Programming Paradigms
CT331 Week 4 Lecture 3

Finlay Smith

finlay.smith@nuigalway.ie




Linked Lists



Next

Next

Next

Next

>null



Linked Lists

Pros: Cons:
e Dynamic structure. Grown and pruned as e More memory used than an array for fixed
data changes. number of elements.
e Insertion + deletion is easy. e Sequentially accessed, can't jump to nth
e Can implement other structures easily. element easily.
e No defined size. e Nodes not stored contiguously, increases
e Add/remove from middle of list easily. memory read time.

e Reverse traverse is cumbersome.

IS



LL Operations

Create

Traverse

Insert (after / before*)
Delete (after / current*)
Get first element

Get rest of the list

o gk wWh =

*Possible but with potential issues.



Linked list code — available with assignment

typedef struct listElementStruct{
char* data;
Size_t size;
struct listElementStruct* next;
} listElement;



Linked list code

//Creates a new linked list element with given content of size
//Returns a pointer to the element
listElement* createEl(char* data, size_t size){
listElement* e = malloc(sizeof(listElement));
if(e == NULL){
//malloc has had an error
return NULL; //return NULL to indicate an error.

}



Linked list code

char* dataPointer = malloc(sizeof(char)*size);
if(dataPointer == NULL){
//malloc has had an error
free(e); //release the previously allocated memory
return NULL; //return NULL to indicate an error.

}



Linked list code

strcpy(dataPointer, data);
e->data = dataPointer;
e->size = size;

e->next = NULL;

return e;



Linked list code

void traverse(listElement* start){
listElement* current = start;
while(current !'= NULL){
printf("%s\n", current->data);
current = current->next;

}
}



Linked list code

listElement* insertAfter(listElement* el, char* data, size_t size){
listElement* newEl = createEl(data, size);
listElement* next = el->next;
newEl->next = next;
el->next = newkl;
return neweEl;



Linked list code

void deleteAfter(listElement* after){
listElement* delete = after->next;
listElement* newNext = delete->next;
after->next = newNext;
//need to free the memory because we used malloc
free(delete->data);
free(delete);



