Name: Andrew Hayes
StudentID: 21321503 CT420 2025-03-19

E-mail: a.hayesl8@universityofgalway.ie

Assignment 2: POSIX Programming & Benchmarking

1 Host Environment

For my host environment, I chose to run Ubuntu Server 24.04.2 LTS using a VirtualBox hypervisor. I chose this operating
system as I have sufficient Linux experience to feel confident using an operating system with no graphical interface (as opposed
to Ubuntu Desktop), and the absence of 2 GUI means a smaller ISO file, memory footprint, & CPU footprint. I chose Ubuntu
specifically because it’s a Linux system with which I have previous experience, and is well-document with plenty of packages
available to install if needs be. Ubuntu also makes it easy to install the PREEMPT_RT patches, which transform the standard Linux
kernel into a fully preemptible, real-time kernel, which I felt was more suitable for this assignment, as the standard Linux kernel
is not suitable for a hard real-time system due to its lack of preemption.

) Name and Operating System (1
) Unattended Install

- Hardware

Base Memory: 2048MB |3
ame 15360 MB

Processors: 1
1cPU 12 CPUs

Enable EFI (special OSes only)

» Hard Disk

Figure 1: Virtual machine hardware configuration

I set the virtual machine to have a single CPU and set the amount of RAM to 2048MB which is the recommended minimum
for Ubuntu Server'. I left the hard disk size at the default of 25GB as I saw no reason to change it. The real-time kernel with
the PREEMPT_RT patches installed is available with Ubuntu Pro, which is free for personal use. After setting up an Ubuntu Pro
account, I enabled the real-time kernel using the pro command.

ndrew-hayes@UbuntuRTS: ™S sudo pro enable realtime—kernel

One moment, checking your subscription first

[Real-time kernel cannot be enabled with Livepatch.

Disable Livepatch and proceed to enable Real-time kernel? (ysN) y

o variant specified. To specify a variant, use the variant optiom.
Auto-selecting generic variant. Proceed? (ys/N) y

Disabling incompatible service: Livepatch

[Executing *-snapsbinscanonical-livepatch disable®

The Real-time kernel is an Ubuntu kernel with PREEMPT_RT patches integrated.

This will change your kernel. To revert to your original kernel, you will need
0 make the change manually.

Do you want to continue? [default = Yes 1: (Y/m) y
onfiguring APT access to Real-time kernel

lpdating Real-time kermel package lists

lpdating standard Ubuntu package lists

Installing Real-time kernel packages

[Real-time kernel enabled

A reboot is required to complete install.
ndrew-hayeseUbuntuRTS: "4

Figure 2: Enabling the real-time kernel with the pro command

Finally, I transferred over the following C file (taken from the lecture slides) via scp to the virtual machine to get the clock
resolution, which is 1 nanosecond:

int main(){
struct timespec clock res;
int stat;
stat=clock getres(CLOCK REALTIME, &clock res);
printf("Clock resolution is %d seconds, %ld nanoseconds\n",clock res.tv sec,clock res.tv nsec);
return 0;

mailto://a.hayes18@universityofgalway.ie

printf

Figure 3: Getting the clock resolution of the virtual machine

2 CPU & Data-Intensive Applications

To develop my CPU & data-intensive programs, I chose to use Python for ease of development (and because any Python program
will stress your CPU & memory no matter how simple). I chose htop as my resource-monitoring tool as I have often used it
in the past, it has easy to read & understand output, and shows you exactly what proportion of the CPU & memory is in use at
that time. It also allows you to list processes by CPU consumption or memory consumption which is a useful option to have for
this assignment.

import multiprocessing
import time

import argparse

import os

def stress_cpu(workload: float):

Function to create CPU load. Uses a busy-wait method to simulate CPU usage.

:param workload: The fraction of time (0.0 to 1.0) the CPU should be busy.
cycle time = 0.1

busy time = cycle time * workload

idle _time = cycle time - busy time

while True:
start time = time.time()
while (time.time() - start time) < busy time:
pass
time.sleep(idle_time)

def start_stress_test(load: str):

Starts CPU stress test based on load level.

:param load: 'medium' (~50% load) or 'high' (~100% load)
num_cores = os.cpu_count() or 4
workload = 0.5 if load == "medium" else 1.0

print(f"Starting {load.upper()} CPU stress test on {num _cores} cores...")

processes = []

for in range(num cores):
p = multiprocessing.Process(target=stress cpu, args=(workload,))
p.start()
processes.append(p)

try:
for p in processes:
p.join()
except KeyboardInterrupt:
print("Stopping stress test...")
for p in processes:

if

__name__ == main

p.terminate()
p.join()

parser = argparse.ArgumentParser(description="CPU Stress Test Script")

parser.add argument("--load", choices=["medium", "high"], required=True, help="Choose CPU load level
— (medium or high)")

args = parser.parse _args()

start stress test(args.load)

Listing 1: stress_cpu.py

NI VIRT RES SHR 5 CPU% MEM® TIME+ Command
0 22044 13200 9488 3 9 a.7

1.55 sshinsinit splash noprompt noshell automatic-ubiguit
66756 175 i

Iﬁgure4:htopoutput\vhenrunnjngpython3 stress cpu.py --load medium

20

21

22

23

1 runni

NI WYIRT RES SHR S CPUX MEM® TIME+ Command
g 22844 13 el g 8.7 0 8 sshinsinit splash noprompt noshell automatic-ubiguit
i ; :

IﬁgureS:htopou{putxvhenrurnﬁngpython3 stress cpu.py --load high

import argparse
import time
import psutil

def stress_memory(target usage: float):

Stress the system memory to a given percentage.

:param target usage: Target memory usage (0.0 to 1.0, where 1.0 is 100%)
total memory = psutil.virtual memory().total
target memory = int(total memory * target usage)

print(f"Total Memory: {total memory / (1024**3):.2f} GB")
print(f"Target Memory Usage: {target memory / (1024**3):.2f} GB ({target usage * 100:.0f}%)")

try:
memory hog = []
chunk _size = 100 * 1024 * 1024

while sum(len(chunk) for chunk in memory hog) < target memory:
memory hog.append(bytearray(chunk size))
time.sleep(0.1)

print("Memory fully allocated. Holding...")
while True:
time.sleep(1)

except MemoryError:

print("Memory limit reached. Exiting...")
except KeyboardInterrupt:

print("Memory stress test stopped.")

if

__name__ ==

main :
parser = argparse.ArgumentParser(description="Memory Stress Test Script")
parser.add_argument("--usage", type=float, default=1.0, help="Target memory usage (default: 1.0 for
— 100%)")
args = parser.parse args()

stress _memory(args.usage)

H

Listing 2: stress_memory.py

1 runni

FRI NI WIRT RE5S SHR 5 CPU% MEME TIME+ Command

79572 4740 5 6.6 6.4

1 root 28 0 22add 01.65 /shin/init splash noprompt noshell automatic-ubiguit

Figure 6: htop outputwhen running python3 stress memory.py --usage 0.85

References

(1]

Canonical Group Ltd. Basic Ubuntu Server Installation. Accessed: 2025-03-18. 2025. URL: https: //documentation.
ubuntu.com/server/tutorial/basic-installation/.

https://documentation.ubuntu.com/server/tutorial/basic-installation/
https://documentation.ubuntu.com/server/tutorial/basic-installation/

	Host Environment
	CPU & Data-Intensive Applications

