
CT417 SOFTWARE ENGINEERING III

BUFFER OVERFLOW CASE STUDY – THE HEARTBLEED BUG

Dr. Michael Schukat



A Bug with its own Website (heartbleed.com) and Icon

2

XXX



TLS Overview
3

 Based on the SSL protocol, which was originally 

developed in the 1990s to secure ecommerce 

transaction on the web, i.e.

 encryption to protect customers’ personal data

 authentication and integrity check of transactions

 To achieve this, the SSL protocol was implemented 

at the application layer, directly on top of TCP, 

enabling (application layer) protocols above it (e.g. 

HTTP) to operate unchanged



TLS Overview
4

TLS location in 

protocol stack



Encryption, Authentication and Integrity
5

 The TLS protocol provides three essential services to all 
application layer protocols running above it

 Encryption

 A mechanism to obfuscate what is sent from one host to another 
(typically between a client and a server)

 Authentication

 A mechanism to verify the validity of provided identification 
material (i.e. (mutual) authentication using digital certificates)

 Integrity

 A mechanism to detect message tampering and forgery 
(messages cannot be manipulated in transit, and messages cannot 
be forged by a threat actor)



HTTPS
6

 “HTTP over TLS”

 HTTPS protects the integrity of the website

 Encryption prevents intruders from tampering with 
transmitted data

 HTTPS protects the privacy and security of the user

 Encryption prevents intruders from eavesdropping and 
abusing the exchanged data

 HTTPS enables new features on the web

 Necessary to safely use new web platform features, such as 
accessing users geolocation, VoIP and videoconferencing 



TLS Handshake
7



Overview Heartbleed
8

 Discovered in 2014

 Exploits a bug in the OpenSSL 

implementation of the TLS 

“heartbeat hello” extension

 Can affect both client and server 

side

XX



OpenSSL
9

 OpenSSL is an open-source library (→ GitHub) that 

contains routines / algorithms / protocol 

implementations / ciphers used for secure network 

communication

 Including SSL (depreciated) and TLS implementations

 It is written in C and widely used in Linux 

distributions

 Linux is a widely used server-side OS



Heartbleed Impact
10

 Reported via CVE-2014-0160 (later)

 The following operating system distributions were 
potentially affected:

 Debian Wheezy (stable)

 Ubuntu 12.04.4 LTS

 CentOS 6.5

 Fedora 18

 OpenBSD 5.3

 FreeBSD 10.0

 NetBSD 5.0.2

 OpenSUSE 12.2



TLS Heartbeat Extension
11

 Originally TLS had no provisions to keep a client / 
server connection alive without continuous data 
transfer

 Idle connections would timeout instead and a 
computationally expensive reconnect would have to 
take place (224 ms in example)

 The heartbeat extension provides a new protocol 
for “keep-alive” messages

 One endpoint could send out a HeartbeatRequest
message, which would be immediately responded with 
a HeartbeatResponse message 



Heartbeat with incoming Message 

(correctly) buffered
12



The Heartbleed Attack
13



Heartbeat Request / Response Message

14

heartbeat_request or heartbeat_response

16+ bytes of random 

content, ignored by receiver

 The sender composes a request message containing a payload with a specified 
length (i.e. payload_length)

 The receiver returns a response message containing a copy of the sender’s payload 
(with length payload_length)

 “opaque” seems to be a typdef (i.e. unsigned char) 



Pseudo-Code Example (correct)
15

Sender (constructs correct request message):

struct HeartbeatMessage msg;

msg.HeartbeatMessageType = heartbeat_request;

msg.payload_length = 2;

alloc(msg.payload, 2); // Note that the payload array is dynamically allocated

msg.payload = “AB”; 

…

Receiver (receives above incoming msg) embedded in TCP/IP/TLS packet and constructs response 
s_msg:

struct HeartbeatMessage s_msg;

s_msg.HeartbeatMessageType = heartbeat_response;

s_msg.payload_length = msg.payload_length;

alloc (s_msg.payload, msg.payload_length);

memcpy(s_msg.payload, msg.payload, msg.payload_length);

…

msg.payload Other dataOther data

msg.payload_length



Heartbleed Exploit
16

 The server receives a request message and stores in in 
(stack and heap) memory

 Memory also contains other sessions-related information 
including tokens, keys, session IDs etc. from other sessions

 If (unint16) payload_length is actually larger than (opaque) 
payload[..], the server will copy heap memory content 
beyond the payload array into the response message 
payload array (e.g. ret_payload), which is then sent back 
to the sender:
memcpy(ret_payload, payload, payload_length);

memcpy(s_msg.payload, msg.payload, msg.payload_length);



Pseudo-Code Example (Heartbleed 

Exploit)
17

Sender (constructs correct request message):

struct HeartbeatMessage msg;

msg.HeartbeatMessageType = heartbeat_request;

msg.payload_length = 0xFFFF;

msg.payload = “”;

…

Receiver (receives above incoming msg) embedded in TCP/IP/TLS packet and constructs response 
s_msg:

struct HeartbeatMessage s_msg;

s_msg.HeartbeatMessageType = heartbeat_response;

s_msg.payload_length = msg.payload_length;

alloc(s_msg.payload, msg.payload_length);

memcpy(s_msg.payload, msg.payload, msg.payload_length);

…
msg.payload

0 bytes long!
Other dataOther data

msg.payload_length



Heartbleed Exploit Extract (Python 

Code)
18

 https://gist.github.com/eelsivart/10174134

https://gist.github.com/eelsivart/10174134


What can be leaked?
19



What happened next?
20

 The Heartbleet bug was fixed (of course)

 Further checks and balances were added to validate 

that payload length was correct

==



Pseudo-Code Example (Heartbleed 

Exploit Fixed)
21

Sender (constructs correct request message):

struct HeartbeatMessage msg;

msg.HeartbeatMessageType = heartbeat_request;

msg.payload_length = 0xFFFF;

msg.payload = “”;

…

Receiver (receives above incoming msg) embedded in TCP/IP/TLS packet and constructs response 
s_msg:

struct HeartbeatMessage s_msg;

int correctPayloadLen = len(msg.payload);

s_msg.HeartbeatMessageType = heartbeat_response;

s_msg.payload_length = correctPayloadLen;

alloc(s_msg.payload, correctPayloadLen);

memcpy(s_msg.payload, msg.payload, correctPayloadLen);

…
msg.payload

0 bytes long!
Other dataOther data

msg.payload_length



Recall (Menti Question): Attack 

(RFC2828, Internet Security Glossary) 
22

 An assault on system security that derives from an intelligent 

threat, i.e. a deliberate attempt

 An "active attack" attempts to alter system resources or affect 

their operation

 A "passive attack“ attempts to learn or make use of 

information from the system, but does not affect system 

resources

M



Lessons learnt
24

 OpenSSL core developer Ben Laurie claimed that a security 
audit of OpenSSL would have caught Heartbleed

 Some other quotes from the security community:

 “Think about it, OpenSSL only has two fulltime people to write, 
maintain, test, and review 500,000 lines of business critical code”

 “The mystery is not that a few overworked volunteers missed this 
bug; the mystery is why it hasn't happened more often”

 “There should be a continuous effort to simplify the code, because 
otherwise just adding capabilities will slowly increase the software 
complexity. The code should be refactored over time to make it 
simple and clear, not just constantly add new features. The goal 
should be code that is “obviously right”, as opposed to code that is 
so complicated that “I can’t see any problems”


