
L E C T U R E 9

P A C K A G E S , V A R A R G S ,
A N D F O R M A T T E D I N P U T

D R A D R I A N C L E A R
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Objectives for today
• Understand java packages and how to create them
• Illustrate
• for-each loops
• Formatted input
• varargs

Creating and Using Packages
• To make types easier to find and to use, to avoid naming

conflicts, and to control access, programmers bundle groups of
related types into packages.

• Definition: A package is a collection of related types providing
access protection and namespace management. Note that
types refers to classes, interfaces, enums and annotations.

• The types that are part of the Java platform are members of
various packages that bundle classes by function:
• fundamental classes are in java.lang, classes for reading and writing

(input and output) are in java.io, and so on.
• You can put your types in packages, too.

Package example
• Suppose that you write a group of classes that represent a collection of

graphic objects, such as circles, rectangles, lines, and points. You also write
an interface, Draggable, that classes implement if they can be dragged with
the mouse by the user:

//in the Graphic.java file
public abstract class Graphic {
 . . .
}

//in the Circle.java file
public class Circle extends Graphic implements Draggable {
 . . .
}

Package example
//in the Rectangle.java file
public class Rectangle extends Graphic implements Draggable {
 . . .
}

//in the Draggable.java file
public interface Draggable {
 . . .
}

Package example
• You should bundle these classes and the interface in
a package for several reasons:
• You and other programmers can easily determine that these

types are related.
• You and other programmers know where to find types that

provide graphics-related functions.
• The names of your types won't conflict with types names in

other packages, because the package creates a new
namespace.

• You can allow types within the package to have unrestricted
access to one another yet still restrict access for types
outside the package.

Creating a package
• To create a package, you put a type (class, interface, enum or

annotation) in it. To do this, you put a package statement at the
top of the source file in which the type is defined.

• For example, the following code appears in the source file
Circle.java and puts the Circle class in the graphics package:

package graphics;

public class Circle extends Graphic implements Draggable {
 . . .
}

Creating a package
• You must include a package statement at the top of every

source file that defines a class or an interface that is to be a
member of the graphics package.

• So, you would also include the statement in Rectangle.java
and so on:

package graphics;

public class Rectangle extends Graphic implements Draggable {
 . . .
}

Package scope
• The scope of the package statement is the entire source file,

so all classes, interfaces, enums and annotations defined in
Circle.java and Rectangle.java are also members of the
graphics package.

• If you put multiple classes in a single source file, only one may
be public, and it must share the name of the source file's base
name.
• Only public package members are accessible from outside the package.

• If you do not use a package statement, your type ends up in
the default package, which is a package that has no name.

Naming a package
• With programmers all over the world writing classes, interfaces,

enums and annotations using the Java programming language,
it is likely that two programmers will use the same name for two
different classes.

• In fact, the previous example does just that: It defines a
Rectangle class when there is already a Rectangle class in
the java.awt package. Yet the compiler allows both classes
to have the same name. Why?

• Because they are in different packages, and the fully qualified
name of each class includes the package name.
• That is, the fully qualified name of the Rectangle class in the graphics

package is graphics.Rectangle, and the fully qualified name of the
Rectangle class in the java.awt package is java.awt.Rectangle.

Naming a package
• This generally works just fine unless two independent
programmers use the same name for their packages.
• What prevents this problem? Convention.
• By Convention: Companies use their reversed Internet domain

name in their package names, like this: com.company.package.
• Name collisions that occur within a single company need to be

handled by convention within that company, perhaps by including
the region or the project name after the company name, for
example, com.company.region.package.

Static Import
• The static import feature, implemented as "import
static", enables you to refer to static constants from a
class without needing to inherit from it.

• Instead of BorderLayout.CENTER each time we
add a component, we can simply refer to CENTER.

import static java.awt.BorderLayout.*;
 getContentPane().add(new JPanel(), CENTER);

For-Each loop
• The Iterator class is used heavily by the Collections
API.
• It provides the mechanism to navigate sequentially through a

Collection.

• The For-Each loop can replace the iterator when
simply traversing through a Collection as follows.
• The compiler generates the looping code necessary and with

generic types no additional casting is required.

For-Each loop
• Before (Iterator)

ArrayList<Integer> list = new ArrayList<Integer>();
for (Iterator i = list.iterator(); i.hasNext();)
 {
 Integer value=(Integer)i.next();
 }

• After (for-each)

ArrayList<Integer> list = new ArrayList<Integer>();
 for (Integer i : list)
 { ... }

Exercise
• Modify ArraySequences from last week so that it is in a

relevant package
• Make the iterator more general by allowing a start point and

increment value to be specified on creation
• Add a printOdd method that uses the iterator for loop to print

all of the odd numbers
• Add a printAll method that uses the for-each loop to print all

of the numbers

Formatted Output
• Developers have the option of using printf-type
functionality to generate formatted output.

• Most of the common C printf formatters are available,
and in addition some Java classes like Date and
BigInteger also have formatting rules.
• See the java.util.Formatter class for more information.

Although the standard UNIX newline '\n' character is accepted, for
cross-platform support of newlines the Java %n is recommended.

System.out.printf("name count%n");
System.out.printf("%s %5d%n", user,total);

Formatted Input
• The scanner API provides basic input functionality for
reading data from the system console or any data
stream.

• If you need to process more complex input, then there
are also pattern-matching algorithms, available from
the java.util.Formatter class.

Scanner s= new Scanner(System.in);
String param= s.next();
int value=s.nextInt();
s.close();

Varargs
• It requires the simple ... notation for the method that
accepts the argument list and is used to implement
the flexible number of arguments required for
example in the printf() function.

void argtest(Object ... args) {
 for (int i=0;i <args.length; i++) {

 }
}

argtest("test", "data");

Exercise
• Write a varargs method that takes any number of string

parameters and prints using formatted output the total number
of strings entered and the total number of letters across all of
them.

• Sample output:
You entered 5 words with a total number of 17 letters.

Next time…
• Demo uses of packages and external jars
• Joda Money API

