
Dr Takfarinas Saber
takfarinas.saber@nuigalway.ie

CT213
Computing Systems
& Organisation

Week 1: Introduction

Who Am I

• Takfarinas Saber
• Call me: Tak, Takfarinas, or Dr SABER
• Email: takfarinas.saber@universityofgalway.ie
• Office: IT425 (4th floor, IT Building)

• BSc, MSc and PhD Computer Science
• Research Areas:

• Resource optimisation in Cloud
• Engineering and optimisation of efficient software applications:

• Distributed over multiple hardware and geographical locations
• with various real-time user interactions
• programs processing large quantities of data

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 2

mailto:takfarinas.saber@universityofgalway.ie

Overview
• Course schedule:

• Monday 2 – 3 pm, AC215
• Monday 3 – 4 pm, McMunn Theatre

• Course material: http://www.nuigalway.blackboard.com
• I will publish slides of the lecture every week with enough information on the slides to

make them as clear as possible.
• But more info in class

• Textbooks:
• Digital Design and Computer Architecture (Second Edition), David Harris & Sarah Harris,

ISBN: 978-0-12-394424-5
• Computer Systems Organization & Architecture, John D. Carpinelli, ISBN: 0-201-61253-4
• Computer Architecture: A Quantitive Approch, John L Hennessy and David A. Patterson,

ISBN: 1-55860-329-8

3Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Labs
• Runs from: Week 3 (Week starting 19/09/2022)
• Focus: Playing with Operating System Command Line, Using

Raspberry Pi
• Required: Own laptop as advised by University of Galway (There will

be no PCs in the lab, just docking stations)

• Two Slots:
• Wednesdays 4pm to 6pm, IT101 Lab
• Thursdays 4pm to 6pm, IT101 Lab
Ø You need to choose one slot (the class has to be split into two

groups of the same size)
• https://nuigalwayie-

my.sharepoint.com/:x:/g/personal/0128261s_nuigalway_ie/EZknOSE
hPqNJpSiGH3VI87oBh9W0IIUxni8mLEIOnlBdgA?e=fqfhbh

4Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

https://nuigalwayie-my.sharepoint.com/:x:/g/personal/0128261s_nuigalway_ie/EZknOSEhPqNJpSiGH3VI87oBh9W0IIUxni8mLEIOnlBdgA?e=fqfhbh

Assessment
• 70% Final Exam

• 30% Continuous Assessment:
• Assignment 1: 15%

• Assignment 2: 15%

• You must attend in-class assignments (to be announced in advance)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 5

Contact Details
• For lecture/lab related questions

• I have also create a Forum on Blackboard where you can ask questions directly
to me.

• Any questions related to lectures or labs must be asked in the Forum, if you
think that all the class would like to know the answer.
• You can ask questions anonymously if you wish

• For one-to-one interaction with me:
• The best way to contact me is by email: takfarinas.saber@universityofgalway.ie

• I will endeavour to respond within 48 hours.
• If you would like to send me an email, use you University of Galway email account and

state in the email: name, Module ID CT213, and Student ID.
• I will also put in place a time period to discuss directly with you when necessary.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 6

mailto:takfarinas.saber@universityofgalway.ie

Learning Outcomes

Upon successful completion of this module, you will
be able to:
• Explain the main concepts behind any Operating

System and implement some of them
• Write shell scripts (system programming) to interact

with Linux system to solve problems
• Examine how processes, memory, file, and device

systems are managed in a computer
• Investigate an ARM processor and Raspberry Pi

Device

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 7

Syllabus

• Programming Models
• System software and Operating Systems
• Process Management and Process Synchronisation
• ARM Processors

• Memory Management
• Device Management
• File Management
• Raspberry Pi

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 8

Overview of Computer Systems

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 9

Traditional Classes of Computer Systems

• Personal Computer (PC): A computer designed for use
by an individual, usually incorporating a graphics
display, a keyboard, and a mouse.

• Server: A computer used for running larger programs
for multiple users, often simultaneously, and typically
accessed only via a network.

• Supercomputer: A class of computers with the highest
performance and cost; they are configured as servers
and typically cost tens to hundreds of millions of dollars.

• Embedded computer: A computer inside another
device used for running one predetermined application
or collection of software.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 10

Post-PC Era

Personal mobile devices:
• Small wireless devices to connect to the Internet.
• They rely on batteries for power, and software is installed

by downloading apps.
• Conventional examples are smart phones and tablets.

Cloud Computing:
• Refers to large collections of servers that provide services

over the Internet;
• Some providers rent dynamically varying numbers of

servers as a utility.

Software as a Service:
• Delivers software and data as a service over the Internet,

usually via a thin program such as a browser.
• Examples include web search and email.

11Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Computer Systems

• Application Software that provides services
that are commonly useful.

• Operating system interfaces between a user’s
program and the hardware and provides a
variety of services and supervisory functions.

• Hardware performs the tasks.
• Which tasks?

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 12

Seven Great Ideas in Computer Organisation

1. Use Abstraction to Simplify Design
A major productivity technique for hardware
and software is to use abstractions to
characterize the design at different levels of
representation; lower-level details are hidden to
offer a simpler model at higher levels.

2. Make the Common Case Fast
Making the common case fast will tend to
enhance performance better than optimizing
the rare case. Ironically, the common case is
often simpler than the rare case and hence is
usually easier to enhance.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 13

Seven Great Ideas in Computer Organisation
3. Performance via Parallelism

Since the dawn of computing, computer architects have
offered designs that get more performance by computing
operations in parallel.

4. Performance via Pipelining
A particular pattern of parallelism is so prevalent in computer
architecture that it merits its own name: pipelining.

5. Performance via Prediction
In some cases, it can be faster on average to guess and start
working rather than wait until you know for sure, assuming
that the mechanism to recover from a misprediction is not too
expensive and your prediction is relatively accurate.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 14

Seven Great Ideas in Computer Organisation

6. Hierarchy of Memories
Architects have found that they can address
conflicting demands with a hierarchy of
memories: the fastest, smallest, and the most
expensive memory per bit at the top of the
hierarchy and the slowest, largest, and cheapest
per bit at the bottom.

7. Dependability via Redundancy
Since any physical device can fail, we make
systems dependable by including redundant
components that can take over when a failure
occurs and to help detect failures.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 15

Why Study Computing Systems & Organisation

• To get a job

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 16

Outline
• Hardware Organisation
• Programs
• Operating System

• Take home message:
• A good understanding of how computing systems are organised is critical of

IT professionals

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 17

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 18

Hardware Organisation

How Does a Computer Look Like?

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 19

Basic Computer Organisation

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 20

CPU/Processor
Memory

Subsystem

I/O Device I/O Device

I/O Subsystem

…

Address Bus

Data Bus

Control Bus

Apple iPhone XS Max smart phone

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 21

At the left is the capacitive multitouch
screen and LCD display.

Next to it is the battery.

To the far right is the metal frame that
attaches the LCD to the back of the
iPhone.

The small components in the center
are what we think of as the computer;
Where?

The logic board of Apple iPhone XS Max

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 22

Integrated circuit: also called a chip. A device
combining dozens to millions of transistors.

Central Processor Unit (CPU): also called
processor. The active part of the computer,
which contains the datapath and control and
which adds numbers, tests numbers, signals
I/O devices to activate, and so on.

The other chips on the board include the
Power Management Integrated Controller
(PMIC) and Audio Amplifier chips.

Central Processing Unit (CPU/Processor)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 23

Responsible for executing programs

Processes programs in four steps:
1. Fetch: retrieve an instruction from program memory
2. Decode: break down the instruction into parts that

have significance to specific sections of the CPU
3. Execute: Various portions of the CPU are connected to

perform the desired operation
4. Write Back: Simply “writes back” the results of the

execute step if necessary
The processor integrated circuit inside the
iPhone A12 package

CPU Organisation

Integer
Unit

Floating
Point
Unit

REGISTER FILE Control Unit

Data to
Memory

Data to
Memory

Data from
Memory

Instructions
from Memory

Processor

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 24

Processors are made of:
• Control Unit
• Execution Unit(s)
• Register file

Control Unit
The Control Unit controls the execution of the instructions stored in the main memory
• It retrieves and executes them

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 25

load R4, c
add R3, R4
store R3, a

Primary
Memory

load R3, b 3046
3050
3054
3058

.

.

.

.

.

.Fetch Unit

Decode Unit

Execute Unit

3050

load R3, b

PC

IR

Control Unit

Special Registers:
• Program counter (PC): keeps the address of the next instruction
• Instruction Register (IR): keeps the instruction being executed

Execution Unit Example
Code for a = b + c :
• LD R3, b //Load (copy) value b from memory to R3
• LD R4, c // Load (copy) value c from memory to R4

• add R3, R4 //sum placed in R3
• ST R3, a //store the result into memory as a

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 26

R1

R2

…

RnG
en

er
al

 R
eg

ist
er

s

…

St
at

us
 R

eg
ist

er
s

Functional
Unit

Right Operand

Left Operand

Result

• Memory is divided into a set of storage locations which can hold
data.
• Locations are numbered
• Locations (i.e., address) are used to tell the memory which

location the processor wants to access.

• There are two hierarchies of memory:
1. Nonvolatile / ROM (Read Only Memory): Read only

• Used to store the BIOS and/or a bootstrap or boot loader
program

2. Volatile / RAM (Random Access Memory): Read/write
• Also called Primary Memory
• Used to hold the programs, operating system and data

required by the computer

Memory Subsystem

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 27

Primary Memory
• Primary Memory is directly connected to the central processing unit of

the computer.
Ø It must be present for the CPU to function correctly.

• 3 types of primary storage:

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 28

Processors Register: Contains
information that CPU
needs to carry out the
current instruction.

Main memory: Contains the
programs that are currently
being run and the data the
programs are operating on.

Cache memory: Special type of
internal memory used by
many CPUs to increase their
performance or "throughput.

Fast

Large AmountSmall Amount

Slow

Memory Subsystem (Cont’d)
• The width of address limits the amount of memory that a computer can access

• Most current computers use a 64 bit address, which means that the maximum number of
locations is 264, about (16 billion gigabytes).

• Memory subsystem supports two operations:
• Load (or read) – address of the data location to be read
• Store (or write) – address of the location and the data to be written

• Memory subsystem allows for more than 1 byte to be read or written at a time
• Read and write operations operate at the width of system’s data bus, usually 32 bit (4

bytes), or 64 bits (8 bytes).
• The address contains the address of the lowest byte to be addressed
• e.g., with a 4 byte read operation from address 0x1000 would return bytes stored at

addresses: 0x1000, 0x1001, 0x1002 and 0x1003

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 29

Memory Alignment and Word of Data
• When the computer's word size is 4 bytes the data to be read should be at

a memory address which is some multiple of 4.

• When this is not the case, e.g. the data starts at address 14 instead of 16,
then the computer has to read two or more 4 byte chunks and do some
calculation before the requested data has been read, or it may generate an
alignment fault.

• Even though the previous data structure end is at address 13, the next data
structure should start at address 16. Two padding bytes are inserted
between the two data structures at addresses 14 and 15 to align the next
data structure at address 16.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 30

Input/Output

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 31

I/O
Device

I/O
Device

I/O Subsystem

…

Input Devices: Anything that feeds data into the computer

Output Devices: Display / transmit information back to the user

The I/O Subsystem

• Contains devices that the computer uses to
communicate with the outside world and to
store data

• I/O devices are usually communicating with
the processor using an I/O bus
• PCs are using PCI Express (Peripheral Component

Interconnect Express) bus for their I/O bus
• OS needs a device driver to access a given I/O

device
• Program that allows the OS to control the I/O device

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 32

PCI Express (PCIe 5.0)

• The I/O read and write operations are similar to the memory read and
write operations.

• A processor may use:
• memory mapped I/O – when the address of the I/O device is in the direct memory

space, and the sequence to read/write data in the device are the same with the
memory read/write sequence

• isolated I/O – the process is similar, but the processor has a second set of control
signals to make the distinction between a memory access and an I/O access

• IO/M signal is a status signal.
• When this signal is low (IO/M = 0) it denotes the memory related operations.
• When this signal is high (IO/M = 1) it denotes an I/O operation.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 33

I/O Read/Write Operations

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 34

Programs

Programs

• Sequences of instructions that tell computer what to do
• To the computer, a program is made out of a sequence of numbers

that represent individual operations.
• Those operations are known as machine instructions or just instructions
• A set of instructions that a processor can execute is known as instruction set

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 35

Program Development Tools

36

From a High-Level Language to the Language of Hardware

High-level programming language: A portable language such as C, C++,
Java, or Visual Basic that is composed of words and algebraic notation
that can be translated by a compiler into assembly language.

Compiler: A program that translates high-level language statements into
assembly language statements.

Assembler: A program that translates a symbolic version of instructions
into the binary version.

Assembly language: A symbolic representation of machine instructions.

Machine language: A binary representation of machine instructions.

Instruction: A command that computer hardware understands and
obeys.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Compiling ProgramsDr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 37

Java – Different way of processing

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 39

Operating Systems

Operating System
• Responsible for managing the physical resources of complex

systems (PCs, workstations, mainframe computers)

• Responsible for loading and executing programs and interfacing
with the users

• Usually, no operating system for small embedded systems
• Computers designed for one specific task

• A possible definition: It is a program that runs on the computer,
that knows about all the hardware and usually runs in privileged
(or supervisor) mode, having access to physical resources that
user programs can’t control and has the ability to start and stop
user programs

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 40

Multiprogramming
• Technique that allows the system to present the illusion that

multiple programs are running on the computer simultaneously

• Many multiprogrammed computers are multiuser
• Allow multiple persons to be logged on at a time

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 41

Multiprogramming (Cont’d.)

• FCFS – First Come, First Served (also called FIFO)
• processes are moved to the CPU in the order in

which they arrive

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 42

Advantages:
• Simple
• Easy and useful and understandable

Disadvantages:
• Nonpreemptive
• Short processes at the back of the

queue have to wait
• Throughput is not efficient.

Advantages:
• Optimal scheduling system for total

number of jobs completed

Disadvantages:
• Requires exact knowledge of length
• Faulty mechanism => reduced

throughput
• Precedence of a lot of short jobs =>

long jobs may never run

SJN – Shortest Job Next
looks at all processes in the ready state and
dispatches the one with the smallest service time

Round Robin
distributes the processing time equitably among all
ready processes

Advantages:
• simple
• easy to implement
• starvation-free

Disadvantages:
• set time too short => too much

process switching => too slow.
• set time too long => unresponsive

system, time wasting

Multiprogramming is achieved by switching rapidly between programs

Context Switch

• When a program timeslice ends, the OS stops it, removes it and gives
another program control over processor
• This is a context switch

• To do a context switch the OS:
• Copies the content of current program register file into memory
• Restores the contents of the next programʼs register file into the processor
• and starts executing the next program.

• From the program point of view, no program can tell that a context
switch has been performed

43Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Protection

• Three rules:
1. The result of any program running on a multiprogram computer must be the

same as if the program was the only program running on the computer

2. Programs must not be able to access other program’s data and must be
confident that their data will not be modified by other programs.
• For security and privacy

3. Programs must not interfere with other program’s use of I/O devices

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 44

How to Achieve Protection
Protection is achieved by the operating system having full control over the
resources of the system (processor, memory and I/O devices) through:

• Privileged Mode: the operating system is the only one that can control the
physical resources it executes in privileged mode
Ø User programs execute in user mode

• Virtual Memory: each program operates as if it were the only program on
the computer, occupying a full set of the address space in its virtual space.
• The OS is translating memory addresses that the program references into physical

addresses used by the memory system.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 45

References

• “Computer Systems Organization & Architecture”, John D. Carpinelli,
ISBN: 0-201-61253-4

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 46

Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing Systems
& Organisation

Programming Models

Outline

• Instruction types
• Stack
• Stack architectures
• GPR architectures
• Stack used to implement procedure calls

2Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Programming Models

A processor programming model defines how
instructions access their operands and how
instructions are described in the processor’s
assembly language

3

a = b + c
Processors with different programming
models can offer similar sets of operations
but may require very different approaches to
programming

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

The Processor - Instruction Cycles
• The instruction cycle is the procedure of processing an instruction by the microprocessor:

4

Fetch
or read the

instruction from
the memory

Decode
what is to be done

Execute
Perform the

operation

• Each of the functions fetch -> decode -> execute consist of a sequence of one or
more operations inside the CPU (and interaction with the subsystems)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Types of Instructions

• Data Transfer Instructions
• Operations that move data from one place to another
• These instructions don’t modify the data, they just copy it

to the destination

5

• Data Operation Instructions
• Instructions do modify their data values
• They typically perform some operation (e.g., +/-/*)

using one or two data values (operands) and store the
result

• Program Control Instructions
• Jump or branch instructions used to go in another part of the

program; Jumps can be absolute or conditional (e.g., if then else)
• Instructions that can generate interrupts (software interrupts)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

CPU

Data Transfer Instructions (1)

Load data from memory into the microprocessor
These instructions copy data from memory into microprocessor registers (i.e., LD)

6

MemoryRegister

Register

Register

Store data from the microprocessor into the memory
Similar to load data, except that the data is copied in the opposite direction (i.e., ST)
Data is saved from internal microprocessor registers into the memory

Move data within the microprocessor
These instructions move data from one microprocessor register to another (i.e., MOV)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Data Transfer Instructions (2)

• Input data to the microprocessor
• A microprocessor may need to input data from the

outside world, these are the instructions that input
data from the input device into the microprocessor

• An example: microprocessor needs to know which key
was pressed (i.e., IORD)

7

Input: e.g.,
keyboard

CPU Register

Register

Register

Output: e.g.,
display

• Output data from the microprocessor
• The microprocessor copies data from one of its

internal registers to an output device
• In example: microprocessor may want to show on a

display the content of an internal register (the key
that has been pressed) (i.e., IOWR)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Data Operation Instructions
• Arithmetic instructions

• add, subtract, multiply or divide
• ADD, SUB, MUL, DIV, etc.

• Instructions that increment or decrement one from a value
• INC, DEC

• Floating point instructions that operate on floating point values
• FADD, FSUB, FMUL, FDIV

8

• Logic Instructions
• AND, OR, XOR, NOT, etc.

• Shift Instructions
• SR, SL, RR, RL, etc.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Program Control Instructions (1)
• Jump and branch instructions (Conditional or unconditional):

• JZ: Jump if the zero flag is set
• JNZ: Jump if the zero flag is NOT set
• JMP: Unconditional jump; flags are ignored
• Etc.

• Comparison instructions:
• TEST: logical BITWISE AND

• Calls and returns a/from a routine (Conditional or unconditional):
• CALL: call a subroutine at a certain line
• RET: return from a subroutine
• IRET: interrupt and return

9Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Program Control Instructions (2)
• Software interrupts:

• Generated by devices outside of a microprocessor (not part of the instruction set)
• called hardware interrupts
• INT

• Exceptions and traps: triggered when valid instructions perform
invalid operations,
• E.g., dividing by zero

• Halt instructions: causes the processor to stop executions,
• E.g., at the end of a program
• HALT

10

https://www.tutorialspoint.com/assembly_programming/index.htm

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 11

Stack Architectures

Stack Based Architectures
• The Stack

• Implementing Stacks
• Instructions in a stack-based architecture
• Stack based architecture instruction set

• Programs in stack-based architecture

12Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

The Stack (1)
• Last In First Out (LIFO) data structure

• Consists of locations, each of which can hold a word of data

• It can be used explicitly to save/restore data

• Supports two operations

• PUSH – takes one argument and places the value of the argument in
the top of the stack

• POP – removes one element from the stack, saving it into a
predefined register of the processor

• Used implicitly by procedure call instructions
(if available in the instruction set)

13Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

The Stack (2)
When new data is added to the stack, it is placed at the top of the stack,
and all the contents of the stack are pushed down one location

14

.

.

.

10

.

.

.

11

10

.

.

.

10

.

.

.

8

10

.

.

.

Top >

Initial State After PUSH #10 After PUSH #11 After POP After PUSH #8

Consider the code:
PUSH #10
PUSH #11
POP
PUSH #8

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Implementing Stacks

Two ways to implement a Stack:

1. Dedicated hardware stack
• It has a hardware limitation (limited number of locations)
• Very fast

2. Memory implemented stack
• Limited by the physical memory of the system
• Slow compared with hardware stack, since extra memory addressing has to take place

for each stack operation

Stack overflows can occur in both implementations
• When the amount of data in the stack exceeds the amount of space allocated to the

stack (or the hardware limit of the stack)

15Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Stack Implemented in Memory

• Every push operation will
increment the top of the
stack pointer (with the word
size of the machine)

• Every pop operation will
decrement the top of the
stack pointer

16

64KB space
dedicated for

the stack

Memory

Address

0

0x00010000 First data pushed

.

.

.

Last data pushed0x00010110

0x00020000
.
.
.

Stack Limit
(Fixed)

Bottom of the stack
(Fixed)

Top of the stack
(Moves as data is
pushed or pop)

Empty locations

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Instructions in a Stack Based Architecture

• Get their operands from the stack and write their results to the stack

• Advantage - Program code takes little memory (no need to specify the address of the operands in
memory or registers)
Push is one exception, because it needs to specify the operand (either as constant or address)

17

5Top

.

.

.

3

4

3Top

.

.

.

9Top

.

.

.

3

Initial Stak During Execution After Execution

ADD Instruction Execution

Stack

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Programs in Stack Based Architecture (1)

• Writing programs for stack-based architectures is not easy
• Stack-based processors are better suited for postfix notation rather than infix notation

• Infix notation is the traditional way of representing math expressions, with operation
placed between operands
• E.g., a + b

• Postfix notation – the operation is placed after the operands
• E.g., a b +

• Once the expression has been converted into postfix notation, implementing it in
programs is easy

• Exercise: Create a stack-based program that computes: A*(B-C)+(D+E)

19Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Simple Stack Based Instruction Set

stack contents (leftmost = top = most recent)

push A # A

push B # B A

push C # C B A

subtract # B-C A

multiply # A*(B-C)

push D # D A*(B-C)

push E # E D A*(B-C)

add # D+E A*(B-C)

add # A*(B-C)+(D+E)

Operation: A*(B-C)+(D+E)

Dr Takfarinas Saber
<takfarinas.saber@universityofgalway.i

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 22

General Purpose
Register Architecture

General Purpose Register Architecture

• Instructions in a GPR architecture

• A GPR instruction set

• Programs in GPR architecture

23Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

24

General Purpose Register Architecture (1)

• The instructions read their operands and write their results to random access
register file.

• The general purpose register file allows the access of any register in any order
by specifying the number (register ID) of the register

• The main difference between a general purpose register and the stack is that
reading repeatedly a register will produce the same result and will not modify
the state of the register file.
• Popping an item from a LIFO structure (stack) will modify the contents of the stack

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

General Purpose Register Architecture (2)

• Many GPR architectures assign special values to some registers in the register file to
make programming easier

• I.e., sometimes, register 0 is hardwired with value 0 to generate this most common constant

25

dataRegister 0

.

.

.
data

data

data

Register File

Register 1

Register 2

Register n

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Instructions in GPR Architecture (1)

• GPR instructions need to specify:
• the register that hold their input operands
• and the register that will hold the result

• The most common format is the three operands instruction format
• E.g., ADD r1, r2, r3 instructs the processor to read the contents of r2 and r3, add them

together and write the result in r1

• Instructions having two or one input are also present in GPR architecture

26Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Instructions in GPR Architecture (2)

• A significant difference between GPR architecture and stack-based architecture:
• Programs can choose which values should be stored in the register file at any given time,

allowing them to cache most accessed data

• In stack based architectures, once the data has been used, it is gone.

• GPR architectures have better performance from this point of view, at the
expense of needing more storage space for the program
• larger instructions need to encode the addresses of the operands

27Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Simple GPR Instruction Set

ST (ra), rb (ra) <- rb
LD ra, (rb) ra <- (rb)
ADD ra, rb, rc ra <- rb + rc
SUB ra, rb, rc ra <- rb - rc
AND ra, rb, rc ra <- rb & rc
OR ra, rb, rc ra <- rb | rc
MOV ra, rb ra <- rb

28

(ra): The memory location whose address is contained in ra

Programs in a GPR Architecture (1)
• Programming a GPR architecture processor is less structured than programming a stack based

architecture one.

• There are fewer restrictions on the order in which the operations can be executed

• On stack based architectures, instructions should execute in the order that would leave the
operands for the next instructions on the top of the stack

• On GPR, any order that places the operands for the next instruction in the register file before
that instruction executes is valid.

• Operations that access different registers can be reordered without making the program invalid

29Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Programs in GPR Architecture (2)

• Create a GPR based program that computes:

• 2 + (7&3)

30

• GPR programming uses infix notation:
MOV R1, #7
MOV R2, #3
AND R3, R1, R2
MOV R4, #2
ADD R4, R3, R4

• The result will be placed in R4

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Comparing Stack based and GPR Architectures
• Stack-based architectures

• Instructions take fewer bits to encode
• Reduced amount of memory taken up by programs
• Manages the use of register automatically (no need for programmer intervention)
• Instruction set does not change if size of register file has changed

• GPR architectures
• With evolution of technology, the amount of space taken up by a program is less important
• Compilers for GPR architectures achieve better performance with a given number of general purpose

registers than those on stack-based architectures with same number of registers
• The compiler can choose which values to keep (cache) in register file at any time

• Stack based processor are still attractive for certain embedded systems. GPR architectures are used by
modern computers (workstations, PCs, etc.)

31Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 32

Stacks for Procedure Calls

Using Stacks to Implement Procedure Calls (1)
• Programs need a way to pass inputs to the procedures that they call and

to receive outputs back from them

• Procedures need to be able to allocate space in memory for local
variables, without overriding any data used by their calling program

• It is impossible to determine which registers may be safely used by the
procedure (especially if the procedure is located in a library)
• So, a mechanism to save/restore registers of the calling program has to be in place

• Procedures need a way to figure out where they were called from
• So, the execution can return to the calling program when the procedure

completes (they need to restore the program counter)

33Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Using Stacks to Implement Procedure Calls (2)

• When a procedure is called, a block
of memory in the stack is allocated.
This is called a stack frame

• The top of the stack pointer is
incremented by the number of
locations in the stack frame

• When a procedure finishes, it jumps
to the return address contained in
the stack and execution of the calling
program resumes.

34

Saved Registers from caller

Stack
Frame

Return address

Inputs to procedure

Top of stack pointer
after procedure call

Top of stack pointer
before procedure call

Procedure’s local variables

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Using Stacks to Implement Procedure Calls (3)

• Nested procedure calls:

• main program calls function f(),
• function f() calls function g(),
• function g() calls function h()

35

Saved Registers from caller

Main Program’s stack frame

Stack frame for f()

Stack frame for g()

Top of stack pointer
after h() procedure

call

Bottom of the stack

Stack frame for h()

Stack

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

References
• “Computer Systems Organization & Architecture”, John D. Carpinelli, ISBN: 0-201-61253-4

• “Computer Architecture”, Nicholas Charter, ISBN – 0-07-136207

• Images taken from Pexels:

• Photo of dog by Jozef Fehér

• Photo of magnifying glass and fencers by cottonbro

• Photo of mirror by sum+it

• Photo of hardware by Valentine Tanasovich

• Photo of tree by Johannes Plenio

• Photo of stop sign by Mwabonje

• Photo of stack by Monstera

• Photo of drawers by Stephan Streuders

• Photo of code by Antonio Batinić

36Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213 Computing Systems
& Organisation

Lecture 3: System Software &
Operating Systems

Contents
• System Software & OS

• OS Organisation

• OS Design and Implementation

• Implementation considerations
• Processor modes

• Kernel

• Requesting services from OS

2Photo by Vitaly Vlasov from PexelsDr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 3

System Software & OS

Application Software
• A computer program designed to

perform a group of coordinated
functions for the benefit of the user

• Application software is designed to
solve a specific problem

• Examples of an application include a
word processor, a spreadsheet, an
accounting application, a web
browser, photo editor etc.

4Photo by Pixabay from PexelsDr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

System Software
• Programs dedicated to managing the computer
• System software is a software that provides a platform to

other software.

• System software provides a general programming
environment
• There are two main types of system software

1. Operating System
2. Utility Software

5Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Operating System (OS)
• Provides functions used by the application software

• Provides the mechanisms for application software to share the hardware in an orderly
fashion to:
• increase the overall performance by allowing different application software to use different

parts of the computer at the same time
• decrease the time to execute a collection of programs and increase overall system

performance

• Interacts directly with the hardware to provide an interface to other system software
and with application software whenever it wants to use system’s resources
• It is application-domain independent
• Provides resource abstraction
• Provides resources sharing (through strict resource management policies)

6Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Utility Software

• Utility software is system software
designed to help analyse, configure,
optimize or maintain a computer.

• Examples of this include:
• data compression
• disk cleaners
• disk defragmentation
• registry cleaners
• system monitors

7Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Resource Abstraction
• It is done by providing an abstract model of the operation of the hardware

components

• Different hardware components that a program may access are referred to as
resources.

• Any particular resource, such as a hard-disk has a generic interface that defines how
the programmer can make the resource perform a desired operation.

• Abstraction generalises the hardware behaviour but restricting the flexibility
• With abstraction, certain operations become easy to perform, other may become

impossible (such as specific hardware control)

• An abstraction can be made to be much simpler than the actual resource
interface
• Similar resources can be abstracted to a common abstract resource interface
• E.g., system software may abstract hard-disks and CD-ROMs into a single abstract disk

interface

8Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Resource Sharing

• Abstract and physical resources may be shared among a set of
concurrently executing programs:

• Space Multiplex Sharing

• Time Multiplex Sharing

9

Resource can be divided in two or more distinct units of
the resource that can be used independently.
E.g.: Memory, HDD

A process is allocated exclusive control of the entire
resource for a short period of time (not spatially divisible)
E.g.: Processor Resource

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

System
Software
and the OS

10

Application Software

Application Programming Interface

Other System Software

Operating System Interface

Operating System

Software - Hardware Interface

Hardware

R
es

ou
rc

e
Ab

st
ra

ct
io

n

R
es

ou
rc

e
Sh

ar
in

g

Re
so

ur
ce

 A
bs

tr
ac

tio
n

Re
so

ur
ce

Sh

ar
in

g

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

OS Organisation

11

Process and resource manager
� It uses the abstractions provided by the other managers
� Handles resource allocation

Memory manager
� It is classically a separate part of the operating system
� Beside other functions, it is in charge with the

implementation of the virtual memory

File manager
� abstracts device I/O operations into a relatively simple

operation

Device manager
� handles the details of reading and writing the physical

devices
� implemented within device driver

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Process & resource
manager

OS Design – Functional Requirements

12

Processes:
• Creation, termination, control,

exception handling
• Protection
• Synchronisation and communication
• Resources allocation/de-allocation

Memory management:
• Allocation/de-allocation
• Protection and sharing

I/O devices:
• Allocation/de-allocation
• Protection and sharing
• Physical resource abstraction

File System Management:
• Space allocation/de-allocation
• Protection, sharing, security
• Physical resource abstraction

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

13

Operating Systems Evolution

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Operating Systems Evolution

• Computers with no operating system
• Programming in machine language
• Lack of I/O devices

• Rudimentary OS
• Programming done in assembly
• Some basic I/O devices
• Some I/O control modules, assembler, debugger, loader, linker

• Batch processing systems – service a collection of jobs, called a batch, from a queue
• Job – predefined sequence of commands, programs and data combined into a single unit
• Job Control Language and monitor batch (interpreter for JCL)
• The user doesn’t interact with programs while they operate

14Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Batch Systems
• Processor scheduling : FIFO

• Memory management:
• Memory is divided in two parts: system memory and

program memory (for programs)

• I/O management – no special problems, since a job has
exclusive access to the I/O devices

• File management – present

15

Job Queue /
Batch File

Memory
Allocation

Primary
Memory

Processor
Sheduler

Processor

Submit Job /
Batch File

Job / Batch File
Complete

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Operating Systems Evolution

• Operating systems using multiprogramming: the technique of loading multiple
programs into space multiplexed memory while time-multiplexing the processor
• Timesharing Systems
• Real-time Operating Systems
• Distributed Operating Systems

• Multiprogramming systems common features
• Multitasking: multiple processes sharing machine resources
• Hardware support for memory protection and I/O devices
• Multi-user and multi-access support (through time sharing mechanisms)
• Optional support for real time operations (based on efficient usage of multitasking support)
• Interactive user interface

16Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Time Sharing Systems

• Support for multiprogramming and multi-user

• Processor scheduling
• Time slice (round robin)

• Memory management:
• Protection and inter-process communication support

• I/O management
• Support for protection and sharing between users

• File management
• Protection support and sharing support between users

17

Time sharing OS

VM VM VM

Terminal Multiplexer

...

...

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Real Time Operating Systems

• Used whenever a large number of critical
external events have to be treated in a
short or limited interval of time

• Support for multiprogramming/multi-
tasking

• Main goal
• Minimisation of the response time to service

the external events

18

Application Software

Device I/O Management

Task Synchronisation Memory
Management

Task
Scheduling Task Management

CPU Interrupt
Handling

Time
Management

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Real Time Operating Systems

Processor scheduling:

19

• Priority based preemptive

• Concurrent processes are loaded into the memory
• Support for protection and inter-process communication

• Critical in time
• Processes dealing with I/O are directly connected to the interrupt

vectors (for handling the interrupt requests)

• It may be missing
• If it exists, it should comply with requirements for timesharing

systems and it should satisfy the requirements for real time systems

Memory management:

I/O management:

File management:

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Distributed Operating Systems

• Multiprogramming induces a strong centralisation
tendency

• Distributed OS aims for decentralisation

• Based on computer network technologies, with
different communication and synchronization
protocols

• Client-server application architecture

• Security and protection are the primary concerns

20Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Modern Operating Systems

21

Modern
Operating
Systems

Constant load of the processor, on
low-priority tasksBatch Operating Systems

Interactive processes are treated on
a time share

Timesharing Operating
Systems

Critical processes (i.e. network
drivers) are treatedaccording to real
time constraints

Real Time Operating
Systems

Client-Server model protocolsDistributed Operating
Systems

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

22

OS Implementation Considerations

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

OS Implementations
• Monolithic Operating System

• Try to achieve the functional requirements by executing all the code in the
same address space to increase the performance of the system

• Too complex to manage

• Hierarchical Operating System
• Run most of their services in user space, aiming to improve maintainability

and modularity of the codebase
• Suitable for Object Oriented Programming, the levels are very well defined

23Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Implementation Considerations

• Multi-programming: the illusion that multiple programs are running
simultaneously

• Protection: access to shared system resources

• Processor modes: different privilege levels
• restrictions on operations that can be run

• Kernels: complete control over everything in the system (i.e., supervisor)

24Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

25

Multiprogramming (1)

• Technique that allows the system to present the illusion that multiple programs
are running on the computer simultaneously

• Protection between programs is very important
• Many multiprogrammed computers are multiuser
• Allow multiple persons to be logged on at a time

• Beside protection, data privacy is also important

• Multiprogramming is achieved by switching rapidly between programs.
• Each program is allowed to execute for a fixed amount of time – timeslice

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Multiprogramming (2)
• When a program timeslice ends, the OS stops it, removes it

and gives another program control over the processor – this
is a context switch
• To do a context switch the OS copies the content of current program

register file into memory, restores the contents of the next
program’s register file into the processor and starts executing the
next program.
• From the program point of view, they can’t tell that a context switch

has been performed

26

Program 1 Program 1 Program 2Program 3Program 2 Program 3
Program

executing on
processor

Time
Slice

Time

...

Protection (1)

27

• The result of any program running on a multiprogrammed computer
must be the same as if the program was the only program running on
the computer

• Programs must not be able to access other program’s data and must be
confident that their data will not be modified by other programs.

• Programs must not interfere with other program’s use of I/O devices

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Protection (2)

• Protection is achieved by having the operating system
have full control over the resources of the system
(processor, memory and I/O devices)

• Virtual memory is one of the techniques used to
achieve protection between programs
• Each program operates as if it were the only program on the

computer, occupying a full set of the address space in its
virtual space.
• The OS is translating memory addresses that the program

references into physical addresses used by the memory system.
• As long as two program’s addresses are not translated to

same address space, programs can be written as they were
the only ones running on the machine

28Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Privileged Mode

• To ensure that the OS is the only one that can control the physical resources it
executes in privileged mode

• OS is also responsible for low level UI
• Keys are pressed, the OS is responsible to determine which program should receive the input
• When a program wants to display some output, the user program executes some system call that

displays the data

• User programs execute in user mode
• When user mode programs want to execute something that requires privileged rights, it

sends a request to the OS, known as system call, that asks the OS to do the operation for
them

29Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Processor Modes (1)
• Processor Modes are operating modes for the CPU that place restrictions

on the operations that can be performed by the currently running process

• Hardware supported CPU modes help the operating system to enforce
rules that would prevent viruses, spyware, and/or similar malware to run
• Only very specific and limited “kernel” code would run unrestricted.
• Any other software (including portions of the operating system) would run restricted

and would have to ask the “kernel” for permission to modify anything that could
compromise the system.

• Multiple mode levels could be designed.

30Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Processor Modes (2)
• Mode bit to define execution capability of program on a processor
• Supervisor mode

• The processor can execute any instruction
• Instructions that can be executed only in supervisor mode are called

supervisor, privileged or protected instructions (e.g., I/O instructions)
• Execution process has access on both memory spaces

• User mode
• The processor can execute a subset of the instruction set
• Executing process has access only to the user space

• Some microprocessors do not make a difference between protected
and user mode

• The mode bit may be logically extended to define areas of memory
to be used when the processor is in supervisor mode versus when it
is in user mode

31

User
Space

Supervisor
Space

User
Process

Supervisor
Process

Memory

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Kernel
• The part of the operating system that executes in supervisor mode is called

kernel or nucleus

• Operates as trusted software
• Implements protection mechanisms that could not be changed through the actions of

un-trusted software executing in user mode
• Provides the lowest level abstraction layer for resources (memory, processors and IO

devices)

• Fundamental design decision: should a given function of the OS be
incorporated in the kernel or not?
• Protection issues
• Performance issues

32Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Methods for Requesting System Services

• Through command line interface
• By calling a specific command
• Using a command interpreter known as

a shell

33

• From user processes requesting
services from OS:
• By calling a system function
• By sending a message to a system

process

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Command execution mechanism

• A key pressed by the user generates a hardware interrupt

• A specialised module of the OS reads the keyed character and then stores it in a
special command line buffer
• There are special characters (i.e., to edit the command line, that are not stored in the

command line buffer)

• End of line detected: control taken by the command interpreter (shell):
• Analysis of the command (with error or success)
• If success, then the command interpreter decides if it is about an internal or external

command (for another module)
• If internal command: tries the execution that can end successfully or with error
• If external: looks for the corresponding executable file and executes it with the detected parameters

from previous phase

34Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Command execution example
• Semantics of grep establish that the first string parameter (first) represents the search

target, while the second parameter represents a file name (where to search)

35

>$ grep mouse mouse.txt

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

System Call

• The parameters of the call are passed according to the specific OS
convention and hardware architecture

• Switch to protected (supervisor) mode using a specific
mechanism
• E.g., software interrupt, trap, special instruction of type “call supervisor”
• mechanism that is different from a normal call

• A special module takes over, that will analyse the parameters and
the access rights
• This module can reject the system call

• If accepted: the corresponding routine from the OS is executed
and the result is returned to the user
• upon return, the user mode is restored

36

call(…)

Software interrupt, trap,
“call supervisor”

User mode

Kernel mode

Target
procedure

return

Kernel mode
procedure

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Messages
• User process constructs a message that describes

a desired service (A)
• Uses the send function to pass the message to a

trusted operating system process
• The send function checks the message
• switches the processor to protected mode
• and then delivers the message to the process that

implements the target function

• Meanwhile, the user waits for result with a
message receive operation.
• When the kernel finishes processing the request,

it sends a message (B) back to the user process

37

send (…, A, …)
receive (.., B, …)

send / receive

receive (…,A, …);

send (…, B, …);

User mode

Kernel mode

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

References

• “Operating Systems – A modern perspective”, Garry Nutt, ISBN 0-
8053-1295-1

• Funny video: https://youtu.be/aJFwVOW0Nww

38Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing Systems
& Organisation

Process Management

Content
1. Process Manager Process – User perspective

2. Process – Operating System perspective

3. Threads

4. Operating System services for process management

2

Program and Process

• Program: static entity made up of source program language statements
that define process behavior when executed on a set of data

• Process: dynamic entity that executes a program on a particular set of
data using resources allocated by the system
• two or more processes could execute the same program, each using its own data

and resources

3

What is a Process?
• A process is a program in execution

• It is composed of:
• Program
• Data
• Process Control Block (PCB): contains the state of the process in

execution
• What it is?
• How much of its processing has been completed?
• Etc.

4

Execution of a Process

• In order to execute, a process needs
an Abstract Machine Environment
to manage its use of resources

• Process Control Block (PCB) is
required to map the environment
state on the physical machine state

• The OS keeps a process descriptor
for each process

5

Abstract Machine Environment

Object program Data

Process Control Block Resources

Program Execution

• Each execution of the program generates a process that is executed

• Inter-process relationships:
• Competition – processes are trying to get access to different resources of the

system, therefore a protection between processes is necessary
• Cooperation – sometime the processes need to communicate between

themselves and exchange information – synchronization is needed

6

Process Manager Functions

• Implements:
1. CPU sharing (called scheduling)

• allocate resources to processes in conformance with certain policies
2. Process synchronization and inter-process communication

• deadlock strategies and protection mechanisms

7

Process Manager

8

ProcessProgram

The Abstract Computing Environment

Process Manager

Protection Process
Descriptor

Deadlock

Synchronizaton

Scheduler

CPU

Resource
Manager

ResourcesResourcesResources

File
Manager

Device
Manger

Memory
Manager

Devices Memory

Process – User Perspective
Example:

Consider an application that monitors an industrial process, to record its operation.

• The application contains 4 program modules:
• Data acquisition (collect): Reads 3 values from a converter

• Collecting each data is 1 T interval: ¼ T processor time, ¾ T is wait time to finish read op from
converter

• Data storage (log): Writes on the disk the 3 values read by collect:
• It needs two operations (writing two values at a time, including “newline:) which take 2 T intervals

each: 2/4 T processor time and 6/4 T wait time to finish the write operation

• Statistical processing (stat): Statistical processing of the three values collected by
collect, needs 2T

• Print results (report): Prints two values resulted from statistical processing (stat)
• Each print operation requires ¼ T processor time and 5/4 T wait time to finish print operation

9

Sequential Implementation

• The time required for a cycle is 12T:
• 4.25T is required for processing time (processor time)
• 7.75T is wait time between various I/O operations

main(){
while (TRUE){

collect();
log();
stat();
report();
}

}

 reportcollect

0T 1T 2T 3T 4T 6T5T 7T 8T 9T 10
T

12
T

11
T

Processor
Time

 log stat

Multitasking Implementation

• The following processes will be executed in a quasi-parallel fashion,
with the following priorities:
• Log
• Collect
• Report
• Stat

• For correct functionality, the processes need to synchronize to each
other; this will be done with directives wait/signal:
• Wait – wait for a signal from a specific process
• Signal – send a signal to a specific process

11

void log(){
while(TRUE){

wait(collect);
log_disk();
signal (collect);

}
}

void collect(){
while(TRUE){

wait (log);
wait (stat);
collect_ad ();
signal (log);
signal (stat);

}
}

void report(){
while (TRUE){

wait (stat);
report_pr ();
signal (stat);

}
}

void stat(){
while (TRUE){

wait (collect);
wait (report);
stat_ad ();
signal (collect);
signal (report)

}
}

12

• 5.25 T for the execution of a complete cycle
• Only 1T lost in waiting time between I/O operations

main(){
init_proc(&log(), …);
init_proc(&collect(), …);
init_proc(&report(), …);
init_proc(&stat(),…);

signal (collect); signal (collect);
signal (stat);
start_schedule();

}

Process – OS Perspective
• The processor’s principal function: execute machine instructions residing in main memory

• Those instructions are provided in the form of programs
• A processor may interleave the execution of a number of programs over time

• Program View
• Its execution involves a sequence of instructions within that program
• The behavior of individual process can be characterised by a sequence of instructions

• trace of the process

• Processor View
• Executes instructions from main memory, as dictated by changing values in the program counter (PC)

register
• The behaviour of the processor can be characterised by showing how the traces of various processes

are interleaved
14

State Process Models

• Two State Process Model

• Five State Process Model

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 15

Two State Model

• The process can be in one of two states:
• running or not running

• When the OS creates a new process, it enters it into the Not Running state;
after that, the process exists, is known to the OS and waits for the opportunity
to run
• From time to time, the currently running process will be interrupted and the

dispatcher process will select a new process to run
• The new process will be moved to Running state and the former one to Not Running state

16

Process Creation Process Termination

Process Creation
• Creation of new process:

• The OS builds the data structures that are used to manage the process
• The OS allocates space in main memory to the process

• Reasons for process creation:
• New batch job
• Interactive logon
• Created by OS to provide a service

• i.e., process to control printing
• Spawned by existing process

• i.e., to exploit parallelism

17

Process Termination
• Reasons for process termination
• Process finished its execution (natural completion)
• Total time limit exceeded
• Errors (memory unavailable, arithmetic error, protection error, invalid

instruction, privileged instruction, I/O failure, etc.)
• Parent request

o A parent has typically the right to request a child termination
• Parent termination

o When the parent terminates, the OS may automatically terminate all of its children

18

Queuing Discipline
• Each process needs to be represented
• Info relating to each process, including current state and location in memory
• Waiting processes should be kept in some sort of queue

• List of pointers to processes blocks
• Linked list of data blocks; each block representing a process

• Dispatcher behavior:
• An interrupted process is transferred in waiting queue

• If process is completed or aborted, it is discarded
• The dispatcher selects a process from the queue to execute

19

Five State Model
• Running – The process is currently being executed

• For single processor systems, one single process can be in this state at a
time

• Ready – a process that is prepared to execute when given the turn

• Blocked – a process that can’t execute until some event occurs
• Such as the completion of an I/O operation

• New – a process that has been created, but not yet accepted in the
pool of executable processes by OS
• Typically, a new process has not yet been loaded into main memory

• Exit – a process that has been released from the pool of executable
processes by the OS
• Completed or due to some errors

20

Five State Model Process Transition Diagram

21

Process – OS Perspective

• Consider three processes: A, B and C that are loaded in memory
• In addition, there is a small dispatcher program that switches the

processor from one process to another (using Round Robin with 6
instructions)
• No use of virtual memory
• Process B invokes an I/O operation in its fourth instruction

22

Example

• Movement of each process described earlier (A, B and C)
among the states

23

Queuing Discipline (1)

• There are two queues now: ready queue and blocked queue
• When the process is admitted in the system, it is placed in ready queue

• When a process is removed from the processor, it is either placed in ready
queue or in blocked queue (depending on circumstances)

• When an event occurs, all the processes waiting on that event are moved
from blocked queue onto ready queue.

24

Queuing Discipline (2)

• Multiple blocked queues; one per each event
• When event occurs, the entire list of processes is moved in ready

queue
25

Suspended Processes

• Processor is faster than I/O so all processes could be waiting for I/O
• Swap these processes to disk to free up more memory
• Blocked state becomes suspend state when swapped to disk

26

Process Management Services
• create (&process_id, attributes)
• Creates a new process with

implicit or specified attributes

• delete (process_id)
• Sometime known as destroy, terminate

or exit
• Finishes the process specified by

process_id
• Whenever the process is

terminated, all the files are closed,
• all the allocated resources are released

• abort (process_id)
• Same as the delete but for abnormal

termination
• Usually generates a :post mortem

dump” which contains the state of the
process before the abnormal
termination

• suspend (process_id)
• Determines the specified process to go

in suspended state

27

Process Management Services
• resume (process_id)

• Determines the specified process to go from the suspended state in ready state

• delay (process_id, time)
• Same with sleep
• Suspends the specified process for the specified period of time
• After the delay time elapses, the process is brought to ready state

• get_attributes (process_id, &buffer_attributes)
• Used to find out the attributes for the given process

• set_attributes (process_id, buffer_attributes)
• Used to set the attributes of the specified process

28

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 29

Process Description

Process Description

• What information does the
operating system need to control
processes and manage resources
for them?
• Operating System Control

Structures
• Memory Tables
• I/O Tables
• File Tables
• Primary Process Table
• Process Image

• User Program, user data, stack and
attributes of the process

30

Memory Tables
• Used to keep track of both main (real) and secondary (virtual)

memory.
• Some of main memory is reserved for use by the operating system;

the remainder is available to the processes.

• Contain:
• The allocation of main memory to processes
• The allocation of secondary memory to processes
• Any protection attributes of blocks of main or virtual memory (such as

which processes can access certain shared memory regions)
• Any information needed to manage virtual memory

31

I/O Tables
• Are used by the operating system to manage the I/O devices
• At any given time, an I/O device may be available or assigned to a

particular process.
• If an I/O is in progress, the OS needs to know the status of the I/O

operation and the location in main memory being used as the source or
destination of the I/O transfer.

32

File Tables
• These tables provide information about:

• the existence of files
• their location on secondary memory
• their current status
• other attributes

• Much of this information is maintained and managed by the File
Manager, in which case the process manager has little or no
knowledge of files.

33

Process Tables
• Primary process table is used to keep one entry

per each process in the operating system.
• Each entry contains at least one pointer to a process

image.

• The Process Image contains:
• Stack

• Each process has one or more stacks associated with it.
• A stack is used to store parameters and calling addresses for

procedure and system calls
• User Data

• Program data that can be modified, etc.
• Process Control Block

• Data needed by the operating system to control the process
(attributes and information about process)

34

Process Control Block

Contains:

1. Process Identification: data always include a unique identifier for
the process

2. Processor State Information: define the status of a process when
it is suspended

3. Process Control Information: used by the OS to manage the
process

35

Process Identification

• Identifiers
• Numeric identifiers that may be stored with the Process Control Block

include:
• Identifier of this process
• Identifier of the process that created this process (parent process)
• User identifier

36

Processor State Information

• User-Visible Registers
• A user-visible register is one that may be referenced by means of the machine language that

the processor executes.

• Control and Status Registers
• These are a variety of processor registers that are employed to control the operation of the

processor. These include:
• Program Counter: Contains the address of the next instruction to be fetched
• Condition codes: Result of the most recent arithmetic or logical operation (e.g., sign, zero, carry,

equal, overflow bits)
• Status information: Includes interrupt enabled/disabled flags, execution mode

• Stack Pointers
• Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A stack is

used to store parameters and calling addresses for procedure and system calls.
• The stack pointer points to the top of the stack.

37

Process Control Information (1)

• Scheduling and State Information
• This is information that is needed by the operating system to perform

its scheduling function. Typical items of information:

• Process state: defines the readiness of the process to be scheduled for execution
(e.g., running, ready, waiting, halted).

• Priority: One or more fields may be used to describe the scheduling priority of
the process. In some systems, several values are required (e.g., default, current,
highest-allowable)

• Scheduling-related information: This will depend on the scheduling algorithm
used. Examples are the amount of time that the process has been waiting and
the amount of time that the process executed the last time it was running.

• Event: Identity of event the process is awaiting before it can be resumed
38

Process Control Information (2)
• Data Structuring
• A process may be linked to another process in a queue or other structure. E.g.,:

• all processes in a waiting state for a particular priority level may be linked in a queue.
• a process may exhibit a parent-child (creator-created) relationship with another process. The

process control block may contain pointers to other processes to support these structures.

• Inter-process Communication
• Various flags, signals, and messages may be associated with communication between two independent

processes.

• Process Privileges
• Processes are granted privileges in terms of the memory that may be accessed and the types of

instructions that may be executed.
• In addition, privileges may apply to the use of system utilities and services.

39

Process Control Information (3)

• Memory Management
• This section may include pointers to segment and/or page tables

that describe the virtual memory assigned to this process.

• Resource Ownership and Utilization
• Resources controlled by the process may be indicated, such as

opened files.
• A history of utilisation of the processor or other resources may also

be included
• this information may be needed by the scheduler.

40

Threads and Processes

Threads and Processes

• A process is defined sometimes as a heavyweight process
• A thread is defined as a lightweight process

• Separate two ideas:
• Process: Ownership of memory, files, other resources

-> execution of applications
• Thread: Unit of execution we use to dispatch

-> share the same address space hence can read from and write to the same data
structures

• Multithreading
• Allow multiple threads per process

42

Threads (1)
• It is a unit of computation associated with a particular heavyweight

process, using many of the associated process’s resources
• has a minimum of internal state and a minimum of allocated resources

• A group of threads are sharing the same resources:
• E.g., files, memory space, etc.

• The process is the execution environment for a family of threads
• a process with one thread is a classic process

• A thread belongs only to one process

43

Threads (2)

• Individual execution state

• Each thread has a control block, with a state (Running/Blocked/etc.),
saved registers, instruction pointer

• Separate stack and hardware state (PC, registers, PSW, etc.) per thread

• Shares memory and files with other threads that are in that process

• Faster to create a thread than a process

• Because a family of threads belonging to the same process have
common resources, the thread switch is very efficient

• Thread switch for threads from different processes is as complex as
classic process switch

44

Using Threads

45

Application

Physical screen

Windows

Window
threads

References
• “Operating Systems”, William Stallings, ISBN 0-13-

032986-x
• “Operating Systems – A Modern Perspective”, Garry

Nutt, ISBN 0-8053-1295-1

46

Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing System
& Organisation

Lecture 5: CPU Management -
Scheduling

Content

2

• Process scheduler organisation
• Scheduler types:

• Non-preemptive

• Preemptive

• Scheduling algorithms
• FCFS (First Come First Served)

• SRTN (Shortest Remaining Time Next)

• SJF (Shortest Job First)

• Time slice (Round Robin)

• Priority based preemptive scheduling

• MLQ (Multiple Level Queue)

• MLQF (Multiple Level Queue with Feedback)

Scheduling

• Scheduling allows one process to use the CPU
while the execution of another process is on hold
(i.e., in waiting state) due to unavailability of any
resource like I/O etc

• Aims to make the system efficient, fast and fair.

• Scheduling is part of the process manager

3

CPU

Scheduling
• Scheduling is the mechanism that handles
• the removal of the running processes from the CPU
• and the selection of another process

• It is responsible for multiplexing processes on the CPU.
-> when it is time for the running process to be removed from the CPU (in a

ready or suspended state), a different process is selected from the set of

processes in the ready state

• The selection of another process is based on a particular strategy.
• The scheduling algorithm will determine the order in which the OS will

execute the processes.

4

Scheduler Organisation

5

Ready List
Enqueuer

Dispatcher Context switcher CPU

Ready process
Process

Descriptors

Scheduler

From
other
states

Remove the running process
From other

states
(New, Running,

Blocked)

When a process is changed in the ready state,
the enqueuer places a pointer to the process
descriptor into a ready list

Context switcher saves the content of all
processor registers of the process being removed
into the process’ descriptor, whenever the
scheduler switches the CPU from executing a
process to executing another

Ø Voluntary context switch
Ø Involuntary context switch

The dispatcher is invoked after the current
process has been removed from the CPU; the
dispatcher chooses one of the processes
enqueued in the ready list and then allocates CPU
to that process by performing another context
switch from itself to the selected process

Scheduler Types
• Cooperative scheduler (voluntary CPU sharing)

• Each process will periodically invoke the process scheduler, voluntarily sharing the
CPU

• Each process should call a function that will implement the process scheduling.
• yield (Pcurrent, Pnext) (sometimes implemented as an instruction in hardware), where Pcurrent is

an identifier of the current process and the Pnext is an identifier of the next process)

• Preemptive scheduler (involuntary CPU sharing)
• The interrupt system enforces periodic involuntary interruption of any process’s

execution; it can force a process to involuntarily execute a yield type function (or
instruction)

• This is done by incorporating an interval timer device that produces an interrupt
whenever the time expires

6

Cooperative Scheduler
• Possible problems:
• If the processes do not voluntarily

cooperate with the others, one

process could keep the CPU forever

• Cooperative multitasking allows
much simpler implementation of
applications
• because their execution is never

unexpectedly interrupted by the

process scheduler

7

Process P1
…
yield (*, scheduler);
…

Process scheduler

Process P2

Scheduler {
 s = select(…);
 yield (*,s);
}

…
yield (*, scheduler);
…

O
p

e
ra

tin
g

 S
ys

te
m

 I
n

te
rf

a
ce

Process descriptor for scheduler

Process descriptor for P2

...

...

Process descriptor for P1

Preemptive Scheduler
• A programmable interval timer will cause an interrupt to

run every K clock ticks of an interval time
• thus causing the hardware to execute the logical equivalent of

a yield instruction to invoke the interrupt handler

• The interrupt handler for the timer interrupt will call the
scheduler to reschedule the processor without any action
on the part of the running process

• The scheduler decides which process is run next

• The scheduler is guaranteed to be invoked once every K
clock ticks
• Even if a given process will execute an infinite loop, it will not

block the execution of the other processes

8

IntervalTimer{
InterruptCount = InterrptCount -1;
if (InterruptCount <=0){
InterruptRequest = TRUE
InterruptCount = K;

}
}

SetInterval(<programableValue>{
K = programmableValue;
InterruptCount = K;

}

Performance Elements
• Having a set of processes P={pi, 0<=i<n}

• Service time, τ(pi) – the amount of time a process needs to be in active/running state
before it completes

• Wait time, W(pi) – the time the process waits in the ready state before its first transition
in the active state

• Turn around time, TTRnd(pi) – the amount of time between the moment a process enters
the ready state and the moment the process exits the running state for the last time

• Those elements are used to measure the performance of each scheduling
algorithm

9

Selection Strategies

• Non-preemptive strategies
• Allow any process to run to completion once it has been allocated the control of the CPU
• A process that gets the control of the CPU, releases the CPU whenever it ends or when it

voluntarily gives up the control of the CPU

• Preemptive strategies
• The highest priority process among all ready processes is allocated the CPU
• All lower priority processes are made to yield to the highest priority process whenever it

requests the CPU
• The scheduler is called every time a process enters the ready queue as well as when an interval timer

expires
• It allows for equitable resource sharing among processes at the expense of overloading the

system

10

Scheduling Algorithms
• FCFS (First Come First Served)

• SJF (Shortest Job First)

• SRTN (Shortest Remaining Time Next)

• Time slice (Round Robin)

• Priority based preemptive scheduling

• MLQ (Multiple Level Queue)

• MLQF (Multiple Level Queue with Feedback)

11

First Come First Served
• Non-preemptive algorithm
• This scheduling strategy assigns priority to processes in the order in which

they request the processor
• The priority of a process is computed by the enqueuer by time stamping all incoming

processes and then having the dispatcher select the process that has the oldest time
stamp

• Possible implementation: using a FIFO data structure (where each entry points to a
process descriptor)
• the enqueuer adds processes to the tail of the queue and the dispatcher removes processes from

the head of the queue

• Easy to implement
• It is not widely used because of processes unpredictable

• turn around time
• waiting time

12

FCFS Example

• Average turn around time:
• TTRnd = (350 +475 +950 + 1200 + 1275)/5 = 850

• Average wait time:
• W = (0 + 350 +475 + 950 + 1200)/5 = 595 13

Pi τ(Pi)

0 350

1 125

2 475

3 250

4 75

P0 P1 P2 P3 P4

0 350 475 950 1200 1275

TTRnd(pi)

Shortest Job First
• Non-preemptive

• It is an optimal algorithm from the point of view of average turn around
time

• It minimises the average turn around time

• Preferential service of short jobs

• It requires the knowledge of the service time for each process

• In the extreme case, where the system has little idle time, the processes
with large service time will never be served

• In the case where it is not possible to know the service time for each
process, this is estimated using predictors.

14

SJF Example

• Average turn around time:
• TTRnd = (800 + 200 +1275 + 450 + 75)/5 = 560

• Average wait time:
• W = (450 + 75 +800 + 200 + 0)/5 = 305

15

P0P1 P2P3P4

0 75 200 450 800 1275

Pi τ(Pi)

0 350

1 125

2 475

3 250

4 75

TTRnd(pi)

Shortest Remaining Time Next (SRTN)

• Similar to SJF
• But preemptive

• a long job which is mostly complete might have a very short time
remaining, and would therefore be prioritised

16

Time Slice (Round Robin)
• Preemptive algorithm
• Each process gets a time slice of CPU time, distributing the processing time equitably among all

processes requesting the processor

• Whenever the time slice expires, the control of the CPU is given to the next process in the ready list
• the process being switched is placed back into the ready process list

• It implies the existence of a specialized timer that measures the processor time for each process
• every time a process becomes active, the timer is initialized

• It is not well suited for long jobs, since the scheduler will be called multiple times until the job is done

• It is very sensitive to the size of the time slice
• Too big – large delays in response time for interactive processes
• Too small – too much time spent running the scheduler
• Very big – turns into FCFS

• The time slice size is determined by analyzing the number of the instructions that the processor can
execute in the given time slice.

17

Time Slice (Round Robin) Example

• Average turn around time:
• TTRnd = (1100 + 550 + 1275 + 950 + 475)/5 = 870

• Average wait time:
• W = (750+425+800+700+400)/5 = 615

• The wait time shows the benefit of RR algorithm in the terms of how quickly a process receives service

18

Pi τ(Pi)
0 350

1 125

2 475

3 250

4 75

P3P1 P2P0

0 100 200 300

P4 P0 P1 P2 P3 P4 P0

400 475

P1 P2

550

P3

650

P0

650

P2 P3 P0 P2 P3

750 850

P0 P2

950

P0 P2

1050

P2 P2 P2

1150 1250 1275

Time slice size is 50, negligible amount of time for context switching

RR scheduling with overhead example

• Average turn around time:
• TTRnd = (1320 + 660 + 1535 + 1140 + 565)/5 = 1044

• Average wait time:
• W = (620 + 535 + 1060 + 890 + 490)/5 = 719

19

i τ(pi)
0 350

1 125

2 475

3 250

4 75 Time slice size is 50, 10 units of time for context switching

P3P1 P2P0

0 120 240 360

P4 P0 P1 P2 P3 P4 P0

480 540

P1 P2

790

P3

P0

790

P2 P3 P0 P2 P3

1030 1150

P0 P2

1270

P0 P2

1390

P2P2 P2

1510 1535

575 635 670

910

Priority based scheduling (Event Driven)

• Both preemptive and non-preemptive variants

• Each process has an externally assigned priority

• Every time an event occurs that generates a process switch, the process with the highest
priority is chosen from the ready process list

• There is the possibility that processes with low priority will never gain CPU time

• There are variants with static and dynamic priorities; the dynamic priority computation
solves the problem with processes that may never gain CPU time (the longer the process
waits, the higher its priority becomes)

• It is used for real time systems.

20

Priority based schedule example

• Average turn around time:
• TTRnd = (350 + 425 + 900 + 1025 + 1275)/5 = 795

• Average wait time:
• W = (0 + 350 + 425 + 900 + 1025)/5 = 540

21

Pi τ(Pi) Priority
0 350 5

1 125 2

2 475 3

3 250 1

4 75 4

P0 P1P2 P3P4
0 425350 900 12751025

Highest priority corresponds to highest value

Multiple Level Queue scheduling

• Complex systems have requirements for real time, interactive users and
batch jobs

• Therefore, a combined scheduling mechanism should be used

• The processes are divided in classes

• Each class has a process queue, and it has assigned a specific scheduling
algorithm

• Each process queue is treated according to a queue scheduling algorithm:
• Each queue has assigned a priority
• As long as there are processes in a higher priority queue, those will be serviced

22

MLQ Example
• 2 queues

• Foreground processes (highest priority)
• Background processes (lowest priority)

• 3 queues
• OS processes and interrupts (highest priority, serviced ED)
• Interactive processes (medium priority, serviced RR)
• Batch jobs (lowest priority, serviced FCFS)

23

ED Queue

RR Queue

FCFS Queue

CPU

pr
io

rit
y

System processes queue
and interrupts

Interactive processes

Batch processes

Multiple Level Queue with feedback

• Same with MLQ, but the processes could migrate from class to class in a dynamic
fashion

• Different strategies to modify the priority:
• Increase the priority for a given process (the user needs larger share of the CPU to sustain

acceptable service)
• Decrease the priority for a given process (the user process is trying to get more CPU share,

which may impact on the other users)
• If a process is giving up the CPU before its time slice expires, then the process is assigned

to a higher priority queue

• During the evolution to completion, a process may go through a number of
different classes

• Any of the previous algorithms may be used for treating a specific process class.

24

Exercise

25

• Draw a Gantt Chart that illustrate the execution of
these processes using the following scheduling
algorithm:

Ø FCFS (First Come First Served)

Ø SJF (Shortest Job First) – nonpreemptive

Ø SRTN (Shortest Remaining Time Next)

Ø Time slice (Round Robin, assume a time slice of 1
second)

Ø Priority based preemptive scheduling

• Calculate the average waiting time using each
scheduling algorithm.

Process Length
(s)

Arrival time
(s) Priority

5:00 0:00 1

P2 2:00 2:00 2

P3 1:00 3:00 3

Larger Number =
Higher Priority

References

• “Operating Systems – A modern perspective”, Garry Nutt, ISBN 0-
8053-1295-1

• Process Scheduling:
https://www.youtube.com/watch?v=THqcAa1bbFU

31

Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing System
& Organisation

Lecture 6: Process Synchronisation

Concurrent Programming

• Concurrent programs: interleaving sets of sequential atomic instructions.
• i.e., interacting sequential processes run at same time, on same/different

processor(s)
• processes interleaved, i.e. at any time each processor runs one of instructions of

the sequential processes

2

Correctness

If all the math is done in registers, then the results
depend on interleaving (indeterminate computation).
• This dependency on unforeseen circumstances is

known as a Race Condition.
Generalisation: a program is correct when its
preconditions hold then its post conditions will hold.

3

Program1: load reg, N
Program2: load reg, N
Program1: add reg, #1
Program2: add reg, #1
Program1: store reg, N
Program2: store reg, N

A concurrent program must be correct under all possible interleavings.

Lets Look at this in Practice: Race Conditions

• A race condition occurs when a program output is dependent on the
sequence or timing of code execution
• if multiple processes of execution enter a critical section at about the same time;

both attempt to update the shared data structure
Øleads to surprising results (undesirable)
vYou must work to avoid this with concurrent code

• Critical section = parts of the program where a shared resource is
accessed
• It needs to be protected in ways that avoid the concurrent access

4

Example Bank Transaction

Int withdraw(account, amount){
int balance = account.balance;
balance = balance – amount ;
account.balance = balance;
return balance;

}

5

Example Bank Transaction

//account.balance = 100
Int withdraw(account, amount = 10){

int balance = account.balance; //100
balance = balance – amount ; //90

Int withdraw(account, amount = 20){
int balance = account.balance; //80
balance = balance – amount ; //80
account.balance = balance; //80
account.balance = balance; //90
return balance; //90

}
return balance; //80

}
//account.balance = 90!

6

Process 1

Process 2

Process 1

Process 2

Two processes:
• Process 1: withdraw 10 from account
• Process 2: withdraw 20 from account

Race Condition Consequences

We can get different results every time we run the code
Ø result is indeterminate

Deterministic computations have the same result each time
• We want deterministic concurrent code
ØWe can use synchronisation mechanisms

7

Handling Race Conditions

• We need a mechanism to control access to shared resources in
concurrent code
Ø Synchronisation is necessary for any shared data structure

Idea:
• Focus on critical sections of code
• i.e., bits that access shared resources

• We want critical sections to run with mutual exclusion
Øonly one process can execute that code at the same time

8

Example: Bank Transactions
What code should be within the critical section?
1 int withdraw(account, amount){
2 int balance = account.balance;
3 balance = balance – amount ;
4 account.balance = balance;
5 return balance;
6}

9

Cr
iti

ca
l s

ec
tio

n

Q: Why is this not critical?

Critical Section Properties

• Mutual exclusion: only 1 process can access at a time
• Guarantee of progress: processes outside the critical section cannot

stop another from entering it
• Bounded waiting: a process waiting to enter a critical section will

eventually enter
• Processes in the critical section will eventually leave

• Performance: the overhead of entering/exiting should be small
• Especially compared to amount of work done in there – why?

• Fair: don’t make some processes wait much longer than others

10

Synchronisation Solutions

Ways to protect critical sections
• Option 1: Atomicity
• Atomic operations cannot be interrupted, in order to avoid illogical outcomes

• Option 2: Conditional synchronisation (ordering)
• Making sure that one process runs before another

11

Atomicity

• Basic atomicity is provided by the hardware
• E.g., References and assignments (i.e., read & write operations) are

atomic in all CPUs

• However higher-level constructs (i.e., any sequence of two or
more CPU instructions) are not atomic in general
• Some languages (e.g., Java) have mechanisms to specify multiple

instructions as atomic

12

Conditional Synchronisation

• Strategy: Person A writes a rough draft
and then Person B edits it.
• A and B cannot write at the same time (as

they are working on different versions of
the paper)
• Must ensure that Person B cannot start

until Person A is finished

13

Person A Person B

What Might Conditional Synchronisation Look
Like?

14

A Doc B

Open (doc)

Finished (doc)
Open(doc)

Open refused

Open(doc)

Finished (doc)

Process finished/terminated

Code Constructs to Support Defining Critical
Sections

• Locks
• Very primitive, just provide mutual exclusion, minimal semantics, useful as a

building block for other methods

• Semaphores
• Basic, easy to understand

• Monitors
• Higher level abstraction, requires language support, implicit operations

15

Mutual Exclusion solutions:
Locks

16

Locks: Basic idea

• Lock = a token you need to enter a critical
section of code

• If a process wants to execute a critical
section…it must have the lock:
• Need to ask for lock
• Need to release lock

• No restrictions on executing other code

17

A B C

D

Critical section

Processes

Token/Lock

Lock States and Operation

• Locks have 2 states:
• Held: some process is in the critical section
• Not held: no process is in the critical section

• Locks have 2 operations:
• Acquire:

• mark lock as held or wait until released
• If not held => execute immediately

• Release:
• mark lock as not held

If many processes call acquire, only 1 process can get the lock

18

Using Lock

• Locks are declared like variables:
Lock myLock;

• A program can use multiple locks – why?
Lock myDataLock, myIoLock;

• To use a lock:
• Surround critical section as follows:

• Call acquire() at start of critical section
• Call release() at end of critical section

• Remember our general pattern for mutex

19

while (true)
// Non_Critical_Section

myLock.acquire();

// Critical_Section

myLock.release();

// Non_Critical_Section
end while

Surround critical
section of code

Lock Benefits

• Only 1 process can execute the critical section code at a time
• When a process is done (and calls release) another process can enter

the critical section
ØAchieves requirements of mutual exclusion and progress for

concurrent systems

20

Lock Limitations

• Acquiring a lock only blocks processes trying to acquire the same lock
• i.e., processes can acquire other locks

• Must use the same lock for all critical sections accessing the same
data (or resource)
• E.g., withdraw() and deposit() for a bank account

• Q: What does this mean for code complexity?
• E.g., Add a new process that accesses same data

21

Lock in Use Example: Bank Transactions

int withdraw(account, amount){

int balance = account.balance;
balance = balance – amount ;
account.balance = balance};

return balance;

}

22

Cr
iti

ca
l s

ec
tio

n

acquire(myBalanceLock);

release(myBalanceLock);

The local variable, does not need to be protected

See our old code:

E.g., Bank Transaction with Locks
//account.balance = 100

23

P1
P2 Int withdraw(account, amount = 20){

acquire(myBalanceLock); // Process STALLED

P1

balance = balance – amount ; //90
account.balance = balance; //90
release(myBalanceLock); // NOW P2 can start

P2
Int withdraw(account, amount = 10){

acquire(myBalanceLock);
int balance = account.balance; //100

int balance = account.balance; //90
balance = balance – amount ; //70
account.balance = balance; //70
release(myBalanceLock);
return balance; //70

}
return balance; //90

}

//account.balance = 70

P1

Impacts

• We can run the processes in any order:
• We will have the correct final balance

ØWe no longer have a race condition

24

Software Implementation of Locks (v1)

Struct lock {
bool held; //initially FALSE

}
void acquire(lock) {

while(lock->held)
; //just wait

lock->held = TRUE;
}
void release(lock) {

lock->held = FALSE;
}

25

How does it run?

26

a:Account lock

acquire ()

acquire()
acquire()

held = FALSE

UML notation for instance a
of class Account

b:Account

While lock->held; //FALSE

UML comment

acquire ()

While lock->held; //FALSE

lock->held- TRUE;

lock->held- TRUE;
held = TRUE

return;

Now both processes think they have the lock
=> This solution does not work

Solve via Hardware Support

//c code for test and set behaviour
bool test_and_set (bool *flag) {

bool old = *flag;
*flag = true;
return old;

}

Processor has a special instruction called “test and set”
• Allows atomic read and update

27

Hardware-based Spinlock

struct lock {
bool held; //initially FALSE

}
void acquire(lock) {

while(test_and_set(&lock->held))
; //just wait

return;
}

void release(lock) {
lock->held = FALSE;

}

28Q: Why is this called a spin lock?

Drawbacks of Spinlocks

• Spinlocks are a form of busy waiting
=> burn CPU time

• Once acquired they are held until explicitly released
• What about other processes?

• Inefficient if lock is held for long periods
• OS overhead of context switching
• If Process Scheduler makes processes sleep while lock is held

ØAll other processes use their CPU time to spin while the process with the lock makes no
progress

29

Do Locks give us sufficient safety?

1. Check Safety properties: these must always be true
• Mutual exclusion: Two processes must not interleave certain sequences of

instructions
• Absence of deadlock: Deadlock is when a non-terminating system cannot respond

to any signal

2. Check Liveness properties: These must eventually be true
• Absence of starvation: Information sent is delivered
• Fairness: That any contention must be resolved

• If you can demonstrate any cases in which these properties do not hold
Ø then, the system is not correct

30
Q: What do you think?

Lock Deadlock Scenario
• 2+ processes, 2 shared resources, 2 locks

31

a:Process lock1

acquire ()

acquire()

held = FALSE

lock2

acquire ()

held = TRUE

b:Process

held = FALSE

held = TRUE

acquire()
Blocked

Blocked

No more progress is possible!

Protocols to avoid deadlock

• Add a timer to lock.request() method
ØCancel job and attempt it another time

• Add a new lock.check() method to see if a lock is already held before
requesting it
Øyou can do something else and come back and check again

• Avoid hold and wait protocol
Ønever hold onto 1 resource when you need 2

But these all lead to problems too!

32

Livelock by trying to avoid deadlock

• 2 processes, 2 resources, locks with checking

33

a:Process lock1

check ()

check()

held = FALSE

lock2

acquire ()

held = TRUE

b:Process

held = FALSE

held = TRUE
acquire ()

check()

Set timer

check()

check()

Starvation

• More general case of livelock
• 1 or more processes do not get to run as another process is locking the

resource
• Example:
• 2 processes

• Process A runs for 99ms, releases lock for 1ms
• Process B runs for 1ms, releases lock for 90ms

ØA sends many more requests for resource
ØB hardly ever gets allocated the resource

34

Locks/Critical Sections and Reliability

• What if a process is interrupted, is suspended, or crashes inside its
critical section?
• In the middle of the critical section, the system may be in an

inconsistent state
• Not only that: the process is holding a lock and if it dies no other

process waiting on that lock can proceed!

• Developers must ensure critical regions are very short and always
terminate.

35

Beyond Locks

• Locks only provide mutual exclusion
• Ensure only 1 process is in the critical section at a time
• Good for protecting our shared resource to prevent race conditions and avoid

nondeterministic execution
• E.g., bank balance We want more!

• What about fairness, avoiding starvation, and livelock?
ØWe need to be able to place an ordering on the scheduling of processes

36

Take Home Message

• Race conditions, deadlock, livelock, fairness, and reliability are all
concerns when writing concurrent code
• Several mechanisms exist to ensure the orderly execution of

cooperating processes

37

Higher Level Support for Mutual Exclusion:
Semaphores

38

Example Scenario: we want to place an order
on when processes execute
• Producer- Consumer:
• Producer: creates a resource (data)
• Consumer: Uses a resource (data)
• E.g. ps | grep “gcc” | wc

• Don’t want producers and consumers to operate in lockstep (i.e.,
atomicity)
• Each command must wait for the previous output
• Implies lots of context switching (i.e., very expensive)

• Solution: place a fixed size buffer between producers and consumers
• Synchronise access to buffer
• Producer waits of buffer full; consumer waits if buffer empty

39

Semaphores

• Semaphore = higher level synchronisation
primitive
• Invented by Dijkstra in 1965 as part of THE OS

project

• Semaphores are a kind of generalized lock
• Main synchronisation primitive used in original UNIX

• Implement with a counter that is
manipulated atomically via 2 operations
signal and wait

40

wait(semaphore): A.K.A., down() or P()
decrement counter
if counter is zero then block until semaphore is
signalled

signal(semaphore): A.K.A., up() or V()
increment counter
wake up one waiter, if any

sem_init(semaphore, counter):
set initial counter value

Semaphore Pseudocode
struct semaphore {

int value;
queue L; // list of processes

}
wait (S) {

if (s.value > 0)
s.value = s.value -1;

else {
add this process to s.L;
block;

}
}
signal (S) {

if (S.L != EMPTY){
remove a process P from S.L;
wakeup(P);

} else
s.value = s.value + 1;

}

wait()and signal()are critical sections!
Ø Hence, they must be executed atomically with

respect to each other

• Each semaphore has an associated queue of
processes
• When wait()is called by a process

• If semaphore is available => process continues
• If semaphore is unavailable => process blocks,

waits on queue
• signal()opens the semaphore

• If processes are waiting on a queue => one
process is unblocked

• If no processes are on the queue => the signal is
remembered for the next time wait() is called

Note: Blocking processes are not spinning, they
release the CPU to do other work

Semaphore Initialisation

• If semaphore initialised to 1
• First call to wait goes through

• Semaphore value goes from 1 to 0
• Second call to wait() blocks

• Semaphore value stays at zero, process goes on queue
• If first process calls signal()

• Semaphore value stays at 0
• Wakes up second process

ÞActs like a mutex lock
ÞCan use semaphores to implement locks
This is called a binary semaphore

42

What happens if we initialise to 2?
struct semaphore {

int value;

queue L; // list of processes

}

wait (S) {

if (s.value > 0)

s.value = s.value -1;

else {

add this process to s.L;
block;

}

}

signal (S) {

if (S.L != EMPTY){

remove a process P from
S.L;

wakeup(P);
} else

s.value = s.value + 1;

}

Consider multiple processes:
• Process1: wait(sem)

• value=1,L=[], P1 executes

• Process2: wait(sem)
• value=0, L[], P2 executes

• Process3: wait(sem)
• value=0, L[P3], P3 blocks

Initial value of semaphore = number of
processes that can be active at once:
• Sem_init(sem, 2)

• value=2, L =[]

Uses of Semaphores

• Allocating a number of resources
• Shared buffers: each time you want to access a buffer, call wait() => you are

queued if there is no buffer available

• Counter is initialised to N = number of resources
• Called a counting semaphore
• Useful for conditional synchronisation
• i.e., one process is waiting for another process to finish a piece of work before

it continues

44

Semaphores for Mutual Exclusion
With semaphores:
• guaranteeing mutual exclusion for ! processes is trivial

45

semaphore mutex = 1;

void Process(int i) {
while (1) {

// Non Critical Section Bit
wait(mutex) // grab the mutual exclusion semaphore
// Do the Critical Section Bit
signal(mutex) //grab the mutual exclusion semaphore

}
}

int main () {
cobegin {

Process(1); Process(2);
}

}

Bounded Buffer Problem

• Producer-consumer problem
• Buffer in memory

• Finite size of N entries
• A producer process inserts an entry into it
• A consumer process removes an entry from it

• Processes are concurrent
ØWe must use a synchronisation mechanism to control access to shared

variables describing buffer state

46

Producer-Consumer Single Buffer
• Simplest case
• Single producer process, single consumer process
• Single shared buffer between the Producer and the Consumer

• Requirements
• Consumer must wait for Producer to fill buffer
• Producer must wait for Consumer to empty buffer (if filled)

47

Some Buffer of
Resource

E.g., Video Stream
Producer Consumer

Semaphores can be Hard to Use

• Complex patterns of resource usage
• Cannot capture relationships with semaphores alone
• Need extra state variables to record information

Þ Produce buggy code that is hard to write
- If one coder forgets to do V()/signal()after critical section, the whole
system can deadlock

48

Monitors
• Need a higher level construct:

• Groups the responsibility for correctness
• Supports controlled access to shared data

• Monitors: an extension of the monolithic monitor used in OS to allocate
memory.
• A programming language construct that supports controlled access to shared data
• Synchronisation code added by compiler, enforced at runtime (Less work for

programmer!)
• Monitors keep track of who is allowed to access the shared data and when

they can do it

• Monitors Encapsulate
• Shared data structures
• Procedures that operate on shared data
• Synchronisation between concurrent processes that invoke these procedures

4949

Detection and Protection of
Deadlock

50

Requirements for Deadlock

1. Mutex: at least one held resource must be non-shareable
2. No pre-emption: resources cannot be pre-empted (no way to

break priority or take a resource away once allocated
• Locks have this property

3. Hold and wait: there exists a process holding a resource and
waiting for another resource

4. Circular wait: there exists a set of processes P1, P2,…,PN such that
P1 is waiting for P2, P2 is waiting for P3,… and PN is waiting for P1

51

All 4 conditions must hold for deadlock to occur:

If only 3 conditions hold then:
• you can get starvation
• but not deadlock

Need to avoid circular
wait

Make code more efficient,
hence, we want them

Sample Deadlock

• Acquire locks in different orders
• Example:

Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);

52

Sample Deadlock – Check for Deadlock

• Example:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);

53

1. Do we have mutex?

2. Do we have hold and wait?

3. Do we have no pre-emption?

4. Do we have a circular wait?

Deadlocks without Locks

• Deadlocks can occur for any resource or any time a process waits, e.g.
• Messages: waiting to receive a message before sending a message

• i.e., hold and wait
• Allocation: waiting to allocate resources before freeing another resource

• i.e., hold and wait

54

Testing for Real World Deadlock

• How do cars do it?
• We have rules to avoid it/recover from it
• E.g.,

• Never block an intersection
• Must backup if you find yourself doing so (a form of pre-emption)

• Why does this work?
• Breaks a “hold and wait”
• Shows that refusing to hold a resource while waiting for something else is a

key element of avoiding deadlock

55

Dealing With Deadlocks: Ignore

• Strategy 1: Ignore the fact that deadlocks may occur
• Write code, put nothing special in
• Sometimes you have to re-boot the system
• May work for some unimportant or simple applications where deadlock does

not occur often

• Quite a common approach!

56

Dealing with Deadlock: Reactive

• Periodically check for evidence of deadlock
• E.g., add timeouts to acquiring a lock, if you timeout then it implies deadlock

has occurred and you must do something

• Recovery actions:
• Blue screen of death and reboot computer
• Pick a process to terminate, e.g., a low priority one

• Only works with some types of applications
• May corrupt data so process needs to do clean-up when terminated

57

Dealing with Deadlock: Proactive

• Prevent 1 of the 4 necessary conditions for deadlock
• No single approach is appropriate (or possible) for all circumstances
• Need techniques for each of the four conditions

58

Solution 1: No Mutual Exclusion

• Make resources shareable
• Example: read-only files
• No need for locks

• Example: per-process variables
• Counters per process instead of global counter

• Not possible for all bits of code/applications

59

Fixing our Sample Deadlock Code

60

Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);

Solution 1: Avoid Hold and Wait

Only request a resource when you have none
• I.e., release a resource before requesting another

Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
unlock(x); unlock(y);
lock(y); lock(x);
B=B+20; A=A+20;
unlock(y); unlock(x);
lock(x); lock(y);
A=A+30; B=B+30;
unlock (x); unlock(y);

Never hold x when want y:
• Works in many cases
• But you cannot maintain a relationship between x and y

61

Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);

Solution 2: Avoid Hold and Wait

Acquire all resources at once
• E.g., use a single lock to protect all data
• Having fewer locks is called lock coarsening

Process 1 Process 2
lock(z); lock(z);
A=A+10; B=B+10;
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock (z); unlock(z);

Problem: low concurrency
• All processes accessing A or B cannot run at the same time
• Even if they don’t access both variables!

62

Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);

Prevention: Adding Pre-emption

• Locks cannot be pre-empted but other pre-emptive methods are possible

• Strategy: pre-empt resources

• Example:
• If process A is waiting for a resource held by process B, then take the resource from B

and give it to A

• Problems:
• Only works for some resources

• E.g., CPU and memory (using virtual memory)
• Not possible if a resource cannot be saved and restored

• Otherwise, taking away a lock causes issues
• Also, there is an overhead cost for “pre-empt” and “restore”

63

Prevention: Eliminate Circular Waits

Strategy: Impose an ordering on resources
• Processes must acquire the highest ranked resource first

Process 1 Process 2
lock(x); lock(x);
lock(y); lock(y);
A=A+10; B=B+10;
B=B+20; A=A+20;
A = A+B; A=A+B;
unlock(y); unlock(x);
A=A+30; B=B+30;
unlock (x); unlock(y);

Locks are always acquired in the same order
• We have eliminated the circular dependency
• Means you will need to lock a resource for a longer period

64

Original code:
Process 1 Process 2
lock(x); lock(y);
A=A+10; B=B+10;
lock(y); lock(x);
B=B+20; A=A+20;
A=A+30; B=B+30;
unlock(y); unlock(x);
unlock (x) unlock(y);

Preventing Circular Wait: Lock Hierarchy
Strategy: Define an ordering of all locks in your
program

• Always acquire locks in that order
Problem: Sometimes you do not know the order
that the events will be used

• Recall our code for transferring money from 1
account to another

How do we know the global order?
ØNeed extra code to find this out and then acquire

them In the right order
ØIt could get worse

65

transfer(acc1, acc2, amount){
acquire(acc1.a_lock);
acquire(acc2.a_lock);
acc1.balance -= amount;
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);

}

Lock Hierarchy Problems

Solution 1.1:
• Order based on hash code of variable

Problem?
• What about same account with the

same hash code?

66

transfer(acc1, acc2, amount){
acc1Hash = hashCode(acc1);
acc2Hash = hashCode(acc2);
if (acc1Hash < acc2Hash) {

acquire(acc1.a_lock);
acquire(acc2.a_lock);
acc1.balance -= amount;
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);

}else{
acquire(acc2.a_lock);
acquire(acc1.a_lock);
acc1.balance -= amount;
acc2.balance += amount;
release(acc2.a_lock);
release(acc1.a_lock);

}

lock tieLock; // a global lock

transfer(acc1, acc2, amount){
acc1Hash = hashCode(acc1);
acc2Hash = hashCode(acc2);
if (acc1Hash < acc2Hash) {

acquire(acc1.a_lock);
acquire(acc2.a_lock);
acc1.balance -= amount;
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);

}else if (acc1Hash > acc2Hash) {
acquire(acc2.a_lock);
acquire(acc1.a_lock);
acc1.balance -= amount;
acc2.balance += amount;
release(acc2.a_lock);
release(acc1.a_lock);

} else {
acquire(tieLock);
acquire(acc1.a_lock);
acquire(acc2.a_lock);
acc1.balance -= amount;
acc2.balance += amount;
release(acc1.a_lock);
release(acc2.a_lock);
release(tieLock);

}
}

Lock Hierarchy Problems

Solution 1.2:
• Order based on hash code of the locked

variable
• Deal with ties

Extra Resources:

Mike Swift Concurrency videos:
• https://www.youtube.com/channel/UCBRYU9uye8e-ZuWQMPBAoYA/videos

68

https://www.youtube.com/channel/UCBRYU9uye8e-ZuWQMPBAoYA/videos

Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing System
& Organisation

Lecture 7: Memory Management

Content
1. Memory management

2. Address space of a process

3. Segmentation

4. Paging

2

3

Memory Management

Memory Management
• In multiprogramming systems, the user part of memory is subdivided to

accommodate multiple processes
• The task of subdivision is carried out by the operating system and is known

as memory management
• Memory needs to be allocated efficiently to pack as many processes into

memory as possible

4

Memory Management Requirements

• Relocation
• Loading dynamically the program into an arbitrary memory space, whose

address limits are known only at execution time

• Protection
• Each process should be protected against unwanted interference from other

processes

• Sharing
• Any protection mechanism should be flexible enough to allow several processes

to access the same portion in the main memory

5

Memory Organisation

• Logical organisation
• Most programs are organised in modules

• Some modules are un-modifiable (read only and/or execute only)
• Others contain data that can be modified

• The operating system must take care of the possibility of sharing modules across
processes

• Physical organisation
• Memory is organised as at least a two-level hierarchy.
• The OS should hide this fact and should perform the data movement between

the main memory and secondary memory without the programmer’s concern

6

Memory Hierarchy Review

• It is a tradeoff between size, speed and cost

• Register
• Fastest memory element; but small storage; very expensive

• Cache
• Fast and small compared to main memory; acts as a buffer between the CPU and main memory: it

contains the most recent used memory locations (address and contents are recorded here)

• Main memory is the RAM of the system
• Disk storage - HDD

7

Registers
(CPU)

Cache
(Hardware
controlled)

Main
Memory

Disk
Storage

Specialized bus
(internal or external

to CPU)

Memory bus I/O bus

Caching
• Reading from cache is faster than recomputing a result or reading from a

slower data store
• thus, the more requests that can be served from the cache, the faster the system

performs.

• When reading data from a lower memory, also store a copy in the cache
• Future requests for that data can be served faster

• A cache hit occurs when the requested data can be found in a cache,
while a cache miss occurs when it cannot.

8

https://commons.wikimedia.org/w/index.php?curid=27652294

• Typical computer applications access data with a high degree
of locality of reference:
• Temporal locality: data is requested that has been recently

requested already
• Spatial locality: data is requested that is stored physically close

to data that has already been requested

• When a system writes data to cache, it must at some point
write that data to the main memory as well following the
Write policies:
• Write-through: write is done synchronously both to the cache and to

main memory
• Write-back: initially, writing is done only to the cache. The write to main

memory is postponed until the modified content is about to be replaced
by another cache block.

Cache review

Process Address Space

10

Process Address Space

• When accessing memory, a process is said to operate within an address
space (data items are accessible within the range of addresses available
to the process)

• The number of bits allocated to specify the address is an architectural
decision
• Many early computers had:

• 16 bits for address (thus allowing for a space of 64KB of direct addressing -> 216)
• Then, 32 bits, which allows for 4GB of direct addressing memory space

• Now most computers had 64 bits for addresses
• We say that such a system gives a virtual address space of 16 ExaBytes (16 billion

gigabytes)
• Although, the amount of physical memory in such a system is likely to be less than this)

11

Address Binding

• An address used in an instruction can point anywhere in the virtual
address space of the process
• It still must be bound to a physical memory address

• Programs are made of modules.
• Compilers or assemblers do not know where the module will be

loaded in the physical memory
ØVirtual addresses must be translated to physical addresses

ØAddress translation can be dynamic or static.

12

Not available

Not available

Not available

Not available

Virtual Address Space Physical
Address Space

Static Address Binding

• OS is responsible for managing the memory, so it will give the loader a base
address where to load the module
• The loader converts each virtual addresses in the module to absolute physical addresses

by adding the the base address
• This is called static binding

• Simple/Easy to Implement
• But,

• Once loaded, the code or data of the program cannot be moved into another part of
memory without change in the static binding

• All the processes executing in such a system would share the same physical address space
• no protection from one another if addressing errors occur
• even the OS code is exposed to addressing errors

13

Dynamic Address Binding
• Dynamic address binding:

• Keeps loaded addresses relative to the start of a process

• Advantages of dynamic address binding:

• A given program can run anywhere in the physical memory and can be moved around by the
operating system

• All of the addresses that it is using are relative to its own virtual address space, so it is unaware of
the physical locations at which it happens to have been placed

• It is possible to protect processes from each other and protect the operating system from application
processes by a mechanism we employ for isolating the addresses seen by the processes

• Disadvantage:
• A mechanism is needed to bind the virtual addresses within the loaded instructions to physical

addresses when the instructions are executed

14

Hardware Assisted Relocation and Protection

• Dynamic binding must be implemented in hardware, since it introduces
translation as part of every memory access

• If the basic requirement for modules is to be held contiguously in
physical memory and contain addresses relative to their first location:
• The first location is called the base of the process

• Suppose that an instruction is fetched and decoded and contains an
address reference
• This address reference is relative to the base, so the value of the base must be

added to it (base + address reference) in order to obtain the correct physical
address to be sent to the memory controller

15

Hardware Relocation and Protection

• The simplest form of dynamic binding hardware is a
base register and a memory management unit (MMU)
to perform the translation
• The operating system must load the base register as part of

setting up the state of a process before passing control to it

• Problem: This approach does not provide any protection
between processes:
• We cannot be sure that a process does not use an address

that is not in its space.

16

base
register

Hardware Relocation and Protection

• Solution: combine the relocation and
protection functions in one unit
• By adding a second register (the limit register)

that delimits the upper bound of the program in
the physical memory

17

base
register

Segmentation

18

Segmented Virtual Memory
• In practice, it is not very useful for a program to occupy a single

contiguous range of physical addresses

• Such as scheme would prevent two processes from sharing the code
• i.e., using this scheme, it is difficult to arrange two executions of same

program (two processes) to access different data while still being able to
share same code

• This can be achieved if the system has two base registers and two
limit registers, thus allowing two separate memory ranges or
segments per process

19

Segmented Virtual Memory

Two processes sharing a
code segment but having
private data segments

Segmented Virtual Memory

21

Most significant bit of the virtual
address is taken as a segment
identifier, with 0 for data segment
and 1 for code segment

Segmented Virtual Memory

• Within a single program, it is usual to have
separate areas for code, stack and heap;

• Language systems have conventions on how the
virtual address space is arranged
• Code segment will not grow in size
• Heap (may be growing)
• Stack at the top of virtual memory, growing in

opposite direction than Heap

• In order to realize the relocation (and
protection), three segments would be
preferable

22

Segmented Virtual Addresses
• The segment is the unit of protection and sharing
• the more we have, the more flexible

• 2 ways to organise segmented address:

23

Segment number
X bits

Byte offset in segment
Y bits

Virtual Address : address field of an instruction

Maximum number
of segments is 2x Maximum segment size is 2y1. Virtual address space is split into a segment

number and a byte number within a segment
• The number of bits used for segment addressing

is usually fixed by the CPU designer

2. The segment number is supplied separated from the offset portion of the address.
• This is done in X86 processors

Segmented Address Translation
• For dynamic address translation in the operating system

• Hardware must keep a segment table for each process in which
the location of each segment is recorded

• A process can have many segments, only those currently
being used for instruction fetch and operand access
need to be in main memory
• other segments could be held on backing store until they are

needed.

• If an address is presented for a segment that is not
present in main memory, then the address
translation hardware generates an addressing
exception.
• This is handled by the operating system, causing the segment to

be fetched into main memory and the mechanism restarted

24

Address Translation in Segmentation System

25

s = number of bits to represent the segment
d = number of bits to represent the size of the segment
limit = length of the segment
base add = initial physical address in memory

Segmentation Summary

• A process is divided into a number of segments that do not need to be equal in size

• When a process is brought into the main memory, all of its segments are usually brought into the main
memory and a process segment table is setup.

• Advantages:
• The virtual address space of a process is divided into logically distinct units which correspond to constituent

parts of a process
• Segments are the natural units of access control

• Rrocesses may have different access rights for different segments and sharing code/data with other
processes

• Disadvantages:
• Inconvenient for operating system to manage storage allocation for variable-sized segments
• After the system has been running for a while, the free memory available can be fragmented
• External fragmentation: sometimes, even though the total free memory might be far greater than the size of

some segment that must be loaded, there is no single area large enough to load it

26

Paging

27

Paged Virtual Memory

• The need to keep each loaded segment contiguous
in the physical memory poses a significant
disadvantage:
• It leads to fragmentation
• It complicates the physical storage allocation problem

• Solution: paging, where blocks of a fixed size are
used for memory allocation (so that if there is any
free space, it is of the right size)

• Memory is divided into page frames, and the user
program is divided into pages of the same size

28

pages frames

Paged Virtual Memory

• Typical page size is small (1 to 4KB)
• In paged systems, a process would require many pages

• The limited size of physical memory can cause problems. Therefore,
• a portion of the disk storage could be used as extension to the main memory (backing store)
• and the pages of a process may be in the main memory and/or in this backing store

• The operating system must manage the two levels of storage and the transfer of
pages between them

• It must keep a page table for each process to record information about the pages
• A present bit is needed to indicate whether the page is in main memory or not

• A modify bit indicates if the page has been altered since last loaded into main memory
• If not modified, the page does not have to be written to the disk when swapped out

29

Paging Example

30

All the processes (A, B, C and D) are stored on disk
and are about to be loaded in the memory (by the
operating system)

• Process A has four pages
• Process B has three pages
• Process C has four pages
• Process D has five pages

Paging Example

• Various page tables at the time
• Each Page Table Entry (PTE) contains the number of the frame

in main memory (if any) that holds that page
• In addition, typically, the operating system maintains a list of all

frames in main memory that are currently unoccupied and
available for pages

31

Paged Virtual Memory Address Translation

• Translation of a virtual address (page + offset)
into a physical address (frame + offset)
• using a page table

• Page table is stored in the main memory
• Each process maintains a pointer in one of its

registers, to the page table

• The page number is used to index that table
and lookup the corresponding frame number

• Combining the frame number with the offset
from the virtual address gives the real
physical address

32

Paged Virtual Memory Address Translation

33

10244 User Page Tables
Each with 1024 PTE

Root Page Table
1024 PTE

• Processes could occupy huge amounts of virtual memory
• E.g., in a 32bit addressing system with pages of size 4KB:

• 12 bits for offset
• 20 bits for number of pages

• This means 220 entries could be in each page table
• If each entry occupies 4Bytes (32bit address)
• Then each page table would take 4MB

Ø Unacceptably high!

• Solution: a two-level scheme to organise large page tables
• Root Page Table with 210 (1024 entries, 4 Bytes each) entries

occupying 4KB of main memory
• Root page always remains in the main memory

• User Page Tables can reside in either the main memory or in
disk

Paged Virtual Memory Address Translation

34

• The first 10 bits of a virtual address are used
to find a PTE to the user page table

• The next 10 bits of the virtual memory
address are used find the PTE for the page
that is referenced by the virtual address

• Every virtual memory reference causes two
physical memory accesses:
• one to fetch the appropriate User Page Table entry
• the other to fetch the desired page

• To overcome this, most of the virtual memory
schemas make use of a special high-speed
cache for page entries

Translation Lookaside Buffer (TLB)

35

• A kind of cache memory: it
contains the page entries that have
been most recently used

• TLB is searched for each address
reference

• TLB is nearly always present in any
processor that utilizes paged or
segmented virtual memory
• Including in most desktops, laptops,

and servers.

Translation Lookaside Buffer (TLB)
• The virtual page number is extracted from the virtual address and a lookup is initiated

• If multiple processes, then special care needs to be taken, so the page from one process would not be confused
with another’s

• If a match is found (TLB hit), then an access check is made, based on the information stored in the
flags
• The physical page base, taken form TLB is appended to the offset from the virtual address to form the complete

physical address
• The flags field will indicate the access rights and other information (i.e. if a write is being attempted to a page that

is read only etc)

• If an address reference is made to a page that is in the main memory but not in the TLB, then
address translation fails (TLB miss) and a new entry in the TLB needs to be created for that page

• If an address reference is made to a page that is not in the main memory, the address translation
will fail again. No match will be found in the address table and the addressing hardware will raise an
exception, called page fault
• The operating system will handle this exception

36

Paging Summary

• Advantages – by using fixed size pages in virtual address space and fixed size pages
in physical address space, it addresses some of the problems with segmentation:
• External fragmentation is no longer a problem (all frames in physical memory are same size)
• Transfers to/from disks can be performed at granularity of individual pages

• Disadvantages
• The page size is a choice made by CPU or OS designer

• It may not fit the size of program data structures and lead to internal fragmentation in which storage
allocation request must be rounded to an integral number of pages

• There may be no correspondence between page protection settings and application data
structures
• If two processes are to share data structures, they may do so at the level of sharing entire pages

• Requiring page tables per process , it is likely that the OS require more storage for its internal
data structures

37

References

• “Operating Systems”, William Stallings, ISBN 0-13-032986-X
• “Operating Systems”, Jean Bacon and Tim Harris, ISBN 0-321-11789-1

38

Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing System
& Organisation

Lecture 8: Device Management

Content
• Device management
• Device Communication Approaches
• Buffering

2

Device Management

• Device management is the process of managing the implementation,
operation and maintenance of physical and/or virtual devices.

• It is a broad term that includes various administrative tools and processes
for the maintenance and upkeep of a computing, network, mobile and/or
virtual device.

• The status of any computing device (internal or external), may be either free
or busy.
• If a device requested by a process is free at a specific instant of time, the operating

system allocates it to the process.

3

Device Management

• The Operating System manages the devices with
the help of:
• Device controllers: hardware components that contain

some buffer registers to store the data temporarily.
• E.g., disk controller, printer controller and a terminal

controller
• Device drivers: software programs that are used by an

operating system to control the functioning of various
devices in a uniform manner.

4

Operating System

Device Management
• The device controller used in a device management operation

includes three different registers: command, status, and data.

• The other major responsibility of the device management
function is to implement Application Programming Interfaces
(APIs).

• Each device controller is specific to a particular device
Ø the device driver implementation will be device specific

• Why?
• To provide correct commands to the controller
• To interpret the Controller Status Register (CSR) correctly
• To transfer data to and from device controller data registers as

required for correct device operation

5

• A computer must have a way of detecting the arrival of any type of input

• There are various ways to enable I/O devices to communicate with the
processor:
• Polling

• Interrupts

• Direct I/O

• Memory Mapped I/O

Device Communication Approaches

6

Polling

• Implementation
• Periodically checking status of the device to see if it is time for the next I/O operation
• I/O device simply puts the information in a Status register, and the processor must

come and get the information.

• Efficiency
• Simplest way for an I/O device to communicate with the processor.
• Inefficient method: most of the time, devices will not require attention and when one

does it will have to wait until it is next interrogated by the polling program.
ØMuch of the processor’s time is wasted on unnecessary polls.

7

Interrupts

• Implementation
• A device controller puts out an interrupt signal when it needs CPU’s attention
• When CPU receives an interrupt, it saves its current state and invokes the appropriate interrupt

handler using the interrupt vector (addresses of OS routines to handle various events).
• When the interrupting device has been dealt with, the CPU continues with its original task as if it

had never been interrupted.

• Efficiency
• Interrupts allow the processor to deal with events that can happen at any time.
• Interrupts remove the need for the CPU to constantly check the Controller Status register.

8

Direct I/O

• Implementation
• Uses software which explicitly transfers data to/from the controller’s data registers

• Separate I/O and memory address spaces.
• The control indicates whether address information is for memory or I/O.

• Efficiency
• Reduced CPU utilisation (no caches or buffers)

99

CPU I/O
DeviceMemory

Memory Mapped I/O
Implementation
• Direct connection between I/O device and certain main

memory locations so that I/O device can transfer block of
data to/from memory without going through CPU.

• OS allocates buffer in memory to the I/O device to send data
to the CPU.

• I/O device operates asynchronously with CPU

• Interrupts CPU when finished.

Efficiency
• Memory mapped IO is ideal for most high-speed I/O devices

like disks, communication interfaces.

10

CPU
I/O

Device

Memory

I/O Commands

DataData

Design Objectives

• Efficiency
• Most I/O devices are extremely slow compared with the processor and

main memory
• Buffering is one way to deal with this issue

• Generality
• It is desirable to handle all devices in a uniform and consistent manner

• In the way user processes see the devices
• In the way the Operating System manages the I/O devices and operations

1111

12

Buffering

Buffering is the technique by which the device manager can keep slower
I/O devices busy during times when a process is not requiring I/O
operations.

• Input buffering: having the input device read information into the
primary memory before the process requests it.

• Output buffering: saving information in memory and then writing it to
the device while the process continues execution

13

Hardware Level Buffering

Normal operation:
1. Read occurs
2. The driver passes a read command to the

controller
3. The controller instructs the device to put the next

character into one-byte data controller’s register
4. The process calling for the byte waits for the

operation to complete
• then retrieves the character from the data register

Process

Data Register

Device

Controller

Process

Data Registers

Device

B

Controller

A

Process

Data Registers

Device

B

Controller

A

Un-buffered I/O Reading into buffer A Reading into buffer B

Buffered operation:
• The next character to be read by the process has already been placed into the data register, even

though the process has not yet called for the read operation
• Adding a hardware buffer to the controller decreases the amount of time the process has to wait

Consider a simple character device controller that reads a single byte from a router for
each input operation.

Driver Level Buffering

• This is generally called double buffering
• One buffer is for the driver to store the data while

waiting for the higher layers to read it

• The other buffer is to store data from the lower-
level module

Process

Data Registers

Device

B

Controller

A

Reading into driver buffer A

buffers

BA

Driver

Process

Data Registers

Device

B

Controller

A

Reading into driver buffer B

buffers

BA

Driver

14

Using Multiple Buffers
• The number of buffers is extended from two to n

• The data producer is writing into buffer i while
the data consumer is reading form buffer j

• In this configuration:

• If i<j: buffers [j+1, n-1] and [0, i-1] are full
• If j<i: buffers [j+1, i-1] are full

0 21 ... i ... j n-1...

Device driver

From data producer

To data consumer

15

• This is known as circular buffering

References

• “Operating Systems”, William Stallings, ISBN 0-13-032986-X
• “Operating Systems – A modern perspective”, Garry Nutt, ISBN 0-8053-1295-1

16

Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing System
& Organisation

Lecture 9: Module Review + Exam
Structure

Topics Covered
• Computer Systems
• Programming Models
• System software and Operating Systems
• Process Management
• CPU Manager
• Process Synchronisation
• Memory Management
• Device Management
• File Management

2

Computer Systems

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 3

Computer Systems

• Application Software that provides services
that are commonly useful.

• Operating system interfaces between a
user’s program and the hardware and
provides a variety of services and
supervisory functions.

• Hardware performs the tasks.

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 4

Seven Great Ideas in Computer Organisation

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 5

Computer Systems & CPU
• Review of Computer Organisation

• Generic organization
• Components: buses, CPU, memory, I/O subsystem

• Programs
• Development tools
• High level programming languages
• Assembly programming language
• Machine language

• Operating System
• Multiprogramming
• Protection
• Privileged mode

6

How Does a Computer Look Like?

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 7

Basic Computer Organisation

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 8

CPU/Processor
Memory

Subsystem

I/O Device I/O Device

I/O Subsystem

…

Address Bus

Data Bus

Control Bus

Programming Models

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 9

What’s a
programming
language??
– Programming languages are a notation for
describing computations, both to people and to
machines.
– Must be translated before execution
– A compiler is a program that handles the
translation from a source program into a target
program

The Processor - Instruction Cycles
• The instruction cycle is the procedure of processing an instruction by the microprocessor:

11

Fetch
or read the

instruction from
the memory

Decode
what is to be done

Execute
Perform the

operation

• Each of the functions fetch -> decode -> execute consist of a sequence of one or
more operations inside the CPU (and interaction with the subsystems)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Types of Instructions
• Data Transfer Instructions
• Operations that move data from one place to

another
• These instructions don’t modify the data, they

just copy it to the destination

12

• Data Operation Instructions
• Instructions do modify their data values
• They typically perform some operation (e.g., +/-/*)

using one or two data values (operands) and store the
result

• Program Control Instructions
• Jump or branch instructions used to go in another part of the

program; Jumps can be absolute or conditional (e.g., if then else)
• Instructions that can generate interrupts (software interrupts)

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Instructions in a Stack Based Architecture

• Get their operands from the stack and write their results to the stack
• Advantage - Program code takes little memory (no need to specify the address of the operands in

memory or registers)
Push is one exception, because it needs to specify the operand (either as constant or address)

13

5Top

.

.

.

3

4

3Top

.

.

.

9Top

.

.

.

3

Initial Stak During Execution After Execution

ADD Instruction Execution

Stack

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

PUSH #3
PUSH #4

ADD
PUSH #5

General Purpose Register Architecture
Architecture
• GPR instructions need to specify:
• the register that hold their input operands
• and the register that will hold the result

• The most common format is the three operands instruction
format
• E.g., ADD r1, r2, r3 instructs the processor to read the contents of r2 and

r3, add them together and write the result in r1

• Instructions having two or one input are also present in GPR
architecture

14Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

dataRegister 0

.

.

.
data

data

data

Register File

Register 1

Register 2

Register n

Comparing Stack based and GPR Architectures
• Stack-based architectures

• Instructions take fewer bits to encode
• Reduced amount of memory taken up by programs
• Manages the use of register automatically (no need for programmer intervention)
• Instruction set does not change if size of register file has changed

• General Purpose Register Architecture architectures
• With evolution of technology, the amount of space taken up by a program is less important
• Compilers for GPR architectures achieve better performance with a given number of general purpose

registers than those on stack-based architectures with same number of registers
• The compiler can choose which values to keep (cache) in register file at any time

• Stack based processor are still attractive for certain embedded systems. GPR architectures are used by
modern computers (workstations, PCs, etc.)

15Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Using Stacks to Implement Procedure Calls

• Nested procedure calls:
• main program calls function f(),
• function f() calls function g(),
• function g() calls function h()

16

Saved Registers from caller

Main Program’s stack frame

Stack frame for f()

Stack frame for g()

Top of stack pointer
after h() procedure

call

Bottom of the stack

Stack frame for h()

Stack

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

System Software
& Operating Systems

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 17

System Software
• Programs dedicated to managing the computer
• System software is a software that provides a

platform to other software.

• System software provides a general programming
environment
• There are two main types of system software

1. Operating System
2. Utility Software

18Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Operating System (OS)

• Provides functions used by the application software

• Provides the mechanisms for application software to
share the hardware in an orderly fashion to:

• Increase the overall performance
• Ensure security

• Interacts directly with the hardware to provide an
interface to other software to use system’s resources

• It is application-domain independent
• Provides resource abstraction
• Provides resources sharing

19Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

OS Organisation

20

Process and resource manager
� It uses the abstractions provided by the other managers
� Handles resource allocation

Memory manager
� It is classically a separate part of the operating system
� Beside other functions, it is in charge with the

implementation of the virtual memory

File manager
� abstracts device I/O operations into a relatively simple

operation

Device manager
� handles the details of reading and writing the physical

devices
� implemented within device driver

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Process & resource
manager

Process Management

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 21

What is a Process?
• A process is a program in execution

• It is composed of:
• Program
• Data
• Process Control Block (PCB): contains the state of the process in

execution
• What it is?
• How much of its processing has been completed?
• Etc.

22

Process Manager

23

ProcessProgram

The Abstract Computing Environment

Process Manager

Protection Process
Descriptor

Deadlock

Synchronizaton

Scheduler

CPU

Resource
Manager

ResourcesResourcesResources

File
Manager

Device
Manger

Memory
Manager

Devices Memory

State Process Models

• Two State Process Model

• Five State Process Model

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 24

Suspended Processes

• Processor is faster than I/O so all processes could be waiting for I/O
• Swap these processes to disk to free up more memory
• Blocked state becomes suspend state when swapped to disk

25

CPU Management - Scheduling

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 26

Scheduling

• Scheduling allows one process to use the CPU
while the execution of another process is on hold
(i.e., in waiting state) due to unavailability of any
resource like I/O etc

• Aims to make the system efficient, fast and fair.

• Scheduling is part of the process manager

27

CPU

Scheduler Types
• Cooperative scheduler (voluntary CPU sharing)

• Each process will periodically invoke the process scheduler, voluntarily sharing the
CPU

• Each process should call a function that will implement the process scheduling.
• yield (Pcurrent, Pnext) (sometimes implemented as an instruction in hardware), where Pcurrent is

an identifier of the current process and the Pnext is an identifier of the next process)

• Preemptive scheduler (involuntary CPU sharing)
• The interrupt system enforces periodic involuntary interruption of any process’s

execution; it can force a process to involuntarily execute a yield type function (or
instruction)

• This is done by incorporating an interval timer device that produces an interrupt
whenever the time expires

28

Scheduling Algorithms
• FCFS (First Come First Served)

• SJF (Shortest Job First)

• SRTN (Shortest Remaining Time Next)

• Time slice (Round Robin)

• Priority based preemptive scheduling

• MLQ (Multiple Level Queue)

• MLQF (Multiple Level Queue with Feedback)

29

Process Synchronisation

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 30

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 31

Concurrent Programming

• Concurrent programs: interleaving sets of sequential atomic instructions.
• i.e., interacting sequential processes run at same time, on same/different

processor(s)
• processes interleaved, i.e. at any time each processor runs one of instructions of

the sequential processes

32

Lets Look at this in Practice: Race Conditions

• A race condition occurs when a program output is dependent on the
sequence or timing of code execution
• if multiple processes of execution enter a critical section at about the same time;

both attempt to update the shared data structure
Øleads to surprising results (undesirable)
vYou must work to avoid this with concurrent code

• Critical section = parts of the program where a shared resource is
accessed
• It needs to be protected in ways that avoid the concurrent access

33

Synchronisation Solutions

Ways to protect critical sections
• Option 1: Atomicity
• Atomic operations cannot be interrupted, in order to avoid illogical outcomes

• Option 2: Conditional synchronisation (ordering)
• Making sure that one process runs before another

34

Using Lock

• Locks are declared like variables:
Lock myLock;

• A program can use multiple locks – why?
Lock myDataLock, myIoLock;

• To use a lock:
• Surround critical section as follows:

• Call acquire() at start of critical section
• Call release() at end of critical section

• Remember our general pattern for mutex

35

while (true)
// Non_Critical_Section

myLock.acquire();

// Critical_Section

myLock.release();

// Non_Critical_Section
end while

Surround critical
section of code

Do Locks give us sufficient safety?

1. Check Safety properties: these must always be true
• Mutual exclusion: Two processes must not interleave certain sequences of

instructions
• Absence of deadlock: Deadlock is when a non-terminating system cannot respond

to any signal

2. Check Liveness properties: These must eventually be true
• Absence of starvation: Information sent is delivered
• Fairness: That any contention must be resolved

• If you can demonstrate any cases in which these properties do not hold
Ø then, the system is not correct

36
Q: What do you think?

Requirements for Deadlock

1. Mutex: at least one held resource must be non-shareable
2. No pre-emption: resources cannot be pre-empted (no way to

break priority or take a resource away once allocated
• Locks have this property

3. Hold and wait: there exists a process holding a resource and
waiting for another resource

4. Circular wait: there exists a set of processes P1, P2,…,PN such that
P1 is waiting for P2, P2 is waiting for P3,… and PN is waiting for P1

37

All 4 conditions must hold for deadlock to occur:

If only 3 conditions hold then:
• you can get starvation
• but not deadlock

Need to avoid circular
wait

Make code more efficient,
hence, we want them

Semaphores

• Semaphore = higher level synchronisation
primitive
• Invented by Dijkstra in 1965 as part of THE OS

project

• Semaphores are a kind of generalized lock
• Main synchronisation primitive used in original UNIX

• Implement with a counter that is
manipulated atomically via 2 operations
signal and wait

38

wait(semaphore): A.K.A., down() or P()
decrement counter
if counter is zero then block until semaphore is
signalled

signal(semaphore): A.K.A., up() or V()
increment counter
wake up one waiter, if any

sem_init(semaphore, counter):
set initial counter value

Memory Management

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 39

Memory Hierarchy Review

• It is a tradeoff between size, speed and cost

• Register
• Fastest memory element; but small storage; very expensive

• Cache
• Fast and small compared to main memory; acts as a buffer between the CPU and main memory: it

contains the most recent used memory locations (address and contents are recorded here)

• Main memory is the RAM of the system
• Disk storage - HDD

40

Registers
(CPU)

Cache
(Hardware
controlled)

Main
Memory

Disk
Storage

Specialized bus
(internal or external

to CPU)

Memory bus I/O bus

https://commons.wikimedia.org/w/index.php?curid=27652294

• Typical computer applications access data with a high degree
of locality of reference:
• Temporal locality: data is requested that has been recently

requested already
• Spatial locality: data is requested that is stored physically close

to data that has already been requested

• When a system writes data to cache, it must at some point
write that data to the main memory as well following the
Write policies:
• Write-through: write is done synchronously both to the cache and to

main memory
• Write-back: initially, writing is done only to the cache. The write to main

memory is postponed until the modified content is about to be replaced
by another cache block.

Cache review

Memory Organisation

• Logical organisation
• Most programs are organised in modules

• Some modules are un-modifiable (read only and/or execute only)
• Others contain data that can be modified

• The operating system must take care of the possibility of sharing modules across
processes

• Physical organisation
• Memory is organised as at least a two-level hierarchy.
• The OS should hide this fact and should perform the data movement between

the main memory and secondary memory without the programmer’s concern

42

Address Binding

• An address used in an instruction can point anywhere in the virtual
address space of the process
• It still must be bound to a physical memory address

• Programs are made of modules.
• Compilers or assemblers do not know where the module will be

loaded in the physical memory
ØVirtual addresses must be translated to physical addresses

ØAddress translation can be dynamic or static.

43

Not available

Not available

Not available

Not available

Virtual Address Space Physical
Address Space

Segmented Virtual Memory

Two processes sharing a
code segment but having
private data segments

Paged Virtual Memory

• The need to keep each loaded segment contiguous
in the physical memory poses a significant
disadvantage:
• It leads to fragmentation
• It complicates the physical storage allocation problem

• Solution: paging, where blocks of a fixed size are
used for memory allocation (so that if there is any
free space, it is of the right size)

• Memory is divided into page frames, and the user
program is divided into pages of the same size

45

pages frames

Translation Lookaside Buffer (TLB)

46

• A kind of cache memory: it
contains the page entries that have
been most recently used

• TLB is searched for each address
reference

• TLB is nearly always present in any
processor that utilizes paged or
segmented virtual memory
• Including in most desktops, laptops,

and servers.

Device Management

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 47

Device Management

• An operating system manages the devices with
the help of:
• Device controllers: hardware components that contain

some buffer registers to store the data temporarily.
• E.g., disk controller, printer controller and a terminal

controller
• Device drivers: software programs that are used by an

operating system to control the functioning of various
devices in a uniform manner.

48

• A computer must have a way of detecting the arrival of any type of
input.

• There are various ways to enable I/O devices to communicate with the
processor:
• Polling

• Interrupts

• Direct I/O

• Memory Mapped I/O

Device Communication Approaches

49

50

Hardware Level Buffering

Normal operation:
1. Read occurs
2. The driver passes a read command to the

controller
3. The controller instructs the device to put the next

character into one-byte data controller’s register
4. The process calling for the byte waits for the

operation to complete
• then retrieves the character from the data register

Process

Data Register

Device

Controller

Process

Data Registers

Device

B

Controller

A

Process

Data Registers

Device

B

Controller

A

Un-buffered I/O Reading into buffer A Reading into buffer B

Buffered operation:
• The next character to be read by the process has already been placed into the data register, even

though the process has not yet called for the read operation
• Adding a hardware buffer to the controller decreases the amount of time the process has to wait

Consider a simple character device controller that reads a single byte from a router for
each input operation.

Driver Level Buffering

• This is generally called double buffering
• One buffer is for the driver to store the data while

waiting for the higher layers to read it

• The other buffer is to store data from the lower-
level module

Process

Data Registers

Device

B

Controller

A

Reading into driver buffer A

buffers

BA

Driver

Process

Data Registers

Device

B

Controller

A

Reading into driver buffer B

buffers

BA

Driver

51

Exam Details

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 52

Exam Details
• 09/12/2022 at 13:00
• 2 hours
• Answer all questions (4 out of 4 questions).
• All questions carry equal marks (25pts each)

• Previous exam papers are relevant!
• They will give you an idea of how the questions are asked.
• However, some content is different! (this is a new content)

53

Questions

• Question 1:
• Computer Systems
• Programming Models

• Question 2:
• Process Management

• Question 3:
• CPU Management (Scheduling and Synchronisation)

• Question 4:
• Memory Management
• Device Management

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 54

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 55

