
INTRODUCTION – CT 216 SOFTWARE

ENGINEERING I

Dr. Enda Barrett

Enda.Barrett@universityofgalway.ie

Module overview (subject to change)
2

 Thursday IT 101 1-3 PM

 Software Engineering (Dr. Enda Barrett) – S1 + S2

 Group project – (Dr. Enda Barrett) – S1 + S2

 Blackboard

 Notes

 Problem sheets

 Assignment submission

 Announcements

 Lab Tutors: Daniel Kelly

 Labs start in a couple of weeks – Friday 12 - 2PM IT 106

Module Details
3

 Exam at the end of the year (Summer 2023)

 No exam at the end of Semester 1

 4 questions answer 3

 Group project will account for 40% of the final

mark

 Delivery of a spec – 5% - Group

 Project Demo and Final Report (last week of term)

 Graded holistically at the end

Semester 1 goal
4

 Learn about the software engineering principles
and methods which enable the building of large
team based software systems

 Understand the importance of version control and
team based development

 Get cloud services experience and configure the
deployment environment for your group based
projects

Blackstone Launchpad
5

 Blackstone LaunchPad

Group Projects
6

 Groups of 4 people

 Web based application i.e. You will build a web application
using (HTML, CSS, JavaScript), you will build the backend in
Node.js, deploy to Firebase and utilise a data storage
component i.e. Firestore

 Past projects included

◼ Chat rooms

◼ Personal Dashboards

◼ Photo sharing application

 Some difference between groups!

 So get thinking about what you would like to do!

 I wish to keep the project groups within the class splits during the
face to face slots where possible.

Group project dates
7

 Please form your project groupings by

Friday 23rd September at 17:00

 Nominated group lead should email me
(Enda.Barrett@nuigalway.ie) the following

 Team/Group name (“The coders”),

 Names of each member,

 Group sizes of 4 work best

 Come up with an idea and mail it to me

◼ real time event app

◼ instant messenger

◼ social media tool

 If you don’t have a group I will randomly assign you

 If you opt out you will get 0!

Web applications
8

 Clear separation of concerns

 Frontend view code or UI (CSS, HTML)

◼ Look and feel, structuring content

 Frontend dynamic content (JavaScript, VueJS (potentially))

◼ GET/POST methods, handling/updating data

 Backend server side code (Node.js) – Firebase functions

◼ Returning data, developing APIs

 DB component (Firestore)

◼ Schemas, queries for document retrieval

 Basic app up and running by Christmas deployed using
Firebase.

CT216 SOFTWARE ENGINEERING 1

CLOUD COMPUTING

Dr. Enda Barrett

Enda.Barrett@universityofgalway.ie

What is cloud computing?
2

 “Cloud computing is a model for enabling

convenient, on-demand network access to a

shared pool of configurable computing

resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly

provisioned and released with minimal

management effort or service provider

interaction.” (NIST, May 2011)

What is cloud computing
3

 Back in the early 00’s there was this bookseller called Amazon,

who made their money by shipping books (and everything

else) around the world.

 To support their web app (Amazon.com) they had built up

some neat hosting infrastructure and software to manage it at

scale with a couple of data centers

 The centers were somewhat underutilised and Amazon decided

to start selling this spare capacity.

Server room
4

 At that time most businesses/organisations maintained a
server room on premises. In it they would have separate
rack mounted PCs/servers.

 Data would be stored on large Storage Networks

 Backups would be run on this data

 Multiple machines (servers) would run business critical software

 There were challenges to this

 Maintenance

 Upgrading machines

 Upfront purchasing costs

 Hire staff to manage it (Sysadmins)

What is cloud computing
5

 Started with storage

 Simple Storage Service launched on March 14 2006

marking the beginning of Amazon Web Services

 This allowed users to store documents, files, data on an

S3 bucket without having to manage, purchase,

maintain the underlying disk hardware.

What is cloud computing
6

 Then came computing

 It followed up its successful storage launch of S3 with

EC2 or Elastic Compute Cloud in August 2006

 This allowed you to have access to a remote server

accessible via the internet!

Demand was strong…
7

History of cloud computing
8

 Computing may someday be organized as a public
utility just as the telephone system is a public
utility,” Professor John McCarthy said at MIT’s
centennial celebration in 1961. “Each subscriber
needs to pay only for the capacity he actually uses,
but he has access to all programming languages
characteristic of a very large system … Certain
subscribers might offer service to other subscribers
… The computer utility could become the basis of a
new and important industry.”

https://www.technologyreview.com/2011/10/03/190237/the-

cloud-imperative/

Cloud computing growth
9

 The growth in cloud computing over the past

decade has been phenomenal.

 In April 2011, Forrester projected that it would be

worth $160bn dollars by 2020, in reality it was

27% larger at $219bn.

 In 2022 it hit over $480bn in value and is projected

to exceed $1tn by 2029.

https://www.fortunebusinessinsights.com/cloud-computing-market-102697

Where is the cloud?
10

Virginia
California

Ireland

H K/ Sing

Japan

Amazon US-East N. Virginia
11

Cloud types – Public cloud
12

 Amazon, MS Azure, Google Cloud are examples of

public clouds.

 Any member of the public can sign up and start

provisioning compute resources within minutes

 They are highly scalable and allow an organisation

to grow its infrastructure rapidly

Cloud types – Private cloud
13

 Private cloud

 Computing resources are dedicated to a single

customer and not shared with other customers.

Considered to be more secure.

 AWS do offer a virtual private cloud

 https://aws.amazon.com/vpc/

 Organisations can also host their on cloud on-prem

using software such as OpenStack.

https://aws.amazon.com/vpc/

Cloud types - Hybrid
14

 Finally a hybrid cloud is simply a mix of public

cloud resources and private resources. An

organisation may choose this option if there is a

mixture in the criticality of their data or

computational requirements.

 Data that doesn’t require heightened security can

be pushed on to the public cloud whereas that

which does can be hosted on the private cloud.

Cloud services
15

 Software as a Service (SaaS) - provides users
with—essentially—a cloud application, the
platform on which it runs, and the platform’s
underlying infrastructure.

 Platform as a Service (PaaS) - provides users with a
platform on which applications can run, as well as
all the IT infrastructure required for it to run.

 Infrastructure as a Service (IaaS) - provides users
with compute, networking, and storage resources.

Virtual Servers

 Infrastructure as a Service (IaaS)

 Amazon, Google, Microsoft

 Create virtual machines

 t1.micro, m1.small, c1.medium, m1.large…

 Customise instances and add greater amounts of storage.

 Each instance can be booted up with a different AMI, you can

even create your own!

 Xen Hypervisor (Sun, AMD, IBM, Dell, Intel)

 Storage area networks provide the storage

16

Advantages/Disadvantages of cloud

computing
17

 When compared to hosting in-house cloud
computing has a number of benefits

 Elasticity – if your application becomes very popular
you can procure new resources in minutes

 Reduced capital expenditure

 Economies of scale

 There are also some drawbacks

 Security/privacy

 Cost

 Migration issues

SOFTWARE PROCESSES

Dr. Enda Barrett

A Software Process: Who is like this?
2

Is there anyone like this?
3

Recap: Software Dev. is complex and

varied
4

• Ada

• 3 levels of

redundancy

• Different dev teams

Difference between these two?
5

vs

Good ProcessBad Process

Good EngineerBad Engineer

Building a house
6

 Plan

 Sketch the layout/structure

 Determine how the components will fit

 Construction

 Laying foundations/block laying/engineer testing

 Deployment

 Delivered to the customer who provides feedback/snag
list

The software process
7

 A structured set of activities required to develop a
software system

 Four fundamental process activities

 Specification

 Development

 Validation

 Evolution

 The foundation of software engineering is in the
process

 Goal: To efficiently and predictably deliver a product
that meets the requirements

Motivating case

8

 You’ve been hired by a local

independent retailer to build their

potato peeling system

Build and fix model…worst approach
9

Software Process Model
10

 1) Software Specification

 Talk to the customer

 Understand the problems

 Talk to any relevant stakeholders

 2) Software Development

 Map out the tasks

 Design the software

 Develop the solution

Software Process Model…
11

 3) Software validation

 Does it meet requirements

 Is it what the customer wanted

 4) Software evolution (maintenance)

 Modified to adapt

 Changes in requirements

 Customer & Market conditions

Software Engineering Practice
12

 1) Understand the problem (Communication and analysis)

 Who are the stakeholders?

 What are the unknowns?

 2) Plan the solution (Modelling and software design)

 Have we seen this problem before?

 Has a similar problem been already solved? Plagiarism

 Can sub problems be found?

 3) Carry out the plan (Write the code)

 Does the solution conform to the plan?

 Has the code been reviewed for correctness?

 4) Examine the result (Test it)

 Is each component testable?

 Does the solution produce results as defined originally?

General Software Engineering Questions

13

 What is the problem to be solved?

 Requirements definition

 What are the characteristics of the software (system) used to
solve the problem?

 Analysis

 How will the system be realised/constructed?

 Design

 How will design and construction errors be uncovered and
dealt with?

 Test

 How will the system be supported long-term?

 Maintenance

Overview of Software Engineering
14

 There are three generic phases, regardless of

paradigm:

 Definition, a focus on the What.

 Development, a focus on the How.

 Maintenance, focuses on Change

Software Engineering should…
15

 Provide a clear statement of the project mandate & objectives;

 Create effective means of communication;

 Increase user involvement & ownership;

 Provide an effective management framework to support productivity
& pragmatism;

 Establish quality assurance procedures;

 Provide sound resource estimation and allocation procedures;

 Ensure the effectiveness and durability of systems produced;

 Encourage the re-usability of code and/or solutions;

 Reduce the organisation’s vulnerability to the loss of software
development personnel (MJ);

 Reduce and support post implementation maintenance of systems;

CT216 SOFTWARE ENGINEERING 1

CLOUD COMPUTING

Dr. Enda Barrett

Enda.Barrett@universityofgalway.ie

What is cloud computing?
2

 “Cloud computing is a model for enabling

convenient, on-demand network access to a

shared pool of configurable computing

resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly

provisioned and released with minimal

management effort or service provider

interaction.” (NIST, May 2011)

What is cloud computing
3

 Back in the early 00’s there was this bookseller called Amazon,

who made their money by shipping books (and everything

else) around the world.

 To support their web app (Amazon.com) they had built up

some neat hosting infrastructure and software to manage it at

scale with a couple of data centers

 The centers were somewhat underutilised and Amazon decided

to start selling this spare capacity.

Server room
4

 At that time most businesses/organisations maintained a
server room on premises. In it they would have separate
rack mounted PCs/servers.

 Data would be stored on large Storage Networks

 Backups would be run on this data

 Multiple machines (servers) would run business critical software

 There were challenges to this

 Maintenance

 Upgrading machines

 Upfront purchasing costs

 Hire staff to manage it (Sysadmins)

What is cloud computing
5

 Started with storage

 Simple Storage Service launched on March 14 2006

marking the beginning of Amazon Web Services

 This allowed users to store documents, files, data on an

S3 bucket without having to manage, purchase,

maintain the underlying disk hardware.

What is cloud computing
6

 Then came computing

 It followed up its successful storage launch of S3 with

EC2 or Elastic Compute Cloud in August 2006

 This allowed you to have access to a remote server

accessible via the internet!

Demand was strong…
7

History of cloud computing
8

 Computing may someday be organized as a public
utility just as the telephone system is a public
utility,” Professor John McCarthy said at MIT’s
centennial celebration in 1961. “Each subscriber
needs to pay only for the capacity he actually uses,
but he has access to all programming languages
characteristic of a very large system … Certain
subscribers might offer service to other subscribers
… The computer utility could become the basis of a
new and important industry.”

https://www.technologyreview.com/2011/10/03/190237/the-

cloud-imperative/

Cloud computing growth
9

 The growth in cloud computing over the past

decade has been phenomenal.

 In April 2011, Forrester projected that it would be

worth $160bn dollars by 2020, in reality it was

27% larger at $219bn.

 In 2022 it hit over $480bn in value and is projected

to exceed $1tn by 2029.

https://www.fortunebusinessinsights.com/cloud-computing-market-102697

Where is the cloud?
10

Virginia
California

Ireland

H K/ Sing

Japan

Amazon US-East N. Virginia
11

Cloud types – Public cloud
12

 Amazon, MS Azure, Google Cloud are examples of

public clouds.

 Any member of the public can sign up and start

provisioning compute resources within minutes

 They are highly scalable and allow an organisation

to grow its infrastructure rapidly

Cloud types – Private cloud
13

 Private cloud

 Computing resources are dedicated to a single

customer and not shared with other customers.

Considered to be more secure.

 AWS do offer a virtual private cloud

 https://aws.amazon.com/vpc/

 Organisations can also host their on cloud on-prem

using software such as OpenStack.

https://aws.amazon.com/vpc/

Cloud types - Hybrid
14

 Finally a hybrid cloud is simply a mix of public

cloud resources and private resources. An

organisation may choose this option if there is a

mixture in the criticality of their data or

computational requirements.

 Data that doesn’t require heightened security can

be pushed on to the public cloud whereas that

which does can be hosted on the private cloud.

Cloud services
15

 Software as a Service (SaaS) - provides users
with—essentially—a cloud application, the
platform on which it runs, and the platform’s
underlying infrastructure.

 Platform as a Service (PaaS) - provides users with a
platform on which applications can run, as well as
all the IT infrastructure required for it to run.

 Infrastructure as a Service (IaaS) - provides users
with compute, networking, and storage resources.

Virtual Servers

 Infrastructure as a Service (IaaS)

 Amazon, Google, Microsoft

 Create virtual machines

 t1.micro, m1.small, c1.medium, m1.large…

 Customise instances and add greater amounts of storage.

 Each instance can be booted up with a different AMI, you can

even create your own!

 Xen Hypervisor (Sun, AMD, IBM, Dell, Intel)

 Storage area networks provide the storage

16

Advantages/Disadvantages of cloud

computing
17

 When compared to hosting in-house cloud
computing has a number of benefits

 Elasticity – if your application becomes very popular
you can procure new resources in minutes

 Reduced capital expenditure

 Economies of scale

 There are also some drawbacks

 Security/privacy

 Cost

 Migration issues

SCRUM – ROLES AND CEREMONIES

Dr. Enda Barrett

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Scrum Framework

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

•Product owner
•ScrumMaster
•Team

Roles

Product Owner
4

 Define the features of the product

 Tries to remove conjecture, “I know the customer wants this”
as opposed to “I believe this would be a good feature”

 Decide on release date and content

 Usually responsible for press releases

 Be responsible for the profitability of the product (ROI)

 Prioritize features according to market value

 Conduct market research, feasibility studies

 Adjust features and priority every iteration, as needed

 Accept or reject work results.

Scrum Master
5

 Represents management to the project

 Often one of the engineers

 Responsible for enacting Scrum values and practices

 Removes impediments

 Ensure that the team is fully functional and
productive

 Enable close cooperation across all roles and
functions

 Shield the team from external interferences

Scrum Team
6

 Typically 5-10 people

 Cross-functional

 QA, Programmers, UI Designers, etc.

 Members should be full-time

 May be exceptions (e.g., System Admin, etc.)

 Teams are self-organizing

 Membership can change only between sprints

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Sprints
8

 Scrum projects make progress in a series of
“sprints”

 Target duration is one month

 +/- a week or two (2 - 6 weeks max)

◼ But, a constant duration leads to a better rhythm

 Product is designed, coded, and tested during the
sprint

 The output is a build which may or may not be a
release

 Move onto the next sprint…

No changes during sprint
9

SprintInputs Tested Code

Change

▪ Plan sprint durations around how long you can
commit to keeping change out of the sprint

Sprint planning
10

Sprint planning meeting

Sprint prioritization

• Analyze and evaluate product
backlog

• Select sprint goal

Sprint planning

• Decide how to achieve sprint goal
(design)

• Create sprint backlog (tasks) from
product backlog items (user stories /
features)

• Estimate sprint backlog in hours

Sprint
goal

Sprint
backlog

Business
conditions

Team
capacity

Product
backlog

Technology

Current
product

Sprint planning
11

 Team selects items from the product backlog that

they can commit to completing

 Sprint backlog is created

 Tasks are identified and each is estimated (1-16 hrs)

 Team collaboratively does this

As a vacation planner, I want to see
photos of the hotels. Code the middle tier (8 hours)

Code the user interface (4)
Write test fixtures (4)
Code the foo class (6)
Update performance tests (4)

What is the Product Backlog
12

 A list of all desired work on the project (the
requirements)

 Usually a combination of

◼ story-based work (“let user search and replace”)

◼ task-based work (“improve exception handling”)

 List is prioritized by the Product Owner

 Typically a Product Manager, Marketing, Internal Customer,
etc.

 Priority groupings (high, medium, low … etc)

 Reprioritised at the start of each sprint

 Spreadsheet (usually)

To create a Sprint Backlog you must

have a (Sprint) goal
13

Database Application

Financial services

Life Sciences

Support features necessary for
population genetics studies.

Support more technical indicators
than company ABC with real-time,
streaming data.

Make the application run on SQL
Server in addition to Oracle.

From Sprint Goal to Sprint Backlog
14

 Scrum team takes the Sprint Goal and decides what

tasks are necessary

 Team self-organizes around how they will meet the

Sprint Goal

 Manager does not assign tasks to individuals

 Managers don’t make decisions for the team

 Sprint Backlog is created

Sprint backlogs during the sprint
15

 Changes

 Team adds new tasks whenever they need to, in order

to meet the Sprint Goal

 Team can remove unnecessary tasks

 But: Sprint Backlog can only be updated by the team

 Estimates are updated whenever there’s new

information

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Sprint review meeting
17

 Team presents what it accomplished during the sprint

 Typically takes the form of a demo of new features or
underlying architecture

 Informal

 Two hour prep time

 No slides

 Participants

 Customers

 Management

 Product Owners

 Engineering team

Sprint Retrospective meetings
18

 Typically 15–30 minutes

 Done after every sprint

 Feedback meeting – time to reflect on how things are
going…

 Many participants

 ScrumMaster

 Product owner

 Team

 Possibly customers and others

Start/Stop/Continue
19

Start doing

Stop doing

Continue doing

Whole team gathers and discusses what they’d

like to:

War room
20

Pros/Cons of Agile Methods
21

▪ Advantages
▪ Completely developed

and tested features in

short iterations

▪ Simplicity of the

process

▪ Clearly defined rules

▪ Increasing productivity

▪ Self-organizing

▪ Each team member

carries a lot of

responsibility

▪ Improved

communication

▪ Combination with

Extreme Programming

▪ Drawbacks
▪ “Undisciplined hacking”

(no written

documentation)

▪ Violation of

responsibility

▪ Current mainly carried

by the inventors

▪ Employee Burnout &

Fatigue.

SOFTWARE DEVELOPMENT PARADIGMS –AGILE

METHODS

Dr. Enda Barrett

Agile software development
2

 What is agile software development?

 Scrum – Software Project Management Methodology

 XP – Software Development Methodology

Software Development Lifecycle
3

 The software lifecycle is an abstract representation
of a software process. It defines the steps, methods,
tools, activities and deliverables of a software
development project. The following lifecycle phases
are considered:

 1. requirements analysis

 2. system design

 3. implementation

 4. integration and deployment

 5. operation and maintenance

SDLC Limitations
4

 Classical project planning methods have a lot of

disadvantages

 Huge efforts during the planning phase {Requirements

+ Design}

 Poor requirements conversion in a rapidly changing

environment

 Treatment of staff as a factor of production

Agile

Man

Agile Motivations
5

 Agile proponents argue:

 Software development processes relying on lifecycle
models are too heavyweight or cumbersome

 Too many things are done that are not directly related
to the software product being produced, i.e. design,
models, requirements docs, documentation that isn’t
shipped as part of the product

 Difficulty with incomplete or changing requirements

 Short development cycles (Mobile Apps)

 More active customer involvement needed

What is Agile?
6

❑ Agile methods focus on
❑ Individuals and interactions over processes and tools

❑ Working software over comprehensive documentation

❑ Customer collaboration over contract negotiation

❑ Responding to change over following a plan

❑ Several agile methods
❑ No single agile method

❑ Scrum

❑ XP

❑ No single definition

❑ Agile Manifesto closest to a definition
❑ Set of principles

❑ Developed by Agile Alliance (http://www.agilealliance.org/)

http://www.agilealliance.org/

Agile methods
7

 Agile methods:

 Scrum

 Extreme Programming (XP)

◼ Continuous Integration

◼ Test Driven Development (TDD)

◼ …

 Agile Alliance (www.agilealliance.org)

 A non-profit organization promotes agile development

Scrum in 100 words
8

 Scrum is an agile project management methodology
for managing product development.

 It allows us to rapidly and repeatedly inspect actual
working software (every two weeks to one month).

 The business sets the priorities. The teams self-
manage to determine the best way to deliver the
highest priority features.

 Every two weeks to a month anyone can see real
working software and decide to release it as is or
continue to enhance for another iteration.

History of Scrum
9

 1995:

 Analysis of common software development processes found that they are not suitable for
unpredictable and non-repeatable processes

 Design of a new method: Scrum by Jeff Sutherland & Ken Schwaber

 Enhancement of Scrum by Mike Beedle & combination of Scrum with Extreme Programming

 1996:

 Introduction of Scrum at the (Object-Oriented Programming, Systems, Languages &
Applications) OOPSLA conference

 2001:

 Publication “Agile Software Development with Scrum” by Ken Schwaber & Mike Beedle

 Gained in popularity steadily ever since

 Founders are members in the Agile Alliance

Characteristics of Scrum
10

 Self-organizing teams
 No need for project manager (in-theory)

 Product progresses in a series of month-long
“sprints”…could be biweekly also

 Assumes that the software cannot be well defined and
requirements will change frequently

 Requirements are captured as items in a list of “product
backlog”

 No specific engineering practices prescribed
 XP, TDD, FDD…

 Best approach is to start with Scrum and then invent your
own version using XP, TDD, FDD

Daily Scrum/Standup
11

 Parameters

 Daily

 15-minutes

 Stand-up

 Not for problem solving

 Only team members, ScrumMaster, Product Owners

should talk

 Should help to avoid additional unnecessary meetings

 Commitment in front of peers to complete tasks

Answer three questions
12

What did you do yesterday?
1

What will you do today?
2

Is anything in your way?
3

Daily SCRUM/Standup
13

 Is NOT a problem solving session

 Is NOT a way to collect information about WHO is
behind the schedule

 Is a meeting in which team members make commitments
to each other and to the Scrum Master

 Is a good way for a Scrum Master to track the progress
of the team

AGILE METHODS – EXTREME PROGRAMMING

Dr. Enda Barrett

Overview
2

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Scrum Summary
3

 Scrum is a project management methodology

Characteristics of Scrum
4

 Self-organizing teams
 No need for project manager (in-theory)

 Product progresses in a series of month-long
“sprints”…could be biweekly also

 Assumes that the software cannot be well defined and
requirements will change frequently

 Requirements are captured as items in a list of “product
backlog”

 No specific engineering practices prescribed
 XP, TDD, FDD…

 Best approach is to start with Scrum and then invent your
own version using XP, TDD, FDD

Daily Scrum/Standup
5

 Parameters

 Daily

 15-minutes

 Stand-up

 Not for problem solving

 Only team members, ScrumMaster, Product Owners

should talk

 Should help to avoid additional unnecessary meetings

 Commitment in front of peers to complete tasks

Answer three questions
6

What did you do yesterday?
1

What will you do today?
2

Is anything in your way?
3

Daily SCRUM/Standup
7

 Is NOT a problem solving session

 Is NOT a way to collect information about WHO is
behind the schedule

 Is a meeting in which team members make commitments
to each other and to the Scrum Master

 Is a good way for a Scrum Master to track the progress
of the team

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Scrum Framework

We need an Agile Development

method
9

 eXtreme Programming (XP)

 One of the most popular agile software development

methods

eXtreme Programming
10

 Pair
programming

 Refactoring

 Test Driven
Development

 Continuous
Integration

 Metaphor

 Small releases

 Simple Design

 Customer tests

Complete Agile Process
11

Scrum XP+

Overview
12

How Scrum and XP can work together

Overview
13

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Principles of XP
14

 Communication

 Software development is inherently a team sport that relies on communication to transfer knowledge from one team
member to everyone else on the team. XP stresses the importance of the appropriate kind of communication – face to
face discussion with the aid of a white board or other drawing mechanism.

 Simplicity

 Simplicity means “what is the simplest thing that will work?” The purpose of this is to avoid waste and do only absolutely
necessary things such as keep the design of the system as simple as possible so that it is easier to maintain, support, and
revise. Simplicity also means address only the requirements that you know about; don’t try to predict the future.

 Feedback

 Through constant feedback about their previous efforts, teams can identify areas for improvement and revise their
practices. Feedback also supports simple design. Your team builds something, gathers feedback on your design and
implementation, and then adjust your product going forward.

 Courage

 Kent Beck defined courage as “effective action in the face of fear” (Extreme Programming Explained P. 20). This
definition shows a preference for action based on other principles so that the results aren’t harmful to the team. You need
courage to raise organizational issues that reduce your team’s effectiveness. You need courage to stop doing something
that doesn’t work and try something else. You need courage to accept and act on feedback, even when it’s difficult to
accept.

 Respect

 The members of your team need to respect each other in order to communicate with each other, provide and accept
feedback that honors your relationship, and to work together to identify simple designs and solutions.

Source:https://www.agilealliance.org/glossary/xp

Kent Beck

post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'xp))~searchTerm~'~sort~false~sortDirection~

Practices of XP
15

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Whole Team
16

 All the contributors to an XP project sit together,

members of one team. This team must include a

business representative (Product Owner) – the

“Customer” – who provides the requirements, sets

the priorities, and steers the project.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Planning Game
17

 XP planning addresses two key questions in

software development: predicting what will be

accomplished by the due date, and determining

what to do next.

 Release Planning is a practice where the Customer

presents the desired features to the programmers,

and the programmers estimate their difficulty.

 Iteration Planning is the practice whereby the team

is given direction every couple of weeks. (Sprints)

https://ronjeffries.com/xprog/what-is-extreme-programming

Customer Tests
18

 As part of presenting each desired feature, the XP

Customer defines one or more automated

acceptance tests to show that the feature is working.

The team builds these tests and uses them to prove

to themselves, and to the customer, that the feature

is implemented correctly.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Small Releases
19

 XP teams practice small releases in two important

ways:

 First, the team releases running, tested software,

delivering business value chosen by the Customer, every

iteration.

 Second, XP teams release to their end users frequently

as well.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Practices of XP
20

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Coding standards
21

 XP teams follow a common coding standard, so that

all the code in the system looks as if it was written

by a single – very competent – individual. The

specifics of the standard are not important: what is

important is that all the code looks familiar, in

support of collective ownership.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Collective Ownership
22

 On an Extreme Programming project, any pair of

programmers can improve any code at any time.

This means that all code gets the benefit of many

people’s attention, which increases code quality and

reduces defects.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Metaphor
23

 Extreme Programming teams develop a common

vision of how the program works, which we call the

“metaphor”. At its best, the metaphor is a simple

evocative description of how the program works,

such as “this program works like a hive of bees,

going out for pollen and bringing it back to the

hive” as a description for an agent-based

information retrieval system.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Practices of XP
24

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Refactoring
25

 The refactoring process focuses on removal of

duplication (a sure sign of poor design), and on

increasing the “cohesion” of the code, while lowering

the “coupling”. High cohesion and low coupling have

been recognized as the hallmarks of well-designed

code for at least thirty years. The result is that XP

teams start with a good, simple design, and always

have a good, simple design for the software.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Simple Design
26

 XP teams build software to a simple but always

adequate design. They start simple, and

through testing and design improvement, they keep

it that way. An XP team keeps the design exactly

suited for the current functionality of the system.

There is no wasted motion, and the software is

always ready for what’s next.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Overview
27

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Pair Programming
28

“You’ll never work alone”

Not without precedent
29

Pair programming
30

 Two developers working on the same task as a

team

 One controls the keyboard one sits looking over

their shoulder

 Driver

 This person writes the code

 Navigator

 This person reviews each line as it is typed

Advantages
31

 Higher code quality

 Fewer bugs, code rewrites, integrations problems

 Expert novice pairing can help the novice to learn

about the system and best practices

 Tends to produce more design alternatives and

catches design defects earlier

Disadvantages
32

 There is a high probability of disengagement

 “Watch the master” phenomenon

 Working relationship needs to be good

 Hard sell to management

 Two people working on 1 feature

Remote pair programming
33

 Using communications technology

 Screen sharing

 IM clients, VOIP etc

Overview
34

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Test Driven Development (TDD)
35

TDD Cycle
36

 Create a test

 Each new feature requires a test

 Run all tests

 Make sure the new test fails

 Write the code

 Doesn’t have to be perfect, just pass the test

 Run all tests

 If all tests pass, requirements are met

 Refactor code

 TDD can result in duplication, this should be removed

 Repeat the process

Principles of TDD
37

 Never write new functionality without a failing test

 Continually make small incremental changes

 Keep the system running at all times

 No one can make a change that breaks the system

 Failures must be addressed immediately

Advantages
38

 Discourages “gold plating” of implementation

 Forces the developer to specify an end criteria

 Encourages loose coupling

Disadvantages
39

 Big time investment

 Complexity in writing appropriate test cases

 Design changes

 Mock code to pass tests

 Customer may not wish to get involved in creating
acceptance tests

Interesting - IBM Study
40

 Study carried out by IBM focussed on a team that

had been practising TDD for 5 years and delivered

10 releases of a software product

 Quality was the big winner, much improved, fewer

defects/bugs etc

 Productivity did decrease but not dramatically

Sanchez, J., Laurie Williams, and E. Michael Maximilien. "A Longitudinal Study of the Use of a

Test-Driven Development Practice in Industry." Proc. Agile. 2007.

Learning objectives
41

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Continuous Integration
42

Continuous Integration (CI)
43

 CI is a practice where members integrate their

changes frequently.

 Often daily

 Each integration is verified by an automated build

including tests to detect integration errors as early

as possible.

 Often upon commit, builds are run to make sure

everything is okay

Development before CI
44

 Lots of bugs

 Infrequent commits

 Difficult integration

 Infrequent releases

 Testing happens late

Benefits of CI
45

 Fail early/fast

 Detect problems as early as possible

 Facilitates continuous deployments

 Deploying every good build live to production

 Enables automated testing

 Tests are run during the build process

Overview
46

https://insights.sei.cmu.edu/devops/2015/01/continuous-integration-in-devops-1.html

Drawbacks of using CI
47

 Initial setup required

 Can take a couple of weeks to get it running properly

within an organisation

 Excellent tests must be developed

 CI will run all the automated tests but this requires

substantial up front development effort.

Popular CI software
48

SETTING UP OUR DEVELOPMENT ENVIRONMENTS

Dr. Enda Barrett – Enda.Barrett@nuigalway.ie

Getting things set up
2

 Install an IDE

 Install software (NodeJS runtime environment)

 Quick overview of Firebase

 Claim cloud credits

 Create a new Google Account using your University email address

 Create a new Firebase project

 Create a new local project

 Using the Command Line

 Install Firebase CLI

 Initialise the projects to link with the cloud

 Deploy to the cloud

WebStorm - IntelliJ
3

 Navigate to

 https://www.jetbrains.com/community/education/#students

 Fill in the form details and you will get a 1 year license

 There are lots of alternatives too if you prefer to use
something else

Click Apply

Now

https://www.jetbrains.com/community/education/#students

Download WebStorm
4

 https://www.jetbrains.com/webstorm/download/#s

ection=windows

https://www.jetbrains.com/webstorm/download/#section=windows

Install NodeJS
5

 Navigate to https://nodejs.org/en/

 Install the latest LTS (Long Term Support) version of

NodeJS

https://nodejs.org/en/

Cloud Credits
6

 Google have kindly provided each student with

$25 in cloud credits to use on their Firebase

platform

 On Blackboard under Week 2, you will see this post

 You must use your university email address when

claiming the credits

Click the link

Create a Google Account

 Perform a quick search
for Google Account
Creation

 Use your university
email address for this.
Same one you claimed
the credits with!

7

Click on use my current

email address

CREATING A NEW FIREBASE PROJECT

Dr. Enda Barrett – Enda.Barrett@nuigalway.ie

Firebase – Quick overview
9

 Originally Firebase was a (Mobile) Backend as a Service offer which is a
subset of a Platform as a Service

 Whilst an IaaS provider does help you to move away from on-prem hosting,
you do have a good bit of setup. Install a database on the virtual server,
varying software packages, even an OS! You have to keep it updated and
secure etc.

 With a PaaS offering such as Firebase you can focus on coding!

 It provides a suite of services

 Storage

 Database

 Authentication

 Machine Learning

 Functions

 Messaging

 Hosting

10

Firebase project
11

 We will need to create Firebase projects for our

apps

 Login using your Google Account created with your

university email address

 Create a new project by clicking here

12

Enter a project

name

Tick the box

to confirm

13

Optional whether

you wish to enable

Google Analytics

here

14

Choose the account to if

you selected Google

Analytics otherwise this

step won’t appear

Creating a local directory
15

 In order to write our applications we will code them

locally on our computers, save our code files and

then push them to the cloud.

 In order to work locally we need to create a folder

to store our code.

 It is best to place this on root the of your machine or

some place that is easy to access from a command

line perspective.

 In windows create a folder on C:\WebProgApps

May look something like this
16

 If you have a windows machine you can add a
folder like this.

 On a MAC you can use Finder to the same, if using
Linux you already know this!

What is the Command Line Interface
17

 A mechanism through which you can execute commands
to the OS. It’s how we used to operate computers
before their was a nice GUI.

 Depending on your OS (Windows, MAC or Linux) you
search for Command Prompt(Windows), Terminal (MAC
or Linux).

 It will look something like this

Navigate to the root
18

 Depending on the OS the default directory that the

command line will begin with once opened can be

different.

 We wish to navigate to the folder we have created

on the root to get it set up for development.

 To change directory the command

is cd

 Type cd C:\WebProgApps

and press Enter on the keyboard

Creating a directory
19

 You can avoid having to use the GUI to create a
directory and use the mkdir command instead.

 If you called your project on Firebase MyFirstProject
then we can use the same name for the local folder
which will contain the code for this project

 Type mkdir MyFirstProject

 Check the folder it should be

there using

dir (windows) or ls (MAC)

Install the Firebase CLI
20

 Firebase CLI -

https://github.com/firebase/firebase-tools

 A suite of tools for managing, visualising and

deploying Firebase projects

 Install it onto our machines and then we can use it to

configure our projects, link them to the cloud

backend and then deploy them onto the web!

 Two ways to install it, you can use the standalone

binaries which are available in the link below or

you can use npm (Node Package Manager)
https://firebase.google.com/docs/cli

https://github.com/firebase/firebase-tools

NPM – Node Package Manager
21

 Node Package Manager, is the default package
manager for the NodeJS runtime.

 https://www.npmjs.com/

 It contains thousands of Open Source projects containing
code which we call packages.

 We can install packages onto our machine by using the
NPM command. These can be executed as standalone
programs on our machines (Firebase CLI) or included in
our own programs that we write.

 When we installed NodeJS (back in Slide 4), NPM was
also included. Thus we can use it by typing the
command npm

Install Firebase
22

 Step 1 – Install the Firebase CLI
 npm install -g firebase

 npm install -g firebase-tools

 The g argument is for global – all projects on the machine will have
access to the CLI

 If you are using a MAC you will need to include sudo

◼ sudo npm install –g firebase

◼ sudo npm install –g firebase-tools

 Once you have typed in the command press Enter on the
keyboard

 Install it onto our machines and then we can use it to configure
our projects, link them to the cloud backend and then deploy
them onto the web!

Logging into Firebase
23

 In order to perform the next sequence of steps we

need to log into Firebase using the command line.

 Enter the command firebase login and hit Enter

 This will open up a web browser where you

can login using your Google Account created

with your university email address.

Initialise our project folder
24

 In order to link our local project folders with the

online cloud project we need to initialise it.

 Make sure you are in the correct directory on the

command line

 Enter the command firebase init and press Enter

Sequence of init steps
25

 If everything has worked correctly you should now
see the following

 Key in Y and pres Enter

Next step – Setup hosting
26

 Using the arrow keys move down to the highlighted

option below

 Once highlighted select it using the spacebar key

and then press Enter

Select an existing project
27

 Select use an existing project by hitting Enter

Select the project
28

 The name of the project you created on the web
console (Firebase) should appear

 Again use the arrow cursors to move down and hit Enter
to select it

Public folder
29

 Use the public folder as prompted on the command
line. This is where we will place all of frontend
code.

 Press the Enter key on your keyboard

URL rewrite
30

 The next option is a technical setting which

configures the app as a Single Page App (SPA)

where requests are directed at index.html

 Select Y here and press Enter

Automatic builds and deploys
31

 There is no need to setup automatic builds and

deploys at that this point

 Select N for this and press Enter

Firebase initialisation should be complete

32

Files in the folder
33

 If you look in your app folder on your machine you

should now see a bunch of new files have been

created, a public folder and an index.html file

within the public folder

Deploying to the cloud
34

 The final step is to deploy to the cloud.

 We haven’t written any code yet or created our first

web page, but during the init process Firebase

created a page index.html which you can find in the

public folder.

Firebase deploy
35

 The command to deploy our apps to the cloud is

 firebase deploy

Copy and paste the hosting URL

and pop it into the address bar

of your browser

It works!
36

CREATING OUR FIRST WEB PAGE WITH HYPERTEXT

MARKUP LANGUAGE (HTML)

Dr. Enda Barrett

Enda.Barrett@universityofgalway.ie

HTML
2

 Stands for Hyper Text Markup Language (HTML)

 Notation for describing document structure and

formatting

 A html file has a .html or .htm extension

 It is rendered by a browser

Simple HTML Document
3

 Document starts with: <html>

 Document ends with: </html>

 Text between <head> and </head> is header information
which is not rendered by the browser

 <title> and </title> displays the title of the document

 Everything between <body> and </body> is rendered
and displayed by the browser

 Contains actual text to display and tags defining its style,
layout etc. plus additional elements e.g. images

Open Project in WebStorm
4

 Using WebStorm (or preferred IDE)

open up the firebase project that

you created in the previous lecture.

 In WebStorm select File>Open

 This will pop up a dialog where you

can select your project

(MySampleProject)

Once opened in WebStorm
5

 You will see a view (see screenshot below) where the
project is on the left hand-side including the files and
folders

 If you expand the public folder you will see the
index.html file.

 Double click it to start editing

 This file is our first HTML page!

Exercise 1 - HTML – Hello World
6

<!DOCTYPE html>

<html>

<head>

<title>Simple Page</title>

</head>

<body>

<h1>Hello World!</h1>

</body>

</html>

• Delete all the existing

markup from

index.html

• Take the following

markup and insert it

into index.html

• Surround the “Hello

World” text with a

heading 1 tag –

(search online).

• Save the file

• Deploy it to Firebase

(firebase deploy)

command line

HTML Tags
7

 HTML contains text to display and markup tags

<h1>Hello World</h1>

 The tags tell the browser how to display the contents

of a page: colours, formats, positions, etc.

Text

Closing

Tag

Opening

Tag

HTML Tags
8

 Tags denote markup elements

 Each tag is surrounded by angle brackets < >

 Tags normally come in pairs:

 the opening tag and the closing tag

 Tags are not case sensitive

 <html> and <HTML> are functionally the same

 Recommended to use lowercase

 Text between the tags is the element content

 <h1> ... </h1> Section 1

 …

 <h6> ... </h6> Section 1.1.1.1.1.1

Tag Attributes
9

 Tags can have associated attributes (or properties)

that provide extra information to the browser

 Attributes consist of name="value" pairs

 Attributes are always added to the opening tag

 For example, to colour the text of heading 1 tag to

red:

 Set the attribute style to the value of color:red

 <h1 style="color:red"> Section 1 </h1>

Section 1

Tag Attributes cont’d
10

 Attribute values normally enclosed in quotes

 Double quotes are the most common

 style="color:red"

 Single quotes are also allowed

 style=‘color:red’

 NB: If the value contains one type of quote, then the

other type should be used to enclose the value

 name="John’s Place"

Be careful with

copy and paste

Common Tags - Text
11

 Bold

Bold Text Bold Text

 Italic

<i>Italic Text</i> Italic Text

 Paragraph

<p>Text</p> Defines a paragraph

Exercise 2
12

1. Extend your web page to include two paragraphs of dummy text

2. Italicise any words beginning with s

3. Bold any words beginning with a

 Text

 “Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat.”

 “Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.”

Common Tags - Continued
13

 Line Break

 Forces a line break wherever it’s placed

 Putting a carriage-return into the HTML code will not
produce a visible line break!

 <p>This
is a para
graph with line breaks</p>

 Horizontal Rule <hr>

 Can take width attribute <hr width="75%">

 Special Entities (start of a character reference)

 Ampersand &

 Copyright © ©

HTML Lists
14

 Unordered Lists

 Each List Item appears as Bullet

 Ordered Lists

 Bullets replaced with numbers or letters

 Type of order defined with type attribute

 Definition Lists <dl> </dl>

 Lists a definition term <dt> </dt>

 and the definition description <dd> </dd>

Unordered Lists
15

List Item 1

List Item 2

List Item 3

 Bullet is default type

 Other types can be specified

 "disc", "square", "circle", etc

Ordered Lists
16

<ol type="a">

List Item 1

List Item 2

List Item 3

 Numeric is default type

 Other types can be specified

◼ "1", "A", "a", "I", "i"

HTML Links (Hyperlinks)
17

 HTML Links created with Link Tags

 <a>

 Visit

Random Site.com

 Hypertext Reference attribute gives the URL

 href="http://www.randomsite.com/"

 Target attribute defines where the link opens

 target="_blank" Opens link in new window

 target="_self" Opens link in same window

 target="mywindow" Opens in a named

(possibly new) window

Exercise 3
18

1. Re-create the below simple FAQ for a fictional course

2. Use a heading 2 tag for the questions.

3. Use an ordered list for each question

4. URL for the Q1 link is https://www.universityofgalway.ie/science-

engineering/school-of-computer-science/currentstudents/timetables/

5. URL for the Q2 link is https://www.universityofgalway.ie/science-

engineering/school-of-computer-science/people/

https://www.universityofgalway.ie/science-engineering/school-of-computer-science/currentstudents/timetables/

Images in HTML
19

 Images are added with the empty tag

 requires a source (src) attribute with the

URL of the image

 Image (and other) filenames are case sensitive on

Linux and Mac servers

 .jpg != .JPG

 .png != .PNG

Absolute and Relative References
20

 URL:The path to a resource

 Any URL path in HTML can be given as either via an

Absolute or a Relative Reference

 Both types are valid, interchangeable and useful in

different situations

 e.g. “a” tags and “img” tags can use both Reference

Types

Structure of a URL (Absolute)
21

 http://www.example.com/software/index.html

 http://www.example.com:1030/software/index.ht

ml

http://www.example.com/software/index.html
http://www.example.com:1030/software/index.html

Relative Reference
22

 If you wish to reference an image in the same folder you can do it via

relative referencing

<!DOCTYPE html>

<html>

<head>

<title>Simple

Page</title>

</head>

<body>

Hello World!

<img

src="photo.jpg">

</body>

</html>

Exercise 4
23

1. Add an extra question to your FAQ page with an image of the CS building.

2. When you click on the image it opens a new tab to the CS homepage

https://cs.universityofgalway.ie/.

3. Add a picture of the CS building, by including an absolute reference to an

image already hosted online.

4. Also include an internal image of the

building but this time relatively src it.

Final page should look

something like this

CASCADING STYLE SHEETS

What is CSS?
2

 Cascading Style Sheets

 Contains the rules for the presentation of HTML

CSS Continued
3

 CSS allows the developer to define a set of styles

 These styles can be used across multiple pages

 Helps to create a uniform and consistent look across a
web application

 Makes the formatting the content much easier

 Allows for more advanced techniques using div tags

How does it work?
4

 CSS works by allowing you to associate rules to the

HTML tags

 These rules govern how these elements should be

rendered

 A rule is defined by a selector followed by a

declaration block

Syntax continued
5

 Example of styling a Heading 1 tag

 Colour it to blue

 Set the text size to 12 pixels

Syntax continued
6

h1

{

color: blue;

font-size: 12px;

}

Note:
color not colour

Braces { } separate the

selector from the

declarations

Each declaration ends in

semi-colon ;

Syntax continued
7

h1

{

color: blue;

font-size:
12px;

}

Note:

No space between

value and units (12 and

px)

No quotes for values

Sources of styles
8

 Inline styles

 Embedded style tags

 Linked styles

<h1 style="color:red">Hello World</h1>

<style>

h1 {color:blue}

</style>

<link href="/stylesheets/main.css" rel="stylesheet">

Be careful with the styles
9

 Precedence or order over the styling

 Browser default style (weakest)

 User style sheet

 Author stylesheet

 Author embedded styles

 Author inline styles (strongest)

 !important

Selecting a tag or element to style
10

 There are two main ways of doing this, class based

selector and ID based

• ID based (#)

<div id="content">

My Text Content

</div>

#content{

width: 200px;

}

<div class="content">

My Text Content

</div>

.content{

width: 200px;

}

• Class based (.)

Font related CSS
11

 https://www.w3schools.com/cssref/pr_font_font.as

p

W3Schools have great docs on

this

.p1 {
font-family: "Times New Roman";
font-weight: "600";

}

<p class="p1">

My paragraph of text

</p>

https://www.w3schools.com/cssref/pr_font_font.asp

Exercise 1 – Adding styles
12

 Step 1: Add a file to the public folder of “MySampleApp”
called styles.css

 Add the following CSS to the stylesheet styles.css

◼ A class based selector (“.”) called “links”

◼ Set the font size to 16px

◼ Set the font colour to blue

 Add this linked stylesheet to your page (see slide 4)

 Step 2: Add 3 random hyperlinks to the web page

 Associate this new class (created in Step 1) with all links on the page,
does it work?

 Step 3: Using inline styling alter the colour of one of the links to
change the font colour to green. Does it override the CSS in
Step2?

The CSS Box model
13

 All HTML elements are considered as boxes

 Paragraphs, Headings, Tables etc.

 Box Model

 A box that wraps around all the HTML elements

 Consists of Four Parts

 Content

 Padding

 Border

 Margin

CSS Box Model
14

 Content

 Padding

 Border

 Margin

 Padding, Border & Margin are ZERO by default

Content Area
15

 Content

 The HTML element concerned

 Text, Image, List, Table, etc

Content – Embedded <p> Example
16

<html>

<head>

<style>

p

{

background: #00FFFF;

}

</style>

</head>

<body>

<p>Text Goes Here!</p>

</body>

</html>

Result:

Text Goes Here!

Padding Area
17

 Padding

 Empty space surrounding the Content

 Uses the same background colour as the Content

Padding Content
18

p

{
background: #00FFFF;

padding: 0px;

}

Text Goes Here!

p

{
background: #00FFFF;

padding: 20px;

}

Text Goes Here!

Border Area
19

 Border

 The HTML element concerned

 border-style must be set for border to take effect

Bordering Content
20

p

{

background: #00FFFF;

padding: 20px;

border: 20px;

border-color: #FF0000;

}

Text Goes Here!

Missing border-style,

so no border displays

Bordering Content
21

p

{

background: #00FFFF;

padding: 20px;

border: 20px;

border-color:

#FF0000;

border-style: solid;

}

Text Goes Here!

Border-style values
22

 none No border

 dotted Dotted border

 dashed Dashed border

 solid Solid border

 double Two solid borders

 groove 3D "grooved" border (engraved)

 ridge 3D "ridged" border (emboss)

 inset 3D "inset" border (lowered)

 outset 3D "outset" border (raised)

Margin Area
23

 Margin

 Transparent area that surrounds everything else

 Used for spacing the element relative to others

Exercise 2
24

 Create a paragraph of text “Hello World”

 Add a background colour of your choosing using
Hex values

 Add padding of 10px all around it

 Add a 1px dashed border around it of a colour of
your choosing.

 Place a second paragraph below the first and style
it the same way as the first however place a 10px
margin between the two (either bottom of the first
or top of the second).

<div class="abc">

<div>

<p>

My Text Content!

</p>

</div>

</div>

Grouping and descendants
25

 Multiple selectors can be grouped in a single style

declaration

 Select elements that are descendants

p, .main{

font-weight: bold;

}

div.abc p{

font-weight: bold;

}

CSS values
26

 Text-align:center;

 Numerical values: Numerical values are usually followed
by a unit type.

font-size:12px;

 12 is the numerical value and px is the unit type in
pixels

 Absolute values :in, pc, px, cm, mm, pt

 Relative values: em, ex, %

 Color values: color:#336699

 Blue, red, green etc…

Colour Wheel [visible light]
27

 Combining different levels of RGB yields

different colours

 Wheel on the right shows colour relationships

 Yellow is made of equal parts Red and Green

 Thus, HTML Colour for Yellow:

 #FFFF00

The div tag
28

 Defines a division of a HTML page and often used as

a container for other elements.

 Block level elements such as div’s, paragraphs

headings sit on top of each other, by default.

Inline elements
29

 Inline elements such as span and img sit side by side

Visibility
30

Exercise 3 – Page styling
31

 Create two paragraphs of text

 This is a paragraph of text

 This is a paragraph of text

 Surround both paragraphs with a single div tag

 Create a style (using class-based selection) which centres the

text of the paragraphs and changes the colour to #663399.

Place the style in a separate styles.css file. Apply it to the div

element.

 Within each paragraph use a span to change the word

“paragraph” to yellow. Add the style to the styles.css file and

using class-based selection apply it to both spans.

BOOTSTRAP

https://getbootstrap.com/

What is Bootstrap?
3

 Bootstrap is a CSS framework, it is CSS classes for

structure, layout, components (buttons, navbar, modal

etc), forms, written by other developers.

 This enforces a uniform layout, look and feel on the

web application.

 Freely available to develop web sites and web

applications.

What is Bootstrap cont.
4

 JavaScript is also used in conjunction with the CSS
classes, for things like animations, transitions, popups
etc.

 The CSS within it is quite detailed, there are lots of
classes with varying levels of hierarchy.

 It’s fully customisable and the web is full of themes and
templates for apps built using it

 https://themes.getbootstrap.com/

Who developed it?
5

 It was developed by Twitter’s Mark Otto and Jacob

Thornton

 They wanted to standardise the frontend toolsets

across twitter

 It was released as open source in August 2011 on

Github

Adding Bootstrap to our web apps
6

 Two options

 Download the files, i.e. CSS, JS, place them in the app

folders

 Use a Content Delivery Network URL

 https://getbootstrap.com/

Content Delivery Networks
7

 A popular way to include frontend libraries and
technologies is to use a CDN

 Instead of having a single server, CDNs involve using a
collection of servers to serve content

 These servers are usually placed geographically close the
user base to ensure that maximum performance is achieved

 Largely designed for delivering static content, images,
videos, and web content such as text, graphics and scripts.

CDNs are popular
8

 Almost every frontend technology provider, Facebook, Google,

Twitter will provide access to their libraries via a CDN

 This is very useful from a caching perspective, as browser

caches should already have a hit for a regularly used CDN

address, such as that from Bootstrap

How to recognise it?
9

Supported by all browsers
10

Solid cross browser compatibility

All browsers have different

rendering engines, webkit, trident …

Responsive Design
11

https://www.pngfind.com/mpng/iJmbRw_bootstrap-responsive-design-laptop-tablet-

mobile-psd-hd/

What is responsive layout?
12

 Produces an optimal viewing experience for the
user independent of the device they are viewing it
on

 Bootstrap is mobile first (software that has been
developed to prioritise use on mobile platforms)

 If you view it on a mobile, tablet or larger screen it
will scale accordingly

 As the viewport size increases it can scale up to 12
columns https://www.tutorialrepublic.com/twitter-bootstrap-tutorial/bootstrap-responsive-layout.php

Get Bootstrap
13

 Navigate to https://getbootstrap.com/

 Scroll down to the Include via CDN

 Copy the CSS only link and paste it in between the

<head></head> tags at the top of the page

 Take the JavaScript and pop it in below it.

https://getbootstrap.com/

Add Bootstrap to our Web pages
14

<!DOCTYPE html>

<html>

<head>

<title> Welcome to my cool new web page </title>

<link rel='stylesheet' href='/stylesheets/style.css' />

<link rel='stylesheet' href='https://cdn.jsdelivr.net/npm/bootstrap@currversion…' />

<script src='https://cdn.jsdelivr.net/npm/bootstrap@currversion…' />

</head>

<body>

</body>

</html>

Index.html

Add the bootstrap CSS

URLs and JS URLs from

getbootstrap.com

Bootstrap container class
15

 The container class is a fundamental building block

of Bootstrap.

 They are required for the Grid system to work

 Thus it is best to ensure that all of your HTML

elements marked up with Bootstrap classes are

nested within a container

<div class="container">

…

</div>

Bootstrap Exercise 1 – Add bootstrap
16

 Add Bootstrap to your apps (see previous slide)

 Test that it works by clicking on the Docs section

(getbootstrap.com) and the choosing “Buttons” component

 Paste the button samples into your HTML page (index.html)

 Does it look like the example in the docs, if not you haven’t

included Bootstrap properly

 Add a navigation bar to your app (consider where you

might place this)

Bootstrap grid system
17

 For laying out content on your pages Bootstrap supports
a grid system which structures the page into rows and
columns

 It supports a concept of Rows and Columns, like a
spreadsheet.

 Rows contain columns, columns contain the content!

 The total number of columns is 12.

https://getbootstrap.com/

Bootstrap grid system
18

 It uses div tags and with specific classes associated

with each div.

 The rows and columns are all div tags

 It is built with Flexbox (https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox)

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox

How the “Grid” system works
19

 It supports six responsive breakpoints, which allows

it to adjust the views for different screen sizes,

small, medium, large etc.

 It has predefined padding and horizontal gutter

widths between columns which are customizable but

keep the content nicely spaced and uniformly

structured with each other.

How the grid system works
20

 Rows must be placed within a .container class for proper alignment
and padding.

 Use rows to create horizontal groups of columns.

 Content should be placed within columns, and only columns may be
immediate children of rows.

 Predefined grid classes like .row and .col are available for quickly
making grid layouts.

 Columns create gutters (gaps between column content) via padding.
That padding is offset in rows for the first and last column via
negative margin on .rows.

 Grid columns are created by specifying the number of twelve
available columns you wish to span. For example, three equal
columns would use three .col-4 divs.

Bootstrap column classes
21

https://getbootstrap.com/docs/

Example
22

 Lets say you want to split the screen 50/50 for
large screen devices

 On large screen sizes the columns will be placed
side by side

Remember everything is

12 columns wide

Note that this will affect

breakpoints above it also

Resize the screen
23

 When the screen is resized i.e. less than 992px it

will stack the two columns

 You can find out the pixels

by enabling the Chrome

debugger

Drag the window

to resize it, to

make it visible

Keep them 50/50 on all devices
24

 If you want to keep them 50/50 on all devices you

can specify the lowest size and it will scale

Practice it now!

Exercise 2 - Bootstrap – Grid
25

Provide the HTML and
corresponding Bootstrap classes to
split a row into two separate
sections, each sized 6 columns wide
on large and medium devices or
above. In the case of smaller
devices, the columns should stack
on top of each other.

JAVASCRIPT

Conditionals and Loops

Boolean Variables and Expressions
2

 Boolean literal may be either true or false

 let isLoggedIn = true;

 Note that true is a value not a string

 Do not enclose in quotes!

 Boolean expression is one which resolves to either true

or false

Conditional Statements
3

 if statement – execute code only if some condition is

true

 if…else statement – execute some code if the

statement is true and another piece of it is false

 if…else if… else statements – used to execute one

of many blocks of code

Conditional Statements JS
4

// If statement

if(true)

{

}

//If else statement

if(true)

{

}

else{

}

// If else if else

if(true)

{

}

else if(false){

}

else{

}

Relational operators
5

 Less than <

 Greater than >

 Less than or equal to <=

 Greater than or equal to >=

 Equal to ==

 Not equal to !=

Exercise 4: Conditional Example
6

 Write code that checks whether a given salary is
well paid or poorly paid using conditionals.

 Create a variable called salary and set it to 5000

 Create an if statement which checks if salary is greater
than 100000 and alerts “Wealthy Salary”

 If less than 10000 alert “Poor Salary”

 What happens if you input 30000?

Logical Operators
7

 AND (&&)

 Compares two Boolean values and equates to true if
they are both true

 OR (||)

 Compares two Boolean values and equates to true if
one or the other (or both) is true

 NOT(!)

 Negates the value of a Boolean value

Exercise 5: Conditional Example
8

 Extend exercise 4 to check if the salary is within

100,000 and 10,000 if so then alert “Normal

Salary”

Loops in JavaScript
9

 Repeat a block of code

 While some condition holds true

 For loops

 Execute code a specific number of times

 While loops

 Execute code an undetermined number of times

For Loop
10

 The For Loop repeats a block of code a certain

number of times

//Repeat while i is still

less than 10

for(let i=0; i<10; i++)

{

// Execute code

// i++ at the end

}

https://www.tutorialspoint.com/javascript/javascript_for_loop.htm

While Loop
11

 Executes code an undetermined number of times

 Loops while the condition remains true

 Condition must be true for code to execute

while(i<j)

{

// Execute this code

}

Break and Continue
12

 break;

 Exits a loop immediately when it is encountered

 continue;

 Stops the current execution of a loop

 Does not exit the loop

 Goes to the top of the loop for the next iteration

 Both can be used on any loop construct

Exercise 6: Loops
13

 Create a loop, either for or while, that alerts the

even numbers between 1 and 10;

INTRODUCTION TO JAVASCRIPT

Client-side JS

JavaScript
2

 Best text book for

learning JS

 Douglas Crockford

Overview
3

 Introduction to JavaScript

 Adding client side JavaScript to our web pages

 JavaScript fundamentals

 Variables

 Types

 Numbers

 Strings

 Booleans

Client side JS
4

 Client side JS

 JS code that runs locally on the users machine/device

(in the browser)

Hosting

Firebase

Returns (HTML, CSS, JS)

Call https://myapp.web.app/

Clients

Client side JS cont.
5

 It allows you to manipulate/update the HTML content
based on the users actions

 If the user clicks a button “read more”, you can expand the
content on the page. – News Blog

 If the user continues scrolling further down, you can send a
request to the server for more data. – Twitter feed

 Sections of the page can be updated without reloading the
entire page. – Dynamic Dashboards

 Brings an interactivity to what are essentially static
HTML pages

JavaScript Syntax
6

 ‘C like’ language

 Braces used to denote code blocks {} – like Java

 Semi-colons used at the end of lines

 If you leave them out it will still compile, semi-colon insertion is
automatically done during parsing so in most cases your code won’t
break if you leave them out.

 Comments as per C

 Single line comments // Single line

 Block comments /* Block comments

can span multiple lines */

 Comments in HTML

 <!-- This is my comment -->

JavaScript on HTML pages
7

 Similar to CSS we can include client-side JavaScript

on HTML pages via the script tags

<script>

window.alert("Hello World");

</script>

Inline JavaScript

Inline vs External
8

 As with CSS where we can embed the CSS within

the page or define a separate stylesheet,

JavaScript also supports this.

 You can create external JavaScript files and using

the src attribute on the script tag reference the URL

<script

src="javascripts/test.js"></script>

The Window Interface
9

 A Window Interface represents a window containing a HTML

document.

 A window object is exposed to your JavaScript code and you

can call various methods

 window.alert(“string”) //displays a popup alert box

 window.prompt(“string”) // displays a prompt where values can be

entered by the user

 window.confirm(“string”) // Confirmation box, allowing one to

figure out what the user has pressed

Activity 1: Add some JS to our apps
10

 Create a new JS file. Pop it into the JavaScripts folder
in your app (you will have to create this folder too)

 Write the following line in the JS file alert(“Hello
World”);

 Save the file as hello.js

 Include the script on the page “hello.js” to the folder
<mySampleApp>/public/javascripts

JAVASCRIPT

Variables - Numbers, Strings and Booleans

Variables (Numbers)
12

 Variables are the names you give to computer memory locations which contain data
in your computer programs

 Created using the let keyword (Let was introduced in ES6 2015)

 let age = 24;

 Variables can also be created using the var key word but this essentially makes
them globally scoped which can be problematic.

 var age = 24;

 If you don’t want the variable to change then use const

 const age = 24;

 Unlike languages such as C, variables do not need to be declared before being
assigned a value

 let age = 24;

 Variable “age” will be created if it isn’t already

 Declare multiple variables

 let age1, age2, age3;

Arithmetic in JavaScript (Numbers)
13

 Similar to C / C++ / Java etc.

 Basic Arithmetic Operators

 Addition + ans=a+7

 Subtraction - ans=a-b

 Multiplication * ans=a*b

 Division / ans=a/b

 Modulus % ans=a%b

Exercise 2: Working with numbers
14

 Declare a variable called salary and assign it a

value of 40000

 Assume that the €40k is your salary and you’ve just

been awarded a bonus of €1000, so add this to

the salary and using an alert display it on the page.

Variables (Strings)
15

 A string is a group of characters

 A string literal is a group of characters enclosed in
quotes

 “This is a string literal”

 “This is too”

 This isn’t

 A string variable is a variable that holds a string

 A String is a data type in JavaScript

 Space is a valid character in a string

String operators
16

 JavaScript supports string operators to join two

strings together

 let name = “Enda ” + “Barrett”

 Can also concatenate string variables

let first, last, full;

first = “Enda ”;

last = “Barrett”;

full = first + last;

Variable types
17

 Variables in JavaScript are not associated with any particular type
and any variable can be assigned (and re-assigned) values of all
types.

 JavaScript supports dynamic or weak typing

 This means that it will resolve the appropriate type at compile time,
based on the input values

 This does not mean that types don’t exist, they do.

 Number.

 BigInt

 String.

 Boolean.

 Null.

 Undefined.

 Symbol.

let foo = 42; // foo is now a number

foo = "bar"; // foo is now a string

foo = true; // foo is now a boolean

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Data_structures

Exercise 3: Add string and number
18

 Create a variable salary and assign a value of 40000

 Create another variable bonus but assign it a value of
“1000”

 Create a third variable called total which adds salary
and bonus together

 Try adding 1000 euro bonus to the salary, what do you
notice?

Adding a string to a number
19

 When you try to add a string and a number

together the JavaScript JIT compiler will try to

complete automatic type conversion. In this instance

it converts the number 40000 to a string and

concatenates it to the string bonus of “1000”.

Boolean Variables and Expressions
20

 Boolean variables are a special type of variable

which can have two specific states true or false

 Declaring a Boolean variable

 let isVar = true;

 Note that true is a value not a string

 Do not enclose in quotes!

 Often pre-fixed with the naming convention “is”

Booleans
21

 Booleans are typically used in expressions, to

evaluation one thing against another.

 If you wanted to check whether one number was

larger than another number, you would place the

two numbers within an expression and the result

would be either true or false.

 Which leads to conditionals!

Variable Naming Rules
22

 Variable names known as
identifiers

 Identifiers are case sensitive

 myAge

 MyAge

 myAGe

 All different variables above

 Must begin with a letter or
underscore

 Cannot contain spaces

 Cannot use keywords

let age = 20;

JAVASCRIPT

Functions

Functions in JavaScript
2

 A JavaScript function is a block of code designed to

perform a particular task.

 The function is executed when “something” invokes it

(calls it)

 f(x) = x + 2
Function won’t

execute unless it

is invoked
function multiply(param1, param2)

{

return param1 * param2

}

Functions in JavaScript
3

 A function can be named or it can be anonymous

 The params are items of data that the function needs to

perform its task

 Not passing a required parameter will result in an error

 Can have zero parameters but still requires empty

parameters

function(param1, param2)

{

return param1 * param2

}

ES6 Arrow functions
4

(param1, param2) =>

{

return param1 * param2;

}

function(param1, param2)

{

return param1 * param2;

}

ES6

ES5

• Arrow functions are more

concise, developer can

achieve the same

functionality with fewer lines

of code.

• Support concise function

expressions

Assign function to a variable
5

let multiply = (param1, param2) =>

{

return param1 * param2;

}

multiply(3,3)

let multiply = function(param1, param2)

{

return param1 * param2;

}

multiply(3,3)

Returning from a function
6

 Functions can return values to their calling

environments

 Use the return statement to do this

function divide(numerator, denominator)

{

return numerator / denominator

}

Returning from a function
7

 The returned value from a function can be assigned

to a variable.

function incrementAge(myAge)

{

myAge++;

return myAge;

}

let incAge = incrementAge(26);

alert("Incremented age is " + incAge);

Invoking the function

and passing

arguments

Functions
8

 Functions consist of

 Unique name (cannot be keywords)

◼ If they are named!

 Parameters (again cannot be keywords)

 Don’t declare variables as parameters (let param1)

 Code block to execute

 Will only return once, but can use conditional statements

to control the execution of the code and have multiple

return statements

Invoking a function from HTML
9

<script>

function numbers() {

let sHTML = "";

sHTML += 1 + "
" + 2 + "
" + 3 + "
" + 4 + "
";

sHTML += "";

clientSideContent.innerHTML = sHTML;

}

</script>

<button onClick="numbers()">Show Some Numbers</button>

<div id="clientSideContent">Something here</div>

DOM Manipulation

Inline JS within our pages

-Note we can also link to a JS file too!

-Try and reproduce the same functionality but this

time by using a separate JS file

Exercise: Functions
10

 Copy the JS code from the previous slide and place

it into a separate JavaScript file.

 Modify the function “numbers” to accept a param

 If the argument passed in is 1 then the numbers

printed out should be 1, 2, 3, 4.

 If the argument passed in is something else, then the

numbers printed out should be 2, 4, 6, 8

JAVASCRIPT

Events

Events
12

 Actions that can be responded to by JavaScript

 Every element on a page has certain events which

can trigger some JavaScript code

 We can identify when a user clicks a button with the

onClick event

 Can then assign a function to run when the event is

identified

 Events defined as an attribute in the HTML Tag

Examples of Events
13

 A mouse click

 A web page or an image loading

 Moving the mouse over a hot spot on the web page

Other Mouse Events
14

 onClick

 Triggered when the mouse clicks an element

 onMouseDown

 Triggered when the mouse button is pressed

 onMouseUp

 Triggered when the mouse button is released.

Selecting and De-Selecting Elements
15

 All three normally used with form input elements

(text boxes, buttons etc.)

 onFocus

 Triggered when an element gets focus

 E.g. an element that is clicked is said to be in focus

 onBlur

 Triggered when an element loses focus

 onChange

 Triggered when the content of an element changes

As the mouse moves over HTML elements

16

 onMouseOver

 Triggered for an element when the mouse cursor is

moved over that element

 e.g. moving the mouse over an image (‘rollover’)

 onMouseOut

 Triggered for an element when the mouse cursor is

moved away from that element

 e.g. moving the mouse out of the image

Other Keyboard Events
17

 onKeyDown

 Triggered when a keyboard key is pressed

 onKeyUp

 Triggered when a keyboard key is released

 onKeyPress

 Triggered when a keyboard key is pressed or held

 onSelect

 Triggered when text is selected

Exercise: Multiply numbers from text input

18

 Place a text input on your web page

 Ask the user to pop in a number into the textbox using the
placeholder attribute

 Place a button underneath it called “Multiply”

 When the user clicks on the button a function is invoked which takes
the value from the text box, multiplies it by 3 and pops it back into
the same text box

 Note that if you place an ID on the input, you can access the value
the user enters via myelement.value

JAVASCRIPT OBJECTS

Objects
2

 We have seen how we can define primitives and

store information using variables

 For example:

 let num = 123;

 let str = “Enda B”;

 What if we want to represent something a little

more abstract?

How would you represent these?
3

Sales person

Smartphone

Car

Objects / User Defined Objects
4

 Sales person

 Name (String)

 Phone number (Number)

 Car

 Make (String)

 Model (String)

 Age (Number)

Object Example
5

 Objects are variables too, but contain many values

 let car = {make: “Ford”, model: “Mondeo”, age:2};

 The values are expressed in a property:value format

Accessing object properties & setting values

6

 The values can be accessed in two ways

 objName.property or objName[“property”]

 let car = {make: “Ford”, model: “Mondeo”, age:2};

 let make = car.make // make = Ford

 let anoMake = car[“make”] // anoMake = Ford

Simple example
7

<script>

function displayVehicles() {

let vehicle = {make:"Ford", model:"Mondeo", age:2};

let sHTML = "";

sHTML += vehicle.make + "
" + vehicle.model + "
" +

vehicle.age;

sHTML += "";

clientSideContent.innerHTML = sHTML;

}

</script>

<button onClick="displayVehicles();">Show a Vehicle</button>

<div id="clientSideContent">Something here</div>

Exercise: Put into table
8

 Modify the previous example (slide 8) to display

the contents of the single vehicle object in a table.

 Use Bootstrap to style it something like below

(https://getbootstrap.com/docs/5.0/content/tables/)

https://getbootstrap.com/docs/5.0/content/tables/

JAVASCRIPT ARRAYS

Arrays
10

 Arrays can store multiple values within a single

variable.

 It is a special variable that is suited for storing lists

of items.

 let array = [“Enda”, “Barrett”];

 let array = [];

 You define it using square brackets

Arrays cont.
11

 Each item within the array is known as an element

 let array = [“Enda”, “Barrett”];

 Array elements can be accessed by referencing the

correct index position

 let fullName = array[0] + “” + array[1]

Element 0 Element 1

Adding array items

• When initializing an array you can add values but

you may wish to add more throughout the program’s

execution

• This can be achieved by specifying an index position

and assigning a value to that position.

• let array = [“Enda”, “Barrett”];

• array[2] = “Peter”;

• array[3] = “Devon”;

Removing array items with splice

• let array = [“Enda”, “Barrett”];

• array[2] = “Peter”;

• array[3] = “Devon”;

• array.splice(1, 1);

Start index

position

Number of

elements to

remove

Arrays (push, pop) with Objects

• An array can also store objects

• let array = [];

• let car = {make: “Ford”, model: “Focus”, year: 2,

mileage:10000}

• array.push(car);

• array.pop()

Adds car to

the end of

the array

Removes the

last element

of the array

Exercise: Arrays
15

 Create an array of 5 objects such as vehicles etc.

 Each object has a make, model, year and mileage

property.

 Populate it with mock data

 Using a loop iterate over the array of objects and

place them in tabular form on your web page

INTRODUCTION TO NODEJS

AND SERVER-SIDE CODING

Overview
2

 Introduction to NodeJS

 Background on NodeJS

 Where do we run it?

 Server side coding

 What does the code look like?

Background
3

 V8 is an open-source JavaScript engine developed by
Google. It’s written in C++ and is used by the Google
Chrome Browser

 Short video on V8

 http://www.youtube.com/watch?v=hWhMKalEicY

 Node.js (Node) runs on the V8 engine

 It’s not a programming language – it’s a runtime environment

 Write it in JavaScript

 Most web dev’s are used to writing in JavaScript

 Good News - It’s just more JavaScript!

http://www.youtube.com/watch?v=hWhMKalEicY

Background cont.
4

 It was created by Ryan Dahl.

 Presented at JSConf 2009 – standing ovation

 You have downloaded it already!

 It is Open Source. It runs on both Linux, Mac and

Windows operating systems.

Introduction
5

 In simple terms Node.js is ‘server-side JavaScript’

 In not-so-simple words, Node.js is a high performance
network applications application, well optimised for
high concurrent environments

 In ‘Node.js’, ‘.js’ doesn’t mean that it’s solely written in
JavaScript. It is 40% JS and 60% C++.

 You can write modules for node in C++

Where do we run it?
6

 <script></script>

 It’s not for the browser

 Doesn’t run on the user’s laptop/phone or desktop
computer!

 Where does it run?

 On the server!

What’s the server?
7

Bounces through the

internet

Firebase

Request messages from

the client

Don’t we already have this?
8

 Yes but at the minute all Firebase is doing is

returning our static HTML pages

 Our current HTML, CSS, and JavaScript is static, once

we deploy it, it doesn’t change

 Things we can’t do right now

 Save some user data to a database?

 Register a user and store their username and password

 Check if a user is logged in and if so allow them access

to a restricted section of the site

Server side coding
9

 In order to add the type of functionality listed on

the previous slide we need to write “server side

code”

 Sometimes called backend code or a business logic

layer

 It’s just code that runs when the server receives a

request from a client

What does the code look like?
10

Where does it run on Firebase
11

Summary
12

 Introduction to NodeJS

 Background on NodeJS

 Where do we run it?

 Server side coding

 What does the code look like

REST APIS AND DEPLOYING TO FIREBASE FUNCTIONS

Overview
2

 Introduction to REST APIs

 Configuring Firebase functions on our apps

 Examining our first NodeJS code

 Modules in JavaScript

 Deploying our NodeJS functions to Firebase

REST API’s
3

https://www.youtube.com/watch?v=7YcW25PHnAA&t=82s

Application Programming Interface (API)

4

 An API expresses a software component in terms of its
operations, inputs, outputs and underlying types

 RESTful APIs

 REpresentational State Transfer

 Use HTTP methods (verbs), GET, POST …

 Interface is exposed and can be invoked without caring
about the underlying implementation

 Accessed via a URL

Adding Firebase Functions
5

 We are using Firebase functions to host our REST

APIS

 Thus as when we setup hosting we must now initialise

functions within our projects

 Using the command line, navigate to the directory

containing your project

 firebase init

Adding Firebase Functions cont.
6

Select functions and

hit enter

Select Yes

Adding Firebase Functions cont.
7

Select JavaScript

Adding Firebase Functions cont.
8

Select no to

ESLint

Select Yes to

installing the

dependencies

Adding Firebase Functions cont.
9

Finished installing

the dependencies

Now be a new

functions

directory

Examining the functions folder
10

Contains

dependencies

Where you will

write your

NodeJS code

and functions

Allows you to

define

dependencies

and other

config settings

Examine the code
11

const functions = require('firebase-functions’);

// // Create and Deploy Your First Cloud Functions

// // https://firebase.google.com/docs/functions/write-firebase-functions

//

// exports.helloWorld = functions.https.onRequest((request, response) => {

// functions.logger.info("Hello logs!", {structuredData: true});

// response.send("Hello from Firebase!");

// });

What is a library
12

 Libraries in programming are just blocks of code that you import so
your program can use them?

 Who writes them?

 Other Devs, yourself, could be anyone really…

 Why use them?

 You can’t use Firebase without this library.

◼ It’s like trying to control your TV without a remote

◼ It’s like trying to drive a car without a steering wheel, pedals etc.

 It’s their platform so you must use their interface!

require('firebase-functions’);

JS modules
13

 JavaScript allows the developer to package up

code and functionality into modules

 Think of them as set of packaged functions that you

wish to include in your application

JS modules
14

Driver.jshello.js

function hello()

{

return “hello”;

}

let mod = require('./hello');
module.exports.hello = hello;

let value = mod.hello();

let …

SourceTarget

Both files in the same folder

Modules
15

 Examining our first REST API (cloud function)

const functions = require('firebase-functions');

// // Create and Deploy Your First Cloud Functions

// // https://firebase.google.com/docs/functions/write-firebase-functions

//

exports.helloWorld = functions.https.onRequest((request, response) => {

functions.logger.info("Hello logs!", {structuredData: true});

response.send("Hello from Firebase!");

});

Exporting a module “helloWorld”

Deploying our first cloud function
16

 The command is the same firebase deploy!

 You will see the function URL outputted to the

console

 Paste it into the browser address bar to see if it

works…Don’t Google it! ☺

Summary
17

 Introduction to REST APIs

 Configuring Firebase functions on our apps

 Examining our first NodeJS code

 Modules in JavaScript

 Deploying our NodeJS functions to Firebase

FIREBASE FUNCTIONS, CALLBACKS, CREATING AND

TESTING OUR FIRST FUNCTIONS

Summary
2

 Firebase functions

 Callback functions

 HTTP Verbs GET and POST

 Creating a dumb function which receives data and returns it back

 Testing with POSTMAN

 JSON

 Summary

Firebase Functions
3

 It is a compute service that lets you run code
without provisioning or managing servers.

 Similar to AWS Lambda, Azure Functions… It runs
your code only when needed and scales
automatically, from a few requests per day to
thousands per second.

 You pay only for the compute time you consume -
there is no charge when your code is not running.

Containers vs VMs
4

Deploy a function what happens
5

HelloWorld

Callback functions
6

Too busy to take a call,

please leave your name

and number (function) and

I’ll call you back when I’m

finished my work (invoke

your function).

Function callbacks
7

 Examining our first REST API (cloud function)

const functions = require('firebase-functions');

// // Create and Deploy Your First Cloud Functions

// // https://firebase.google.com/docs/functions/write-firebase-functions

exports.helloWorld = functions.https.onRequest((request, response) => {

functions.logger.info("Hello logs!", {structuredData: true});

response.send("Hello from Firebase!");

});

// Callback function -- please run this code for me Firebase when a request is made

myCoolApp/functions/index.js

Exercise: Deploying a function
8

 Deploy a function onto Firebase and return a string

when it is invoked which says “Welcome to my cool

new backend function”

 Add a second function below the first one and this

time return a message saying “Not logged In!”

Passing Data - URL Query String
9

 We can encode parameters in the URL, we

generally refer to this as the query string

 E.g. If you run a google search query, look at the

URL after you search…

 http://www.mywebsite.com?data=hello

http://www.mywebsite.com/?data=

Simple function to mirror data
10

 Assume you want to create a function which parses

out data submitted per request and mirrors it back

to the requester

const functions = require('firebase-functions');

// Accept comment and return the same comment to the user

exports.echofunction = functions.https.onRequest((request, response) => {

response.send(request.query.data);

});

myCoolApp/functions/index.js

Exercise: Parsing params from QS
11

 Write a function that assumes the data passed in

the via the Query String is a number, take the value

that is submitted per request, double it and then

return it via the response.

 If the user submits a value that isn’t a number then

return a response that says “Please Enter a

Number”

HTTP Verbs (GET and POST)
12

 GET and POST are HTTP request methods to

transfer data from client to server.

 So far we have been making GET requests, GET is

designed to request data from a specified resource

 POST is designed to submit data to the specified

resource

 Both can be used to send requests and receive

responses

Request Structure
13

 All HTTP requests have a three main parts

 Request line
◼ HTTP Method (GET, POST, etc.)

◼ URL – address of the resource that is being requested

◼ HTTP version

 Headers
◼ Additional information passed between the browser and the

server, i.e. cookies, browser version, OS version, auth tokens,
content-type

 Message body
◼ Client and server use the message body to transmit data back

and forth between each other. POST request method will usually
have data in the body. GET requests leave the message data
empty

GET Method
14

 GET requests can be cached

 GET requests remain in the browser history (you can go
back!)

 GET can’t be used to send binary data, like images or
word documents to the server

 GET requests can be bookmarked

 GET requests have length restrictions

 GET requests should only be used to retrieve data

 Using GET data can be sent to the server by adding
name=value pairs at end of the URL, i.e. Querystring

 mysite.app.web…/page?id=101&name=John

POST Method
15

 POST requests are never cached

 POST requests do not remain in the browser history

 POST requests cannot be bookmarked

 POST requests have no restrictions on data length

 The POST method can be used to send ASCII as well as
binary data

POST Request Form Data
16

 Form data is often sent to the server via a POST

request
Alternative option is to

send username and

password to the server

via the QueryString –

uid=email@address.c

om

pwd=password

But is this a good idea?

mailto:uid=email@address.com

GET vs POST
17

 Use GET if you are requesting a resource

 You may need to send some data to get the correct
response back, but in general the idea is to GET a
resource

 Use POST if you want to send data to the server

 Other methods

 PUT //Update/Replace

 DELETE //Delete

 PATCH //Partial update/modify

POST data to server
18

 Assume you are building a form which posts

comments from your blog page to the server

 First step is to write a function to accept the

comment

const functions = require('firebase-functions');

// Accept comment and return the same comment to the user

exports.postcomment = functions.https.onRequest((request, response) => {

response.send(request.body);

});

myCoolApp/functions/index.js

How to test a POST request?
19

 We can create a form on a web page, then write

JavaScript to send the data via POST to the server.

 However it would be nice if there was a way to test

it first without having to go back to the frontend

Postman client
20

 When writing backend APIs such as the one we

have just completed, it’s often necessary to test it

quickly.

 You don’t want to have to write a client side request

to test each API. Sometimes you may even want to

pass in values which would take even longer to code

up.

 Postman can help!

 https://www.postman.com/downloads/

POSTMAN
21

 It’s brilliant for letting us test our APIs without having

to write client side code to make the requests.

 It will work for all request methods, i.e. GET, POST,

PUT etc.

 You can code the backend independent of the

frontend!

 How else could we test to see if postcomments is

working!

Sending data, what format?
22

 Now that we have an API available to receive data,

and we have a client (postman) willing to send the

data, we need to decide on a data format…

 Enter JavaScript Object Notation or JSON

JSON
23

 JavaScript Object Notation (JSON)

 It is an open, human and machine-readable
standard that facilitates data interchange

 Along with XML it is the main data interchange
format on the web

 Data types

 Numbers, Strings, Booleans, Arrays, Objects

 ISODate() returns a date object

 Firestore uses JSON documents to store records of
information

JSON cont.
24

 Arrays

 [“a”, “b”, “c”, “d”, “e”, “f”]

 [“apple”, 3, null, true]

 Objects

 {“Enda” : 45, “John” : 33, “Sam” : “Smith”}

 Array of Objects

 [{}]

 Use double quotes, no comma last value

POST JSON to Server
25

Pass JSON data

in the request

body

Request to our API

Response

Set POST

Exercise 3
26

 Create a function which accepts comment

information (JSON formatted) in the body of the

request i.e. {“Comment”: “This is my comment”}

 Make a request via Postman to send the data via a

POST request

 Respond with a message saying “I received your

comment, thank you”.

Summary
27

 Firebase functions

 Callback functions

 HTTP Verbs GET and POST

 Creating a dumb function which receives data and returns it back

 Testing with POSTMAN

 JSON

 Summary

PART 1: INTRODUCTION TO FIRESTORE AND

CREATING OUR FIRST DATABASE

Lecture Overview
2

 Firestore Database

 Overview of Document Driven Databases

 Creating our first database

 Connecting the database to our Firebase functions

 Writing our comment data to the database

 Reading our comment data from the database

 All will be tested using POSTMAN

Purpose of the lecture
3

 The goal is to introduce you to Firestore, from the
point of view of using it as a backend for your
applications. The majority of the discussion will be
practically focussed, with little theory concerning
more advanced database concepts such as
sharding, normalisation, concurrency, BSON, locking
writes/reads etc.

 It will be a basic introduction on how to get a
database connected to your applications.

Architecture
4

Functions

(Node.js)

Firestore (Database)

Return JSON

Firebase

Query data

Return JSON

Call API endpoint
url:api

Clients

What is Firestore?
5

 Firestore is a Document Driven Database.

 Documents follow a property:value format

 JSON

 Scalable, highly performant and document oriented.

 The databases tend to scale more easily horizontally.

Database concepts
6

 Records in Firestore are known as “Documents”

 These documents are just JSON data

 Documents are grouped into “Collections” which

are equivalent to tables in relational databases

 Queries are still queries, however there is NoSQL!

SQL to Firestore Terminology
7

Database

Table

Record/Tuple/Row

Database

Collection

Document

Column Field

Creating our first database
8

Login to the Firebase dashboard, click on Firestore

and then “Create database”

Open in production mode
9

 Start in production mode

Choosing a region
10

 The latency should be fairly low so the default

region will be fine, but if you want to place it in

Europe please select it in the dropdown and then

click enable

Database is now created
11

 You can create a collection and add documents

manually via this web interface. But the next step is

to connect to it with our functions and read/write

data.

Summary Overview
12

 Firestore Database

 Overview of Document Driven Databases

 Creating our first database

 Connecting the database to our Firebase functions

 Writing our comment data to the database

 Reading our comment data from the database

Writing data to the database
13

 To motivate data writing we will reuse the

postcomments function

 This is known as “Creating” a document

 I’ll create a new document every time the postcomments

function is called and save it in the database

 https://firebase.google.com/docs/firestore

https://firebase.google.com/docs/firestore

Firebase admin
14

 Firebase provides an admin library to allow your

server code (functions) to run in an authenticated

mode

 This means your code can connect to the database,

create docs, delete docs, update etc. all securely

const functions = require('firebase-functions');

const admin = require('firebase-admin');

admin.initializeApp();

Promise – More async hell
15

 In ES6 a new concept was added to JavaScript to
handle Callback hell

 These are called promises

 What’s the difference between callbacks and promises?

 Callback is passed as an argument

 Promise is something that is achieved or completed in the
future.

◼ Promise is an object, then() method (if promise is fulfilled) and
catch (if promise is rejected)

Code examples
16

asyncFunc(result => {

console.log(result);

});

Callback

const promise = asyncFunc(()=>{

return new Promise…
});

promise.then(result => {

console.log(result);

});

Promise

Adding a document
17

const functions = require('firebase-functions');

const admin = require('firebase-admin');

admin.initializeApp();

exports.postcomments = functions.https.onRequest((request, response) => {

// 1. Receive comment data in here from user POST request

// 2. Connect to our Firestore database

return admin.firestore().collection('comments').add(request.body).then(()=>{

response.send("Saved in the database");

});

});

myCoolApp/Functions/index.js

Using POSTMAN POST to the fn
18

Check the database to see if it saved
19

 If you check on Firebase you should now see your

comment

Reading our documents
20

myCoolApp/Functions/index.js

exports.getcomments = functions.https.onRequest((request, response) =>

{

// 1. Connect to our Firestore database

let myData = []

admin.firestore().collection('comments').get().then((snapshot) => {

if (snapshot.empty) {

console.log('No matching documents.');

response.send('No data in database');

return;

}

snapshot.forEach(doc => {

myData.push(doc.data());

});

// 2. Send data back to client

response.send(myData);

})

});

Test the function with POSTMAN
21

22

const functions = require('firebase-functions');

const admin = require('firebase-admin');

admin.initializeApp();

exports.postcomments = functions.https.onRequest((request, response) => {

// 1. Receive comment data in here from user POST request

// 2. Connect to our Firestore database

admin.firestore().collection('comments').add(request.body);

response.send("Saved in the database");

});

exports.getcomments = functions.https.onRequest((request, response) => {

// 1. Connect to our Firestore database

let myData = []

admin.firestore().collection('comments').get().then((snapshot) => {

if (snapshot.empty) {

console.log('No matching documents.');

response.send('No data in database');

return;

}

snapshot.forEach(doc => {

myData.push(doc.data());

});

// 2. Send data back to client

response.send(myData);

})

}); myCoolApp/Functions/index.js

OrderBy
23

 So far when reading comments from the database

we have not given any consideration to their order

 Perhaps it would be useful to order them by

postdate or perhaps by the number of likes etc.

 To do this we need to modify our Firebase functions

postcomments and getcomments to order the

comments

Creating comments - postcomments
24

 The Firestore database supports a timestamp field,

which we can use to store the date and time each

comment was posted.

 Once this is recorded on each document we can

return the comments to the user in order of their

post date/time.

Posting comments
25

exports.postcomment = functions.https.onRequest((request, response) => {

console.log("Request body", request.body);

// Create a timestamp to add to the comment document

const currentTime = admin.firestore.Timestamp.now();

request.body.timestamp = currentTime;

admin.firestore().collection('comments').add(request.body).then(()=>{

response.send("Saved in the database");

});

});

myCoolApp/functions/index.js

Don’t forget to hit firebase deploy

once you have made your changes

Check database
26

 When you post a comment you should now see a

timestamp beside each comment

Ordering documents by timestamp
27

 We now modify the get comments firebase function

to order the comments by timestamp

exports.getcomments = functions.https.onRequest((request, response) => {

// 1. Connect to our Firestore database

let myData = []

admin.firestore().collection('comments').orderBy('timestamp').get().then((snapshot) => {

if (snapshot.empty) {

console.log('No matching documents.');

response.send('No data in database');

return;

}

snapshot.forEach(doc => {

myData.push(doc.data());

});

// 2. Send data back to client

response.send(myData);

})

});

myCoolApp/functions/index.js

Lecture Overview
28

 Firestore Database

 Overview of Document Driven Databases

 Creating our first database

 Connecting the database to our Firebase functions

 Writing our comment data to the database

 Reading our comment data from the database

SOURCE CONTROL – CT 216 SOFTWARE

ENGINEERING I

Dr. Enda Barrett

Source control - overview
2

 Version (Source) control

 Version control software

 Why we need it?

 Git

 What is Git

 Branching

 Pull requests

Version control
3

 What is version control?

 Version control is a system that records changes to a

file or set of files over time so that you can recall

specific versions later

 Also known as revision control or source control

 Keeps track of changes, by whom and when

 Fundamental tool for developing software projects

Version control software?
4

 Subversion, GIT, VSS, CVS, Mercurial

 Revision control is actually present in a variety of

software products

Why do we need it?
5

 Backup software source

 Roll back to previous versions

 Keeping a record of who did what and when

 Know who to praise and who to fire!

 Collaborating with other people (teams)

 Troubleshooting

 Analyse the change history to figure out what caused the
problem

 Statistics

 Find out who is the most productive!

What should you commit?
6

 Web project (HTML, CSS, JavaScript, Images,
Documentation, Functions, Configuration files)

 Not the Node Modules folder

GIT Creator
7

Why was it created?
8

 For a long time Torvalds wasn’t using any version

control for the Linux Kernel (1991-2002).

 Changes were passed around as patches and

archived files.

 In 2002 they began using BitKeeper for managing

the source for the Linux Kernel

 In 2005 the relationship broke down and BitKeeper

revoked their licence.

 Initial release 7th April 2005

https://git-scm.com/book/az/v1/Ba%C5%9Flan%C4%9F%C4%B1c-A-

Short-History-of-Git

They needed something similar to BitKeeper

9

 The developers had the following objectives in mind:

 Speed

 Simple design

 Strong support for non-linear development (thousands

of parallel branches)

 Fully distributed

 Able to handle large projects like the Linux kernel

efficiently (speed and data size)

Why is everyone moving to GIT?
10

 Not all but quite a few!

 One of the most touted reasons is that of DVCS

 Works great when you have no access to the internet!

No VPN access to the SVN server…

 No single point of failure

 Even offline you can access the history, branches,

versions etc…

Feature branch workflow
11

 It encourages branching for every

feature

 No matter how big or small the

feature, a branch can easily be

created and is encouraged.

https://www.atlassian.com/git/

Distributed development
12

Each developer gets their repo

complete with history of commits

This makes GIT extremely fast

You don’t need a network

connection to

• Commit changes

• Inspect previous versions

• Perform diffs between

commits

If someone breaks the

production branch/trunk in SVN,

it blocks everyone else from

committing, with GIT you can

continue
https://www.atlassian.com/git/

Pull requests
13

 A pull request is where you ask another developer to merge

your feature into their repository

 Proj. leads can keep track of changes

 Proj. leads can merge it with their repository

https://www.atlassian.com/git/

Source control - overview
14

 Version (Source) control

 Version control software

 Why we need it?

 Git

 What is Git

 Branching

 Pull requests

USING GIT AND GITHUB IN OUR APPS – CT 216

SOFTWARE ENGINEERING I

Dr. Enda Barrett

Source control - overview
2

 Git

 Installing Git

 Adding Git to your projects

 Committing code

 GitHub

 Pushing source to remote GitHub repo

 Cloning a repository

 Pull requests

Getting GIT – Windows && Mac
3

 Install it on your machine

 Downloads available at for Windows and Mac

 https://git-scm.com/download/windows

 https://git-scm.com/download/mac

 Go with the default install options

 Set details so that every commit is logged

correctly…

➢ git config --global user.name "Enda Barrett"

➢ git config --global user.email "Enda.Barrett@nuigalway.ie"

GIT – Adding Git to your projects
4

 Once installed navigate to your app directory

(myCoolNewApp) on the command line

 Type git init from the root of that directory on the

command line

 Creates a repository in this directory

 Execute command git add -A

 Adds all files in the directory to the local repository

 Execute command git commit

 Commits everything to version control

Commit
5

 When committing you will be asked to put a

comment at the top to indicate what changes you

made. It’s important to be descriptive here so your

colleagues can understand the changes made

 Type i to begin inserting text

 When finished typing press Esc and then :wq and hit

Enter

GitHub
6

 What is GitHub?

 GitHub is a web based hosted service for Git

repositories. Git allows you to host remote Git

repositories and has a wealth of community based

services that makes it ideal for open source projects.

 It’s really three things

 A publishing tool

 Version control system

 Collaboration platform

Pushing your repository to Github
7

 Create an account on Github

 It’s free for public projects

 Create a new repository

Name it and give it a description
8

Quick setup options
9

Pushing to a remote repository
10

Execute these

commands to

push to Github

Personal Access Token
11

https://github.blog/2020-12-15-token-authentication-requirements-for-git-operations/

https://docs.github.com/en/authentication/keeping-your-account-and-data-

secure/creating-a-personal-access-token

More info

Steps involved in creating one, please follow these to create the token

Also a files on the web client Github
12

 Create new file

 Opens up an editor

Note: Be careful though, if you are working locally make sure to pull any changes that

were made via the web client

Update your repository
13

 git pull

 Will pull the latest version from the repository you

cloned.

 git fetch and merge

 Pull is actually a combination of the two and you can

run them separately

GIT – Cloning a repository
14

 Many projects don’t require you to create your own

repository, instead you clone it from a remote

location such as GitHub

 git clone <repo>

Pull requests
15

 If you make a change i.e. add a feature you can

create a pull request.

 Everyone can review the code and decide whether

or not it should be included in the master branch

 It’s a forum for discussing the changes

 Git commands https://git-scm.com/docs

https://git-scm.com/docs

Sample pull request
16

Excellent Guide
17

Practical – Creating a repo
18

Commit some changes
19

 Make some changes to your app’s codebase

 git add –A

 git commit

 git push –u origin <master>

Creating branches (locally and remotely)

20

 To list all branches (local, remote)

 git branch

 git branch –r

 Adding a branch locally

 git branch <branch_name>

 Push it to the remote repo

 git push -u origin <branch_name>

Switching to a branch and commiting
21

 Now that you’ve created a branch, we need to

check it out so that we can start committing to it

 git checkout <branch_name>

 git add –A

 git commit

 git push –u origin <branch_name>

If the branch is already remote
22

 If one of your colleagues has created a branch and

you want to work with it

 git fetch

 git checkout <branch_name>

 git add –A

 git commit

 git push –u origin <branch_name>

Pull requests
23

 You’ve completed your feature and integrate it with

the main master branch

 Best to do it using the GitHub web client

Deleting the branch
24

 Once you have finished and pulled your code into

the main master branch, you may want to delete the

branch

 git branch -d <branch_name>

 git push origin --delete <branch_name>

