
CT3536
(Games Programming using

Unity3D)

Multi-Scene projects
User Interfaces (GUIs)

Multi-Scene Projects

● Certain types of game suit the approach we have been
taking so far, i.e. instantiate and destroy all game
objects as the game runs

● Other types of game may benefit from having
multiple complex manually-configured scenes which
are switched between as the game runs
● They will still dynamically instantiate certain game objects

such as enemies, bullets, and explosions
● The SceneManager class provides methods to load

scenes (normally, unloading previous ones)

SceneManager
● https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html
● http://www.alanzucconi.com/2016/03/23/scene-management-unity-5/
● To load a scene:

using UnityEngine.SceneManagement;
SceneManager.LoadScene("scene4");

● When a new scene is loaded with this method, the previous one
is unloaded (all its objects destroyed).
● Any object which you want to survive this process should

have DontDestroyOnLoad() called for it (see next slide)
● The game will freeze for a little bit while the new scene is being

loaded and activated.
● It's possible to load a scene asynchronously and therefore

display e.g. a loading bar while it loads, rather than freezing the
game.. See:

● https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.LoadSceneAsync.html

https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.html
http://www.alanzucconi.com/2016/03/23/scene-management-unity-5/
https://docs.unity3d.com/ScriptReference/SceneManagement.SceneManager.LoadSceneAsync.html

DontDestroyOnLoad()
● https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html
● Makes the specified object not be destroyed automatically when loading a

new scene.
● If the object is a component or game object then its entire transform

hierarchy will not be destroyed either.
● E.g.:

using UnityEngine;
using System.Collections;

public class ExampleClass : MonoBehaviour {
void Awake() {

DontDestroyOnLoad(gameObject);
}

}

● Often used for singletons such as GameManager, that can therefore be used
to carry data between scenes

https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html

Unity UI

● Canvas
● Positioning UI elements
● Visual Components include:

● Text
● Image

● Interactive Components include:
● Button
● Toggle
● InputField

Here's a good Unity UI tutorial:
● https://www.raywenderlich.com/149464/introduction-to-unity-ui-part-1

https://www.raywenderlich.com/149464/introduction-to-unity-ui-part-1

Canvas

● https://docs.unity3d.com/Manual/UICanvas.html
● The Canvas is a Game Object with a Canvas component on it,

and all UI elements must be children of such a Canvas.
● Shown as a rectangle in the scene view
● UI elements in the Canvas are drawn in the same order they

appear in the Hierarchy
● Canvases can be displayed in Screen Space or World Space (see

next slide)

https://docs.unity3d.com/Manual/UICanvas.html

Canvas Render Modes

● Screen Space: Overlay
● the Canvas is scaled to fit the screen and

then rendered directly without reference to
the scene or a camera

● If the screen’s size or resolution are changed
then the UI will automatically rescale to fit.
The UI will be drawn over any other
graphics such as the camera view.

● Screen Space: Camera
● the Canvas is rendered as if it were drawn

on a plane object some distance in front of a
given camera.

● The onscreen size of the UI does not vary
with the distance since it is always rescaled
to fit exactly within the camera frustum

https://docs.unity3d.com/Manual/class-Canvas.html

● Any 3D objects in the scene that are closer to the camera than the UI plane will
be rendered in front of it

https://docs.unity3d.com/Manual/class-Canvas.html

Canvas Render Modes

● World Space
● renders the UI as if it were a plane in the 3D scene
● the plane need not face the camera and can be oriented however

you like
● The size of the Canvas can be set using its Rect Transform but its

onscreen size will depend on the viewing angle and distance of
the camera.

● Other scene objects can pass behind, through or in front of the
Canvas.

Positioning UI Elements

● https://docs.unity3d.com/Manual/UIBasicLayout.html
● Every UI element is represented as a rectangle for layout

purposes. This rectangle can be manipulated in the Scene View
using the Rect Tool in the toolbar.

● For positioning and scaling, UI elements use RectTransform
rather than Transform (which is what normal game objects use)

● This adds the ability to
specify size directly, and to
specify positioning relative
to the screen edges .. which
is very useful when dealing
with varying screen sizes

● Continued next slide..

https://docs.unity3d.com/Manual/UIBasicLayout.html

RectTransform
(also see previous slide)

● https://docs.unity3d.com/Manual/class-
RectTransform.html

● Rotations, size, and scale modifications occur around
the pivot so the position of the pivot affects the
outcome of a rotation, resizing, or scaling

● RectTransforms include a layout concept called
anchors, which are shown as four small triangular
handles in the Scene View

● A child RectTransform can be anchored to its parent
RectTransform in various ways. For example, the
child can be anchored to the center of the parent, or to
one of the corners.

● Continued next slide..

https://docs.unity3d.com/Manual/class-RectTransform.html

RectTransform
(also see previous slides)

● Anchor presets allow you to
quickly choose from common
anchor settings

● You can anchor the UI element
to the sides or middle of the
parent, or stretch together with
the parent size. The horizontal
and vertical anchoring is
independent.

Text

● https://docs.unity3d.com/Manual/UIVisualComponents.html
● https://docs.unity3d.com/Manual/script-Text.html
● For displaying text on the screen
● To change the displayed text at runtime,

obtain a reference to your game object's
<Text> component, and use that
component's .text property

using UnityEngine.UI;

go.GetComponent<Text>().text = "Hello";

https://docs.unity3d.com/Manual/UIVisualComponents.html
https://docs.unity3d.com/Manual/script-Text.html

Image

● https://docs.unity3d.com/Manual/UIVisualComponents.html
● https://docs.unity3d.com/Manual/script-Image.html
● An image (typically a png file in

your project's assets) can be
applied to the Image component
under the SourceImage field, and
its colour can be set in the Color
field

● Raycast Target defines whether
you want this UI element to
consume mouse clicks

https://docs.unity3d.com/Manual/UIVisualComponents.html
https://docs.unity3d.com/Manual/script-Image.html

Button
● https://docs.unity3d.com/Manual/UIInteractionComponents.html
● https://docs.unity3d.com/Manual/script-Button.html
● Clickable button with colour properties

allowing you to define how it reacts
visually when clicked, etc.

● The text on the button is actually
rendered using a child game object with
a Text component. This is automatically
created when you create a button.

● Buttons have an OnClick event list,
which is how you bind a button click to
a method call on one of your game's
objects

● (See example on next slide)

https://docs.unity3d.com/Manual/UIInteractionComponents.html
https://docs.unity3d.com/Manual/script-Button.html

Toggle

● https://docs.unity3d.com/Manual/UIInteractionComponents.html
● https://docs.unity3d.com/Manual/script-Toggle.html
● This is a checkbox
● Has an OnChanged event
● Read/write the .isOn property

(Boolean) to get/set the checkbox state

using UnityEngine.UI;

if (go.GetComponent<Toggle>().isOn)
ApplyOption();

https://docs.unity3d.com/Manual/UIInteractionComponents.html
https://docs.unity3d.com/Manual/script-Toggle.html

InputField

● https://docs.unity3d.com/Manual/UIInteractionCo
mponents.html

● https://docs.unity3d.com/Manual/script-
InputField.html

● A text-box into which the user can type
● Read/write the .text property to get/set the contents

of the input field (as a string)
● The text (and, optionally, a placeholder for when the

text is empty) are actually rendered through child
game objects with Text components. These are
automatically created when you create an InputField

https://docs.unity3d.com/Manual/UIInteractionComponents.html
https://docs.unity3d.com/Manual/script-InputField.html

TextMeshPro

TextMeshPro provides much more flexible and crisp-looking
text rendering than the normal Text component.

- Renders the text as a dynamically-built 3D mesh rather than
as a bitmap (which is what normal Unity Text uses)

The TMP plugin is included as part of projects when you create
them

You must include this line at the top of any C# files where you
need to refer to TextMeshPro objects:

using TMPro;

Some GUI Examples from..

http://www.psychicsoftware.com/thenecromancer/
https://store.steampowered.com/app/1315320/The_Necromancers_Tale/

An RPG (roleplaying game) I’m working on

http://www.psychicsoftware.com/thenecromancer/
https://store.steampowered.com/app/1315320/The_Necromancers_Tale/

Draggable Windows

using System.Collections;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.EventSystems;

public class DragPanelTitleBar : MonoBehaviour, IPointerDownHandler, IBeginDragHandler, IDragHandler, IEndDragH
andler {

// inspector settings
public Transform panelToDrag;
//

private Vector3 offsetFromMouse;

public void OnPointerDown(PointerEventData eventData) {
// bring panel to the front of all panels
panelToDrag.SetAsLastSibling();

}

public void OnBeginDrag(PointerEventData eventData) {
offsetFromMouse = panelToDrag.position - Input.mousePosition;

}

public void OnDrag(PointerEventData eventData) {
panelToDrag.position = Input.mousePosition + offsetFromMouse;

}

public void OnEndDrag(PointerEventData eventData) {
}

}

Note the additional
interfaces related to mouse
events

And the callbacks which are
enabled by this

Example: Tooltips
The ‘tooltip
speech bubble’
sprite is
configured as a ‘9
slice’ image (see
next slide)

9-Sliced Images
Allows resizing of an image while staying crisp at the edges

Click 'Sprite Editor' button on Texture asset Tooltip GUI object (see script below)

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.EventSystems;

public class TooltipWorldObject : MonoBe
haviour {

// inspector
public string tooltipMsg;
//

private bool mouseIsOverMe = false;

void OnDisable() {
if (mouseIsOverMe)

OnMouseExit();
}

void OnMouseEnter() {
if (EventSystem.current.IsPointerOverGa

meObject()) // mouse is over a UI element
return;

mouseIsOverMe = true;

Tooltip.SetTooltipAtMouse(tooltipMsg);
}

void OnMouseExit() {
mouseIsOverMe = false;
Tooltip.Hide();

}
}

TooltipWorldObject
attached to each 3D game object which needs a hover-mouse-over tooltip

(e.g. the Bakery Sign 3D object in the picture above)
Any GameObject with a collider
receives this callback

using System.Collections;
using UnityEngine;
using TMPro;

public class Tooltip : MonoBehaviour {
// inspector settings
public TMP_Text txtTooltip;
//

private static RectTransform rt;
public static Tooltip instance;

void Start () {
instance = this;
rt = GetComponent<RectTransform>();
Hide();

}

public static void SetTooltipAtMouse(string txt) {
instance.txtTooltip.text = txt;
instance.gameObject.SetActive(true);
instance.Update();

}

public static void Hide() {
instance.gameObject.SetActive(false);

}

void Update() {
rt.position = Input.mousePosition;

}
}

Tooltip
attached to a singleton GUI Image object with a

nested (child) TextMeshPro text object

