QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2109

OOP: Data Structures
and Algorithms

Dr. Frank Glavin
Room 404, CS Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

What You’ll Achieve in This Topic

* Explain the concepts of lossy and lossless compression
* Describe an algorithm for run-length encoding

. V —

 Describe the Huffman encoding algorithm, including the y

algorithms and data structures used in it V
 Demonstrate the application of run-length encoding and ‘/

Huffman encoding to compressing data such as text

Ll
VAT OLLSCOILNAGAILLIMHE

O Loy) ™

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

School of Computer Science

Data Compression & Terminology

Important part of data storage & transmission
Bitstream:
» Datais stored/transmitted in binary from
e Stream of bits may be a file or a message
Lossy compression:
* Data size is reduced, but some information is lost
* |s this ever reasonable?
 Example?

Lossless compression:

* No datais lost SO KB 20 KB

* Compression is reversible to recover original bitstream
e Example?

<Ll
N OLLSCOILNA GAILLIMHE
> Clitnls
o‘lv-..li UNIVERSITY OF GALWAY

4w

School of Computer Science

Data Compression

Simple example:
"aaaaaabbbbbbfff" is a string

"6a6b3f" is a simple compressed representation:
Notes:

This is a simple form of run-length encoding
Introduces new symbols to describe original sequence
Original sequence had 15 chars, new one has 6 chars
Can be reversed to recover original string

What about these sequences?
"abbaafbafbbaafb"
"aabbfaabbfaabbf"

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

[R A] il e T [T A R P S]

&

rurclangth encaeding

&

s Jel

b

T-1=]

School of Computer Science

Can Every Bitstream Be Compressed?

Assuming lossless compression,
is it always possible to make a bitstream smaller?

What do you think?

SV
;@x@ QOLLSCOIL NA GAILLIMHE
-
UNIVERSITY oF GALWAY

. sjmal# -
oV ---lr‘n

c School of Computer Science

Can Every Bitstream Be Compressed?

Assuming lossless compression (i.e. reversible),

is it always possible to make a bitstream smaller?
No!

Proof by contradiction:

Assume such an algorithm exists . ‘ I JO0 101000
After applying algorithm, reapply it to resulting stream 10100007101001710171007 1
Continue until length is 1: impossible to reverse 0100100000010170
Proof by counting: 10070070070700
Assume bitstream of length N 1007100710707070707700

There are 2N different such bitstreams

There are only 2N-1 bitstreams of length shorter than N
=> will be at least one collision

=> Cannot be a reversible mapping between these

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

6 School of Computer Science

Can Every Bitstream Be Compressed?

To be compressible, bitstream must have structure/ regularities that can be summarized
Amenable to compression:

Natural text data

Contains frequent words that may appear often

Some letters appear with high frequency, but all letters have same length encoding

XML is routinely compressed

Binary image data

Blocks of single colours:

long runsof 1, 0

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Can Every Bitstream Be Compressed?

Not amenable to compression
Random data
Data that is already compressed
Try this at home (optional!)
Write program to output a random binary stream, GZIP it
Does the file size reduce much or at all?
What about if you output a random text stream?
Compressibility relates to entropy
Amount of disorder in a data stream
High entropy: low compressibility
Note on GZIP

Combines LZ77 (a dictionary encoder) & Huffman coding

Ly
VAT OLLSCOILNAGAILLIMUE
> Lemile ™
r‘;lv-..lfh UNIVERSITY OF GALWAY

Run-Length Encoding (1)

A simple compression method

Example bitstream:
0000000000001111111100000000011111111211212
120s+81s+90s+111s

Method
Encode this as the numbers of alternating 0s and 1s
Always begin with the number of 0s (which might be none)
Assume we use 4 bits to encode each number

Result:
1100poooh001h011
12=1100, 8=1000, 9=1001, 11=1011
Compression Ratio = 16/40 = 40%

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

Run-Length Encoding (2)

Algorithm issues
How many bits should be used to store the counts?
What do we do if a run is too long?
What about runs that are shorter than the corresponding encoding?

Standard choices
Use 8 bits (runs are between 0 and 255 in length)
If a run is longer than 255, insert a run of length O
(300 1s is encoded as 255 1s + 0 0s + 45 1s
Encode short runs, even if this lengthens the output

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

10

School of Computer Science

Run-Length Encoding (3)

Popular for bitmaps

If a bitmap's resolution is doubled:
bitstream increases x4
RLE compressed version typically increases x2

Works in a single pass:
No need to look ahead when compressing or decompressing

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Example of Image compression using RLE

W1B1W3B1W1

B3wW1B3

B7

W1B5Wi1

W2a2B3w2

W3B1W3

School of Computer Science

12

Run-Length Encoding: Limitations

If bitstream has large numbers of short runs
RLE encoded version can be longer than the original!
Worst case: 10101010
How would this be encoded?

Natural text contains few repeated letters
Traditional binary representation is 7-bit or 8-bit ASCII
This tends to contain short runs also:
8-bit run encoding is definitely too long;
4-bit run encoding does not do much for it either

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

13

ASCII Binary Representation (Excerpt)

45
49
50
51
52
53
54
35
56
a7
58
59
60
61
62

63
64
65
66

W s N pa = O

A =

(= =T = 1 RUCE VI

00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010

67
68
69
70
71
72
FE
74
75
76
77
78
79
80
81
82

83
84
83

C 4w @O WO Z IR = =T O MmO O

01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101

80
87
88
89
90
91
92
93
94
93
96
97
98
99
100
101
102
103
104

;..._.,..--*.—.N-r::'-(Eﬂi

T m = M O 0 O m

01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
OLI00L00
01100101
01100110
01100111
01101000

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

—_—

L e - =R T R RN - Hy T = T =

01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

8-Bit ASCII Encoding

Consider the text “Mississippi”

, M 01001101
8-bit ASCII: " 01101001
01001101011010010111001101110011011010010111 01110011
00110111001101101001011100000111000001101001 . 01110011

Every character encoded with 8 bits 5
38 bits i 01101001
. : s 01110011

RLE will not compress it well

s 01110011
How can we do better? i 01101001
Do we need all 8 bits? p 01110000
Yes, in general case if we use all ASCIl characters p 01110000
Do all characters need a full 8 bits to encode them? i 01lolool

28-1 possibilities if we used all segs of length 1-7

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

14

Huffman Encoding (1)

Main idea: variable-length codes
Use short-length codes for more frequently occurring characters

These should be prefix-free
If we used a simple encoding such as A=0, B=1,
C=10, ..., would not know if 10 encoded "BA" or "C"
We want codes to be uniquely decodable without needing any delimiters or prefixes

(Fixed-length codes like 8-bit ASCII are also prefix-free)

Ly
& (OLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

15 School of Computer Science

Huffman Encoding (2)

To come up with a prefix-free variable encoding,
we construct a Huffman Tree:
This is a binary tree that will give us the final encoding
See next slides
Using the tree, read off variable-length codes for each character
Encode this message using the tree
Note: we need to store the encoding as well as the message being encoded

Reduces compression ratio a lot for short messages
Can use an agreed encoding, e.g. for English text

With an agreed encoding, computation time of constructing the tree is also avoided

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Huffman Encoding — Example (1)

* WOLE
1. Create a set of trees, each consisting of Y'Y W
one leaf; each leaf represents a symbol i, &
2. Remove the two trees with the lowest . ..
probability, merge them into a single tree, ©@®Q Q@
sum up their probabilities and return the OICIOIC)
new tree into the pool a e
3. Repeat step 2 until a single tree is left over T o Y
4. Generate code words as seen before ”’L\‘Tf“a f’E._.3-'/*E‘~
L A A A
N
@) J U‘

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

. a 15 7 6 L, 51
Huffman Encoding — Example (2) DEEO®®E
15 Tl 6.1 11
: &) f::’ &) @
In the example on the right the following code is generated: @ @
151 1;,' 1},'
D8 O
Symbol | Code OO
A O d 15&{}. j:s, _}h
B 100 Q 9,
C 101 & @ () (®
D 110 0
E 111 @& Q0
R
D O
\‘LLA"@ QOLLSCOILNA GAILLIMUE é @ li_[fz“ 5

N f; UNIVERSITY oF GALWAY

18 School of Computer Science

19

Algorithm to Construct Huffman Tree
Using a Priority Queue

1. Count frequencies of all letters

2. Putthem as nodes in a Priority Queue, with lowest count having highest priority

A queue where items are inserted according to priority, not at the end; dequeued as normal from
front

In case of a tie, put more recently enqueued item after older items
3. While there are at least 2 nodes on the queue:
Dequeue the 2 nodes at the front
Make a new node with them as its 2 children

Value of new node = sum of children's counts
Enqueue this new node

\LLly
PXA OLLSCOILNA GAILLIMUE
¢ ¥ UNIVERSITY oF GALWAY

School of Computer Science

Let's Do It ...

M:1 p:2i:4s:4

Each node, apart from the root, represents a bit in the Huffman code:
each left child is a 0 and each right child isa 1

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

21

One Possible Result

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Resultant Encoding

With this, "Mississippi"
encodes to:
100110011001110110111
Just 21 bits
Excluding the code,
Compression Ratio = 23.9%
Space Savings=1—-CR =76.1%
Can you decode this unambiguously?

For decoding, can use the code
directly, or use the tree:

Start at root

O:left, 1:right, until a leaf is reached

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

< ©

11
101
100

- LA L f—

i

= T3 3

100

101
101
11

School of Computer Science

Aside: Relationship to Machine Learning

Compression relates to Machine Learning:

Goal is to find descriptions (hypotheses) that partially/fully describe a larger set of data
Usually the hypotheses are expressed differently than in zip algorithms

E.g. rules; equations; graphs

Almost always lossy: focus on main features of data, not every possible detail

Find hypotheses to fit data through heuristic search

Standard ZIP algorithms have been used as similarity metrics for large documents

Ly
& (OLLSCOILNA GAILLIMUE
¢ ¥ UNIVERSITY oF GALWAY

53 School of Computer Science

What You Achieved in This Topic

* Explain the concepts of lossy and lossless compression

* Describe an algorithm for run-length encoding

* Describe the Huffman encoding algorithm, including the algorithms
and data structures used in it

 Demonstrate the application of run-length encoding and Huffman
encoding to compressing data such as text

SV
VAT OLLSCOILNAGAILLIMHE

O Loy) ™

. slmals -
ojl-lf* UNIVERSITY oF GALWAY
L W

” School of Computer Science

