
CS4423-Assignment-2-Part-2

March 28, 2025

Table of Contents

0.1 Instructions and Collaboration Policy

1 Preliminaries

1.1 Task 1.1: Give you name, ID, and list of collaborators

1.2 Task 1.2: Load any Python modules, and choose your own colour for nodes

2 Centrality Measures

2.1 TASK 2.1: Define 𝐺1 in networkx and draw it.

2.2 TASK 2.2: Compute Centralities

2.3 TASK 2.3: Draw the graph with node size proportional to eigenvector centrality

2.4 TASK 2.4: Make your own example

3 Random Networks

3.1 TASK 3.1: Count Triangles

3.2 TASK 3.2: Comparing 𝐺𝐸𝑅(𝑛, 𝑚) with graphs from social science

4 Extras

1 CS4423 Assignment 2: Part 2
This is a template for your solution to the networkx questions on Assignment 2 (Part 2).

1.0.1 Instructions and Collaboration Policy

This is a homework assignment. You are welcome to collaborate with class-mates if you wish.
Please note: * You may collaborate with at most two other people; * Each of you must sub-
mit your own copy of your work; * In Cell [1], choose your own node colour in opts. It
should not be the same as given here (#ABCDEF), or the same as your collaborators. For more,
see https://matplotlib.org/stable/users/explain/colors/colors.html * If the question asks you to
construct an example, then that example should be unique to you (and your collaborators). If
copied from anybody else, all involved will score zero. * The file(s) you submit must contain
a statement on the collaboration: who you collaborated with, and on what part of the assign-
ment. * The use of any AI tools, such as ChatGPT or DeepSeek is prohibited, and will be
subject to disciplinary procedures. * Upload your file, in either PDF or HTML formats, to
https://universityofgalway.instructure.com/courses/31889/assignments To convert your notebook

1

to pdf the easiest method maybe to first export as ‘html’, then open that in a browser, and then
print to pdf. * Your file must include your name and ID number.

1.1 Preliminaries
1.1.1 Task 1.1: Give you name, ID, and list of collaborators

Your name goes here: Andrew Hayes

Your ID number goes here: 21321503

Place your collaboration statement here:

1.1.2 Task 1.2: Load any Python modules, and choose your own colour for nodes

[1]: import networkx as nx
Change the next line so nodes appear in your favourite colour.
opts = { "with_labels": True, "node_color": '#654321' } # show labels;␣

↪IMPORTANT: Choose your own colour here

Other ones that Niall used when preparing solutions. Add any you need:

[2]: import numpy as np
import matplotlib.pyplot as plt
import random
import pandas as pd
import math
import statistics

1.2 Centrality Measures
Before you do this set of tasks, it may be helpful to review the example at the end of Week 7 Part
2

Adjacency Lists.
One way of representing a graph is an as adjacency list. It has one row per node. That row starts
with the node label, followed by a colon, followed by a list of its neighbours. For an undirected
graph, one does not list an edge twice.

Consider the following list, for a graph, 𝐺1, on the nodes {1, 2, 3, … , 10}: 1: 2 3 4 6 7 2: 3 3: 4 4:
5 8 5: 6 6: 7 7: 8: 9 10 9: 10:

So, in the adjacency list for 𝐺1, no neighbours of Node 7 are listed, because the associated edges
are already accounted for in the neighbour lists on Nodes 1 and 7.

1.2.1 TASK 2.1: Define 𝐺1 in networkx and draw it.

Let 𝐺1 be the network prescribed by the adjacency list above. Define it as a networkx network,
and draw it.

[3]: G1 = nx.Graph()

2

https://www.niallmadden.ie/2425-CS4423/W07/CS4423-W07-Part-2.html
https://www.niallmadden.ie/2425-CS4423/W07/CS4423-W07-Part-2.html

edges = [
(1, 2), (1, 3), (1, 4), (1, 6), (1, 7),
(2, 3),
(3, 4),
(4, 5), (4, 8),
(5, 6),
(6, 7),
(8, 9), (8, 10)

]

G1.add_edges_from(edges)
nx.draw(G1, **opts)

1.2.2 TASK 2.2: Compute Centralities

Compute the Degree, Eigenvector, Closeness, and Betweenness Centralities of the nodes in this
graph. Display all four in a table (using a pandas DataFrame) sorted by the eigenvector centrality.

[4]: degree_centrality = nx.degree_centrality(G1)
eigenvector_centrality = nx.eigenvector_centrality(G1)
betweenness_centrality = nx.betweenness_centrality(G1)

3

closeness_centrality = nx.closeness_centrality(G1)

centrality_df = pd.DataFrame({
"Degree": degree_centrality,
"Eigenvector": eigenvector_centrality,
"Closeness": closeness_centrality,
"Betweenness": betweenness_centrality

})

centrality_df_sorted = centrality_df.sort_values(by="Eigenvector",␣
↪ascending=False)

[5]: centrality_df_sorted

[5]: Degree Eigenvector Closeness Betweenness
1 0.555556 0.544133 0.600000 0.351852
4 0.444444 0.424131 0.642857 0.560185
3 0.333333 0.398195 0.529412 0.064815
6 0.333333 0.333310 0.450000 0.050926
2 0.222222 0.296646 0.409091 0.000000
7 0.222222 0.276219 0.428571 0.000000
5 0.222222 0.238443 0.473684 0.055556
8 0.333333 0.166524 0.500000 0.416667
9 0.111111 0.052423 0.346154 0.000000
10 0.111111 0.052423 0.346154 0.000000

1.2.3 TASK 2.3: Draw the graph with node size proportional to eigenvector centrality

[6]: node_sizes = [10000 * eigenvector_centrality[node] for node in G1.nodes()] #␣
↪multiplying by 10000 because the nodes aren't visible otherwise

nx.draw(G1, **opts, node_size=node_sizes)

4

1.2.4 TASK 2.4: Make your own example

If TASK 2.3 went as intended, you should find that, for 𝐺1, Node 4 had both the greatest closeness
and betweenness centrality. Make up an example of a graph, 𝐺2, which the node with the greatest
closeness centrality is different from the one with the greatest betweenness centrality. Define and
draw the graph in networkx, and compute the centralities to verify your result.

WARNING You have to construct this example yourself. Do not try to use the same graph as
anyone other than a listed collaborator.

[7]: G2 = nx.Graph()

edges = [
define two separate star graphs, wherein the highest betweenness will be␣

↪the central node
(0,1), (0,2), (0,3), (0,5),
(7,8), (7,9), (7,10), (7,11),

create a bridge node between the two star graphs, thus having the highest␣
↪betweenness

(12,7), (12,0)

5

]

G2.add_edges_from(edges)

Don’t remove the following cell. It will plot your network, G2, and identify the nodes with greatest
betweenness and closeness centralities.

[8]: ### Do not delete this cell. It has an overly-elaborate way of showing the␣
↪difference in centralities.

CC = nx.closeness_centrality(G2)
BC = nx.betweenness_centrality(G2)

max_betweenness = max(BC, key=BC.get)
max_closeness = max(CC, key=CC.get)
print(f"Node {max_betweenness} has the greatest betweenness, and Node␣

↪{max_closeness} has the max closeness")
Node colors: highlight key nodes
node_colors = []
for node in G2.nodes():

if node == max_betweenness:
node_colors.append("pink") # Highest betweenness

elif node == max_closeness:
node_colors.append("skyblue") # Highest closeness

else:
node_colors.append("lightgray")

nx.draw(G2, with_labels=True, node_color=node_colors, edge_color="black",␣
↪node_size=1000, font_size=14)

Node 0 has the greatest betweenness, and Node 12 has the max closeness

6

1.3 Random Networks
We’ll learn in class that one way in which ER models don’t reflect some real-world networks in that
they tend to have fewer triangles (3-cycles) than real-world graphs. Here a triangle in 𝐺 means a
subgraph that is isomorphic to 𝐶3. So, for example, 𝐶3 has 1 triangle, and the Wheel Graph, 𝑊𝑛
has 𝑛 − 1.
One way to count all the triangles in a graph is as folllows: 1. Compute the adjacency matrix, 𝐴,
of 𝐺 2. Compute 𝐵 = 𝐴3. Note that 𝑏𝑖𝑗 is twice the number of paths of length 3 from 𝑖 to 𝑗. And,
in particular, 𝑏𝑖𝑖 is the number of 3-cycles involving Node 𝑖. Note: 𝑏𝑖𝑖 double counts the number of
triangles involving 𝑖 because, if 𝑖 → 𝑗 → 𝑘 → 𝑖 is a 3-cycle, so too is 𝑖 → 𝑘 → 𝑗 → 𝑖. 3. Compute
the trace of 𝐵 (i.e., the sum the diagonal entries in 𝐵), and divide by 6 to calculate the number of
3-cycles.

Asides: * It is not a homework question, but work out why you should divide the trace of 𝐵 by 6.
* Well done: you’ve just come up with a proof that the trace of the cube of any 0 − 1 matrix is
divisible by 6.

1.3.1 TASK 3.1: Count Triangles

Write a function (with some sensible name of your own choosing) that takes as its input a
graph, and returns the total number of triangles in 𝐺. Tip: np.trace() returns the trace of a 2D

7

https://en.wikipedia.org/wiki/Wheel_graph

numpy array.

[25]: def num_triangles(G):
A = nx.adjacency_matrix(G).todense()
A_bin = (A != 0).astype(int) # handle weighted edges

B = np.linalg.matrix_power(A_bin, 3)
trace = np.trace(B)
return int(trace / 6)

Verify that your function works by checking that, e.g., the graph returned by nx.wheel_graph(5)
has 4 triangles.

[26]: num_triangles(nx.wheel_graph(5))

[26]: 4

1.3.2 TASK 3.2: Comparing 𝐺𝐸𝑅(𝑛, 𝑚) with graphs from social science

networkx comes with some generators from graphs that are much-studied in the network
science. In Week7: Part 2 we considered the Florentine Families graph, which is gen-
erate by nx.florentine_families_graph(). There are others such as * The Karate
Club Graph which is generated using nx.karate_club_graph() * The (Les Miserables net-
work)[https://networkx.org/documentation/stable/reference/generated/networkx.generators.social.les_miserables_graph.html]
generated by nx.les_miserables_graph()

For each of the three networks mentioned above: * Generate the graph, and output the number of
order and size of the network, and the number of triangles it has. * Use nx.gnm_random_graph()
to make a graph drawn from 𝐺𝐸𝑅(𝑛, 𝑚) that has the same size and order. Output how many
triangles it has.

[27]: florentine = nx.florentine_families_graph()
order = florentine.number_of_nodes()
size = florentine.number_of_edges()
triangles = num_triangles(florentine)

print("Florentine order: " + str(order))
print("Florentine size: " + str(size))
print("Florentine number of triangles: " + str(triangles))

ger = nx.gnm_random_graph(order, size)
print("GER number of triangles: " + str(num_triangles(ger)))

Florentine order: 15
Florentine size: 20
Florentine number of triangles: 3
GER number of triangles: 4

8

https://www.niallmadden.ie/2425-CS4423/W07/CS4423-W07-Part-2.html#Example:-15th-century-Florentine-marriages
https://en.wikipedia.org/wiki/Zachary%27s_karate_club
https://en.wikipedia.org/wiki/Zachary%27s_karate_club

[28]: karate = nx.karate_club_graph()
order = karate.number_of_nodes()
size = karate.number_of_edges()
triangles = num_triangles(karate)

print("Karate Club order: " + str(order))
print("Karate Club size: " + str(size))
print("Karate Club number of triangles: " + str(triangles))

ger = nx.gnm_random_graph(order, size)
print("GER number of triangles: " + str(num_triangles(ger)))

Karate Club order: 34
Karate Club size: 78
Karate Club number of triangles: 45
GER number of triangles: 21

[30]: mis = nx.les_miserables_graph()
order = mis.number_of_nodes()
size = mis.number_of_edges()
triangles = num_triangles(mis)

print("Les Miserables order: " + str(order))
print("Les Miserables size: " + str(size))
print("Les Miserables number of triangles: " + str(triangles))

ger = nx.gnm_random_graph(order, size)
print("GER number of triangles: " + str(num_triangles(ger)))

Les Miserables order: 77
Les Miserables size: 254
Les Miserables number of triangles: 467
GER number of triangles: 45

1.4 Extras
The following isn’t part of the assignment, but you might find it interesting: 1. Use
np.linspace(0,1,100) to create an array of probabilities. 2. For 𝑛 = 100 make a 𝐺𝐸𝑅(𝑛, 𝑝)
graph with the values of 𝑝 drawn from above, and count the number of triangles. Call this 𝑇 (𝐺).
3. I conjecture that 𝑇 (𝐺)/𝑚(𝐺) ≈ 𝐶𝑝2, for some constant 𝐶 that depends on 𝑛. Try to produce a
plot that supports (or refutes) this conjecture, and try to estimate 𝐶

9

	CS4423 Assignment 2: Part 2
	Instructions and Collaboration Policy
	Preliminaries
	Task 1.1: Give you name, ID, and list of collaborators
	Task 1.2: Load any Python modules, and choose your own colour for nodes

	Centrality Measures
	TASK 2.1: Define G_1 in networkx and draw it.
	TASK 2.2: Compute Centralities
	TASK 2.3: Draw the graph with node size proportional to eigenvector centrality
	TASK 2.4: Make your own example

	Random Networks
	TASK 3.1: Count Triangles
	TASK 3.2: Comparing G_{ER}(n,m) with graphs from social science

	Extras

