houston’ 4, ‘Stafford’ 5, ‘Bellaire’

Block 1

Header info 1, ‘Houston’ 4, ‘Stafford’ 5, ‘Bellaire’

Block 1

Header info

Block 2

5, ‘Sugarland’ 5, ‘Houston’

DEFINITION: Blocking factor

o Blocking factor is the average number of records that fit
per block

o Given block size B (in bytes), and record size R (in bytes),
then with B >= R, can fit floor(B/R) records per block.

o Must ensure that the header information is also
accounted for

Spanned vs Unspanned organisations:

Spanned organisation - records can span more than one
block

Un-spanned - records are not allowed to cross block
boundaries

So can only use when B >= R

(i.e., block size is greater than record size)

NOTE:

Block size and record size measured in bytes.

e.g., with unspanned memory organisation and

B = 1024 Bytes (once header information stored)

R = 100 Bytes and of fixed length

The blocking factor is:
floor(10.24) = 10

Why use blocking?

Say we need to retrieve a file with 1000 records …

o If not blocked then would need 1000 data transfers

o If blocked with a blocking factor of 10, and records
are stored one after another in blocks, then the same
operation requires 100 data transfers

EXAMPLE 1: A table has 20000 fixed-length STUDENT
records

Schema:

student(name, studentID, address, mobphone,
birthdate, gender, degreeCode, currentYear)

Each field is the following size:
name (30 bytes),
studentID (9 bytes),
address (40 bytes),
mobphone (10 bytes),
birthdate (10 bytes),
gender (1 byte),
degreeCode (8 bytes),
currentYear (4 bytes)

The file is stored on disk, in blocks, with 20 bytes required
for header information per record.

EXAMPLE 1 QUESTIONS:

What is the record size? (adding in the header information
also)

Given a block size of 512 Bytes what is the blocking factor?
(unspanned memory organisation)

How many blocks are required to store all 20000 records if
each block is filled before another block is used (remember
records are fixed-length)

132 bytes

512/132 = 3.87 blocking factor = 3

20000/3 = 6666.67 6667 blocks needed

30+9+40+10+10+1+8+4+20 =

Operations performed on a file

All the operations we have been performing with SQL
code:
o Scan or fetch all records

o Search records that satisfy an equality condition (i.e.,
find specific records)

o Search records where a value in the record is between a
certain range

o Insert records

o Delete records

Steps to search for a record
on a disk:

1. Locate relevant blocks

2. Move these blocks to main memory buffers

3. Search through block(s) looking for required record

4. At worst (the worst case), may have to retrieve and check
through all blocks for the record

Generally, when accessing records:

To support record level operations, must:
 keep track of the blocks associated with a file
 keep track of free space on the blocks
 keep track of the records on a block

Recall example again: Records assigned to
blocks for the table:
dept_locations(dnumber, dlocation)

Header info 1, ‘Houston’ 4, ‘Stafford’ 5, ‘Bellaire’

Block 1

Header info 1, ‘Houston’ 4, ‘Stafford’ 5, ‘Bellaire’

Block 1

Header info

Block 2

5, ‘Sugarland’ 5, ‘Houston’

Options for organising records?

• Heap file organisation (unordered)

• Sequential file organisation (ordered)

• Hashing/hashed file organisation

• Indexed file organisation (Primary, Clustered, B-Trees, B+
Trees)

HEAP FILE ORGANISATION

Approach: Any record can be placed in any block where
there is space for the record (no ordering of records)

Insertion: last disk block associated with file (table) copied
into buffer and record is added; block copied back to
disk

Searching: must search all blocks (linear search)

Deletion: find block with record (linear search); delete link
to record

EXAMPLE 2: Given a blocking factor of 2, and the
student schema from example 1, sketch the
placement of the following student records, in the
order given, using heaped file organization

('Jane Casey', 111, '34 hazel park, newcastle, galway',
'087123456', '17-05-2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 college road, galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

('Jane Casey', 111, '34 hazel park, newcastle,
galway', '087123456', '17-05-2001', 'F', 'GY101', 1)

Header info

Block 1

Header info

Block 2

('Jack Walsh ', 91, '13 college road, galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

‘Jane
Casey’,
111, …

‘Jack Walsh’,
91, …

‘Sue
Smyth’, 90,
…

Gerard
Kelly’, 112,
…

How are the following supported in heaped
file organisation (using example 2)?

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill,
Galway', '087222333', '24-10-2002', 'M', 'GY101', 3)

2. Deleting an existing tuple:
('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill, Galway',
'087222333', '24-10-2002', 'M', 'GY101', 3)

Header info ‘Sue Smith’,
90, …..

‘Gerard Kelly’,
112, ….

Block 2

Header info ‘Sean Carty’,
100, …..

Block 3

Header info

Block 1
‘Jane
Casey’,
111, …

‘Jack
Walsh’, 91,
…

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

Header info ‘Jane Casey’,
111, ….. ‘Jack

Walsh’, 91,

Block 1

Header info
‘Sue Smith’,
90, …..

‘Gerard
Kelly’, 112,
….

Block 2

Header info ‘Sean Carty’,
100, …..

Block 3

HEAP FILE ORGANISATION

Advantages: Insertion efficient and easy - last disk block
copied into buffer and record is added; block copied
back to disk

Disadvantages:

1. Searching inefficient - must search all blocks (linear
search)

2. Deleting inefficient - search first; delete and then leave
unused space in block if using 'easy' insert approach

SEQUENTIAL FILE ORGANISATION

Approach: Records are stored in sequential order, based
on the value of some key of each record – often primary
key

Usually use an index with sequential file organisation

Allows records to be read in sorted order

EXAMPLE 3: Using a blocking factor of 2,
and the schema from example 1, sketch the
placement of the following student records
using a sequential file organisation ordered
on the studentID:

('Jane Casey', 111, '34 hazel park, Newcastle,
Galway', '087123456', '17-05-2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

Header info

Block 1

Header info

Block 2
‘Jane
Casey’, 111,
…

‘Jack
Walsh’, 91,
…

‘Sue
Smyth’, 90,
…

‘Gerard
Kelly’, 112,
…

('Jane Casey', 111, '34 hazel park, newcastle, Galway',
'087123456', '17-05-2001', 'F', 'GY101', 1)
('Jack Walsh ', 91, '13 college road, Galway', '086654321',
'01-09-2000', 'M', 'GY350', 3)
('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)
('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

How are the following supported in
SEQUENTIAL file organisation (using results
from example 3)?

1. Inserting a new tuple:
('Sean Carty', 100, '23 Ocean view,
Salthill, Galway', '087222333', '24-10-2002',
'M', 'GY101', 3)

2. Deleting an existing tuple:
('Jack Walsh ', 91, '13 College road,
Galway', '086654321', '01-09-2000', 'M',
'GY350', 3)

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill, Galway',
'087222333', '24-10-2002', 'M', 'GY101', 3)

Header info ‘Sean Carty’,
100, …..

‘Jane Casey’,
111, …..

Block 2

Header info ‘Gerard Kelly’,
112, ….

Block 3

Header info

Block 1
‘Jack
Walsh’, 91,
…

‘Sue
Smyth’, 90,
…

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill, Galway',
'087222333', '24-10-2002', 'M', 'GY101', 3)

Header info ‘Sean Carty’,
100, …..

Header info ‘Jack Walsh’,
91, ….

Block 1

‘Sue Smith’,
90, …..

Header info ‘Gerard
Kelly’, 112,
….

Block 2

‘Jane Casey’,
111, …..

Use of
“overflow”
blocks

Block n

2. Deleting an existing tuple (Option 1):

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

Header info ‘Sue Smith’,
90, …..

‘Jack
Walsh’, 91,
….

Block 1

Header info ‘Sean Carty’,
100, …..

‘Jane Casey’,
111, …..

Block 2

Header info ‘Gerard Kelly’,
112, ….

Block 3

Result:

2. Deleting an existing tuple (Option 2):

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

Header info ‘Sean Carty’,
100, …..

Header info ‘Jack
Walsh’, 91,
….

Block 1

‘Sue Smith’,
90, …..

Header info
‘Gerard
Kelly’, 112,
….

Block 2
‘Jane Casey’,
111, …..

Result:

SEQUENTIAL FILE ORGANISATION

Advantages:

• Reading records in order is efficient

• Searching is efficient on key field (binary search)

• Easy to find 'next record'

But …

• Insertion and deletion expensive as records must remain
physically ordered. Pointer chains used (part of header
information)

• What if searching on non-key field?

key value of
record hash

function
storage
location/block for
record

HASHING/HASHED FILE ORGANISATION

A hash function is computed on some attributes of each
record (e.g., often key value)

The output of the hash function is the block address where
the record should be placed

HASH FUNCTIONS

A common hash function is the MOD function where:
a MOD b or a % b

returns the remainder on dividing a by b, i.e. integer division.

Example:
20 MOD 7 = 6

100 MOD 5 = 0

where b should be a prime number – that is a number only
evenly divisible by itself and 1
http://www.onlineconversion.com/prime.htm

EXAMPLE 4

Given the following records which should be stored in
blocks based on user IDs and a hashed file organisation

The available blocks have IDs in the range 0-100 and
have a blocking factor of 3

Assign the following records to blocks using user IDs:

1234

167

100

458

Example 4 steps:
1. Get prime number in the range 0-100 as close to 100

as possible - e.g., 97

2. For each key value of each record find the block
number of where to place record by getting
keyvalue mod primenumber, e.g., keyvalue mod 97

1234 MOD 97

167 MOD 97

100 MOD 97

458 MOD 97

= 70 (97 divides in to 1234 12 times with remainder 70)

= 70 (once)

= 3 (once)

= 70 (4 times)

1234 …..block 70 167 ….. 458 …..

100 …..block 3

……

block 71

……

Placing of the records:

EXAMPLE 5: Using the student schema from
example 1, and given a blocking factor of 2,
with mod function of 97, sketch the placement
of the following student records using hashed
file organisation:

('Jane Casey', 111, '34 hazel park, Newcastle, Galway',
'087123456', '17-05-2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

('Jane Casey', 111, '34 hazel park, Newcastle, Galway', '087123456', '17-05-
2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 College road, Galway', '086654321', '01-09-2000', 'M',
'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway', '087111222', '25-07-1999', 'F',
'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co. Galway', '087121212', '30-12-
2002', F, GY414, 1)

111 mod 97 =

‘Sue Smyth’,
90, … block 90

‘Jane Casey’,
111 …..block 14

……

block 91

……

‘Gerard Kelly’,
112 …block 15

‘Jack Walsh’,
91, …..

91 mod 97 = 91

111 mod 97 = 14

90 mod 97 = 90

112 mod 97 = 15

How are the following supported in HASHED
file organisation (using results from
example 5)?
1. Inserting a new tuple:
('Sean Carty', 100, '23 Ocean view, Salthill,
Galway', '087222333', '24-10-2002', 'M',
'GY101', 3)

2. Deleting an existing tuple:
('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill,
Galway', '087222333', '24-10-2002', 'M',
'GY101', 3)

‘Sue Smyth’,
90, …

block 90

‘Jane Casey’,
111, …..

block 14

……

block 91

……

‘Gerard Kelly’,
112 …

block 15

‘Jack Walsh’,
91 …..

100 mod 97 = 3‘Sean Carty’,
100, …..

block 3

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road, Galway', '086654321',
'01-09-2000', 'M', 'GY350', 3)

‘Sue Smyth’,
90

block 90

‘Jane Casey’,
111 …..

block 14

……

block 91

……

‘Gerard Kelly’,
112 …

block 15

‘Jack Walsh’,
91 …..

91 mod 97 = 91‘Sean Carty’,
100 …..

block 3

QUESTION: Is 97 a good choice for this
problem … with 20000 records?

No! Will use blocks from 0 to 96 (97 blocks)

With a blocking factor of 2, at most can fit 97x2 = 194
records

Need a much larger prime number and more blocks

Prime number close to 10000, e.g., 10009, but not much
room for growth

Prime number close to 20000, e.g., 19751, would be
much better
(http://www.onlineconversion.com/prime.htm)

http://www.onlineconversion.com/prime.htm

Criteria for choosing hash function

o Easy and quick to compute (as mod function is)

o Should uniformly distribute hash addresses across the
available space … Picking a prime number for the mod
function helps with this … but cannot guarantee it

o Anticipate file growth (insertions and deletions) so only a
fraction of each block is initially filled, thus leaving room
to insert new records

COLLISIONS
o However, at any stage, two or more key field values can hash
to the same location … if there is no room to place record this
is called a collision

o If a collision occurs, and there is no space in block for new
record, then must find a new location … this is called collision
resolution

oOne approach to collision resolution is Linear Probing

o Hash function returns block location i for record

o If there is no room in block i check block i+1, i+2 etc. until a block
with room is found

o Can degrade to a linear scan if load factor is high

EXAMPLE 6:

Given the following key field values of five records, show
how the associated records are assigned to blocks using a
hashed file organisation with the mod function (mod 7)
where a blocking factor of 3 is being used and with linear
probing collision resolution.

Key values of records: 24, 73, 20, 9, 10, 31

block

……

……

Placing of the records 24, 73, 20, 9, 10, 31
using mod 7 and a blocking factor of 3 and linear
probing collision resolution

block

block

block

block

Calculating
blocks IDs:

24 mod 7 =

73 mod 7 =

20 mod 7 =

9 mod 7 =

10 mod 7 =

31 mod 7 =

block2

……

……

Placing of the records 24, 73, 20, 9, 10, 31
using mod 7 and a blocking factor of 3 and linear
probing collision resolution

block3

block4

block6

block

20

31

24

9
Calculating
blocks IDs:

24 mod 7 = 3
1073

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

20 mod 7 = 6

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

20 mod 7 = 6

9 mod 7 = 2

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

20 mod 7 = 6

9 mod 7 = 2

10 mod 7 = 3

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

20 mod 7 = 6

9 mod 7 = 2

10 mod 7 = 3

31 mod 7 = 3

DATABASE INDEXES

Indexing speeds-up operations that are not efficiently supported
by the basic file organisation.

Consists of index entries

Each index entry consists of:

o index key

o record or block pointer

The index entries are placed on disk, either in sequential sorted
order (ordered indexes) or hashed order.

A complete index may be able to reside in main memory

Example of index file organisation of staff
schema on name

To access a record using indexing key:

1. Retrieve index file

2. Search through it for required
field (based on index key value)

3. Answer query or return to
secondary storage for the block
which contains the required
record.

Dense vs sparse indexes

An index is dense if it contains an entry for every record in
the file

A dense index may be created for any index key
A sparse/non-dense index contains an entry for each
block rather than an entry for every record in the file and
can only be used if the records are assigned to blocks in
sorted (sequential) order based on the index key

A sparse index is called a primary index

More on primary indexes
 The total number of entries in the index is the same as the
number of blocks in the ordered file

 The first record in each block is called the anchor record of
the block

Advantages:

o Fewer index entries than records so index file is smaller

Disadvantages:

o Insertions and deletions a problem - may have to change
anchor record

o Searching may take longer

EXAMPLE 7: Indexed file Organisation
Given the student schema from Example 1, with primary key
studentID. With the aid of a diagram, illustrate how a dense
indexing file organisation might operate (with blocking factor of 2
and sequential file organisation)
e.g. for the examples:
('Jane Casey', 111, '34 hazel park, Newcastle, Galway',
'087123456', '17-05-2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

90 Block 1

91 Block 1

111 Block 2

112 Block 2

Index file

DENSE …. Index entry for each record

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Gerard Kelly’,
112, ….

Block 2

‘Jane Casey’,
111, …..

How are the following supported in dense
indexed sequential file organisation (using
example 7)?

1. Inserting a new tuple:
('Sean Carty', 100, '23 Ocean view,
Salthill, Galway', '087222333', '24-10-
2002', 'M', 'GY101', 3)

2. Deleting an existing tuple:
('Jack Walsh ', 91, '13 College road,
Galway', '086654321', '01-09-2000', 'M',
'GY350', 3)

Index file

Inserting a tuple …
two updates needed

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Sean Carty’,
100, …..

Header info
‘Gerard
Kelly’, 112,
….

‘Jane Casey’,
111, …..

Block 2

Block n

90 Block1

91 Block 1

100 Block n

111 Block 2

112 Block 2

Index file

Index file

Deleting a tuple …
two deletions needed

Header info ‘Jack
Walsh’, 91,
….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Sean Carty’,
100, …..

Header info ‘Gerard
Kelly’, 112,
….

‘Jane Casey’,
111, …..

Block 2

Block n

90 Block1

100 Block n

111 Block 2

112 Block 2

Index file

Example 8: Using the illustrated example from
example 7, show how the organization of data looks
for non-dense indexing (sequential organization)

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Gerard Kelly’,
112, ….

Block 2
‘Jane Casey’,
111, …..

90 Block 1

111 Block 2

Index file

Sparse/Non-dense ….
Index entry for each block

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Gerard Kelly’,
112, ….

Block 2
‘Jane Casey’,
111, …..

Index file

Inserting a tuple
with sparse
indexing

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Sean Carty’,
100, …..

Header info ‘Gerard
Kelly’, 112,
….

‘Jane Casey’,
111, …..

Block 2

Block n

90 Block1

100 Block n

111 Block 2

Index file

Index file

Deleting a tuple …
with sparse indexing

Header info ‘Jack
Walsh’, 91,
….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Sean Carty’,
100, …..

Header info
‘Gerard
Kelly’, 112,
….

‘Jane Casey’,
111, …..

Block 2

Block n

90 Block1

100 Block n

111 Block 2

Index file

No change
in index

CLUSTERED AND SECONDARY INDEXES
Records that are logically related are physically stored
close together on the disk (i.e., in the same blocks or
consecutive blocks)

Records are physically ordered on a non-key field that
does not have a distinct value for each record

Clustering index consists of:

o clustering field value

o block pointer to first block that has a record with that
value for clustering field

Advantages/disadvantages of clustering:

Quick access on clustering field but have to search all
blocks in querying on non-clustering fields

Consider a file holding the employee information from the
Company schema where each record contains a positive
integer indicating the department where an employee works.
Show how a clustering index on department number (DNO)
might operate on such data – with blocking factor of 3

Example 9:

James E Borg, …. , 888665555, ….. …, 1

Alicia Z Zelaya, …. 999887777, …… …, 4

Jennifer S Wallace, …. 987654321, …. …, 4

Ahmad V Jabbar, ……, 987987987, ….. …., 4

John B Smith, ……… , 123456789, …. ….., 5

Franklin T Wong, ……., 333445555, …. ……, 5

b1

b2

bN

1 b1

4 b1

5 b2

Index file

Option 1:
Fill all blocks

Ramesh K Narayan, …. 666884444, …. ……., 5

Joyce A English, …….., 453453453, …… ..…, 5

b3

Index
value
(dno)

block
value

James E Borg, …. , 888665555, ….. …, 1

Alicia Z Zelaya, …. 999887777, …… …, 4

Jennifer S Wallace, …. 987654321, …. …, 4

Ahmad V Jabbar, ……, 987987987, ….. …., 4

Joyce A English, …….., 453453453, …… ..…, 5

b1

b2

b4

1 b1

4 b2

5 b3

Index file

Option 2:
Leave 'space’
for other
records with
that clustering
field value

John B Smith, ……… , 123456789, …. ….., 5

Franklin T Wong, ……., 333445555, …. ……, 5

Ramesh K Narayan, …. 666884444, …. …., 5

b3
Index
value
(dno)

block
value

John B Smith,… ,123456789, …. .…, 5

Franklin T Wong, ., 333445555, … .…, 5

Joyce A English, ., 453453453, . .…, 5

Ramesh K Narayan, ….666884444, …., 5

James E Borg, …. , 888665555, …, 1

Jennifer S Wallace, …. 987654321, ..…, 4

Ahmad V Jabbar, ……, 987987987, …., 4

Alicia Z Zelaya, …. 999887777, …… …, 4

b1

b2

b3

Option 3:
Use a Secondary Index
and sequential file
organisation

A secondary index is an index
whose index (clustering) value
specifies an order different to the
underlying sequential order of the
file.

Any attribute can be chosen as
the clustering index value.

Any number of secondary indexes
can be built with different
clustering index values.

John B Smith,… ,123456789, …. .…, 5

Franklin T Wong, ., 333445555, … .…, 5

Joyce A English, ., 453453453, . .…, 5

Ramesh K Narayan, ….666884444, …., 5

James E Borg, …. , 888665555, …, 1

Jennifer S Wallace, …. 987654321, ..…, 4

Ahmad V Jabbar, ……, 987987987, …., 4

Alicia Z Zelaya, …. 999887777, …… …, 4

b1

b2

b3

1 A

4 B

5 C

Clustering
Index file

Option 3:
Secondary
Index

b2

Secondary
Indexes

b2 b3

b1 b2

A

B

C

Index
value
(dno)

block
value

SECONDARY INDEXES

•Does not impact the actual storage of records (which
blocks they reside in – which can be sequential)

•Can define multiple secondary indexes as well as a
primary index

John B Smith,… ,123456789, …. .…, 5

Franklin T Wong, ., 333445555, … .…, 5

Joyce A English, ., 453453453, . .…, 5

Ramesh K Narayan, ….666884444, …., 5

James E Borg, …. , 888665555, …, 1

Jennifer S Wallace, …. 987654321, ..…, 4

Ahmad V Jabbar, ……, 987987987, …., 4

Alicia Z Zelaya, …. 999887777, …… …, 4

b1

b2

b3

1 A

4 B

5 C

Clustering
Index

For example:

b2

Secondary Indexes

b2 b3

b1 b2

A

B

C

123456789 b1

666884444 b2

987987987 b3

Primary index

B-TREES

Most commercial systems use an indexing structure called
B-trees, and specifically B+ trees.

B-trees allow as many levels of indexes as is appropriate
for the file being indexed

B-trees manage the space in blocks so that every block is
between half-used and completely full

B-trees consist of sequences of pointers arranged in a tree
data structure

CLASS WORK ….
WINTER 2017 QUESTION ON FILE ORGANISATIONS
(b) Given an unspanned memory organisation, fixed record length, a blocking

factor of 3, and five records with the following primary keys:

25, 34, 48, 69, 76

(i) With the aid of examples, outline the main advantages and disadvantages of
placing the given records in blocks under a sequential file organisation. (5)

(ii) With the aid of a diagram, and using sequential file organisation, differentiate
between a dense and non-dense indexing of the given five records. (5)

(iii) With the aid of an example, describe what is meant by secondary indexing. (5)

(iv) (i) With the aid of a diagram, show where the given five records would be
placed in blocks under a hashed file organisation. The mod function (mod 7)
should be used in addition to linear probing. (5)

block1

Given an unspanned memory organisation, fixed record length, a
blocking factor of 3, and five records with the following primary
keys:
25, 34, 48, 69, 76

block2

Advantages … reading on key field value (in order)
Disadvantages … maintaining sorted order when adding records

4825 34

69 76

25 block1

34 block1

48 block1

69 block2

76 block2

Dense

25 block1

69 block2

Non Dense (Primary Index)

block1

block2

25 34 48

69 76

With dense indexing we should have an entry for
every record; 5 records implies 5 index entries
With non-dense indexing we should have an entry
for every block associated with the file; 2 blocks
implies 2 index entries. The key value of the first
record in each block is used as the index value.

Example: Assuming the primary keys are student IDs (e.g., 25, 34, 48) and
we also store the course code for each student (e.g., 2BA, 3BP, etc.) as well
as other student information (not shown). Records are assigned to blocks
based on the primary key, with a blocking factor of 3.
Course code can be used as a clustering index and the actual references
to the blocks holding the student records are stored in a secondary index.

2BCT1 A

3BP1 B

3BLE1 C

2BA1 D

2BDS1 E

Clustered Index

b1 b2

Secondary Indexes

b1

b1 b2

A

B

D

b1

b2

25 …. 2BCT1 34 … 3BP1 48 … 2BA1

69 .. 2BA1 76 … 2BCT1

block4
……

Calculating
blocks IDs:

25 mod 7 = 4

block6

block7

25, 34, 48, 69, 76

Calculating
blocks IDs:

25 mod 7 = 4

34 mod 7 = 6

Calculating
blocks IDs:

25 mod 7 = 4

34 mod 7 = 6

48 mod 7 = 6

Calculating
blocks IDs:

25 mod 7 = 4

34 mod 7 = 6

48 mod 7 = 6

69 mod 7 = 6

25

34 48 69

76

Calculating
blocks IDs:

25 mod 7 = 4

34 mod 7 = 6

48 mod 7 = 6

69 mod 7 = 6

76 mod 7 = 6

767634 48 69

SUMMARY: IMPORTANT TO KNOW

•Blocking factor

•Basic 3 organisations: Heaped, Sequential and Hashed
(with collision resolution)

•Indexed – Dense and non-dense

•Clustered Index and secondary indexes (not B+ trees)

CT230
DATABASE SYSTEMS

Summary &
Exam
Information

EVALUATION FORM AVAILABLE ON
BLACKBOARD
Please complete!

CT230 TOPICS
o Introductory material: Databases and Database Management Systems;
File System approach Vs Database approach [no exam question]

o The Relational Model – definitions

o The Relational Model and Constraints

o SQL: DDL and DML SELECT

o ER Models

o Normalisation (1, 2 and 3 NF)

o Relational Algebra

o Query Processing and Cost Estimates and Heuristic Optimisation

o File Organisations: Heaped, Sequential, Hashed, Indexed – Dense,
Non-dense, Clustered, Secondary

CT230 LEARNING OUTCOMES
On successful completion of this module the learner
will be able to:

EXAM: SEMESTER 1 2022

Name: CT230: Database Systems I

Time allowed: Two hours *

Date: 08/12/2022 at 13:00
(as of 21/11/2022 – double check closer to the exam time)

* unless you have a LENS report

EXAM FORMAT AND INSTRUCTIONS
(as in previous years)
You will be given a description of a new (unseen) database (no data)

Exam will comprise 4 questions, Answer Question 1 and 2 others:

Question 1: SQL Questions based on database given. Compulsory. Answer
all questions. (40 marks)

Answer any 2 questions from 3 (30 marks per question):

Question 2: Based on database given. Relational Algebra and Query Processing
and Optimisation

Question 3: File Organisations and Normalisation

Question 4: ER Diagrams and Mapping to Tables.

PREVIOUS EXAM PAPERS AVAILABLE
from exams database:

NOTES:

o There is no question specific to MySQL or Adminer or
phpMyAdmin, ReLax calculator, MS Visio or equivalent or asking
how to perform a task in these

o One database schema (tables and description only) will be used
for the SQL, relational algebra and query processing questions.
This will be a new database description (with no data given).

o A different database schema will be used for the normalisation
question and a different example will be used for the ER model.

NOTES ON QUESTION 1 (SQL)

Only SQL questions (DDL and SQL SELECT)
No sample data is given. Only code is important for
exam, not the answer to the queries.
Have to make reasonable guess about data types for
any DDL question

MARKS

Exam paper: 80% of final mark
Question 1: 40 marks
2 Questions (2, 3, 4): 30 marks per question

5 quizzes
 Worth 20% of final mark

STUDY AIDS

Lecture Notes
Code examples from lectures
Problem Sheets and sample solutions
Sample tests
Past exam papers
Elmasri & Navathe book and relevant chapters as
highlighted in lectures
Note: You will not be expected to know any material
outside of that which I presented

HINTS ON THE DAY …
• Decide on the questions you will answer

• Decide on the amount of time you will give to each question

• Take some time at the start to read through the database
description a few times rather than starting to answer
questions straight away

• More time should be given to Q1 but do not spend all your
time on Q1

• Try not to get confused between Relational Algebra Syntax
and SQL syntax

• Unless you find material easy and have extra time do not
answer extra questions … rarely is an advantage

GENERAL EXAM HINTS

Note the amount of marks allocated to each question …
unless you have time to spare, do not spend 20 minutes on
a question worth 2 marks.

Try/attempt all required questions and all parts in each
question

Answer what is asked … e.g. “with the aid of examples”;
“explain the approach taken”

If short on time, try sketch down main points first, then
return and add detail if any time remains.

EXAMINATION RESULTS

Except for visiting students, no official results will be
available before the Examinations Office send results in
summer.

For any official exams, lecturers will provide a provisional
mark (date tbc by the Registrar but usually by the start of
February)

EXAMINATION BOARDS

“Examination Boards will be held at the end of a Stage,
normally Semester 2, and after the repeat examinations in
August.”

“The Examination Board will determine the overall result and
will apply compensation provisions.”

“Only those decisions approved by the Examinations Board will
be formally recognized as official University examination results
– relating to Passing, Progression, Determination of Honours,
and Granting of Deferrals.”

CS USEFUL CONTACTS

Josephine.Griffith@universityofgalway.ie

School Administration: Deirdre King (deirdre.king@nuigalway.ie)

Help is available:
If you need help, especially coming up to exams, you can contact:

• DISC
• SUMS
• Your college office and student advisors
• Your lecturers and year tutors
• The Student Information Desk (SID)
• Student counsellors
• Chaplains

All will be ready to help…you just need to ask

Remember if are unable to sit your exams you should request a
deferral

- 17 -

