20

21

22

23

24

25

Name: Andrew Hayes
StudentID: 21321503 CT404

E-mail: a.hayes18@universityofgalway.ie

2024-11-03

Assignment 2: Image Processing & Analysis

1 A Morphological Image Processing Pipeline for Medical Images

1.1 Conversion to A Single-Channel Image

Task 1: A Morphological image processing pipeline for medical images
Task 1.1: Conversion to a single channel image
import cv2

read in original image (in BGR format)
image = cv2.imread("../../Taskl.jpg")

convert to greyscale
greyscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imwrite("./output/greyscale. jpg", greyscale)

convert to blue channel only

b_channel = image.copy()

b_channel[:, :, 1] =0

b_channell:, :, 2] =0

cv2.imwrite("./output/b channel.jpg", b _channel)

convert blue channel to greyscale

b_channel greyscale = cv2.cvtColor(b_channel, cv2.COLOR_BGR2GRAY)
b_channel greyscale contrast = b_channel greyscale.std()
cv2.imwrite("./output/b channel greyscale.jpg", b_channel greyscale)

convert to green channel only
g _channel = image.copy()
g _channel[:, :, 0] = 0

mailto://a.hayes18@universityofgalway.ie

40

41

42

43

44

45

46

47

48

g channel[:, :, 2] =0
cv2.imwrite("./output/g channel.jpg", g_channel)

convert green channel to greyscale

g channel greyscale = cv2.cvtColor(g channel, cv2.COLOR BGR2GRAY)

g channel greyscale contrast = g channel greyscale.std()
cv2.imwrite("./output/g channel greyscale.jpg", g_channel greyscale)

convert to red channel only

r channel = image.copy()

r channel[:, :, 0] =0

r channel[:, :, 1] =0

cv2.imwrite("./output/r channel.jpg", r_channel)

convert red channel to greyscale

r_channel _greyscale = cv2.cvtColor(r_channel, cv2.COLOR_BGR2GRAY)

r channel greyscale contrast = r_channel greyscale.std()
cv2.imwrite("./output/r channel greyscale.jpg", g_channel greyscale)

assess objectively which allows most contrast

print("Blue Channel Greyscale Contrast: " + str(b_channel greyscale contrast))
print("Green Channel Greyscale Contrast: " + str(g channel greyscale contrast))
print("Red Channel Greyscale Contrast: " + str(r_channel greyscale contrast))

Listing 1: 1_single_channel conversion.py

Since the image has predominant hues of pink-purple, we would expect the green-channel-only image to be the one that yields
the highest contrast, as pink & purple colours are made up primarily by the blue & red channels: the dominance of these
channels results in little variance in intensity within these channels, and therefore green will have the highest intensity variance.
This is proven true by the text output of the above code, where the standard deviation of the greyscale image based off the green
channel alone is by far the highest:

Figure 2: Output of 1_single_channel_conversion.py

Figure 5: B-Channel Figure 7: G-Channel Figure 9: R-Channel
Figure 4: Greyscale original Figure 6: B-Greyscale Figure 8: G-Greyscale Figure 10: R-Greyscale

My selected single-channel image is the greyscale version of the green-channel-only image, as it yields the greatest contrast:

Figure 11: Selected single-channel image: greyscale green-channel-only

1.2 Image Enhancement

Task 1.2: Image Enhancement
import cv2

read in chosen single-channel greyscale image
image = cv2.imread("./output/g channel greyscale.jpg", cv2.IMREAD GRAYSCALE)

apply histogram equalisation

equalised image = cv2.equalizeHist(image)
equalised image contrast = equalised image.std()
cv2.imwrite("./output/histogram equalised.jpg", equalised image)

apply contrast stretching

stretched image = cv2.normalize(image, None, 0, 255, cv2.NORM MINMAX)
stretched image contrast = stretched image.std()
cv2.imwrite("./output/contrast stretched.jpg", stretched image)

print("Histogram Equalisation Contrast: " + str(equalised image contrast))

print("Contrast Stretching Contrast: " + str(stretched image contrast))

Listing 2: 2 _image_enhancement.py

Figure 12: Output of 2_image_enhancement . py

I chose to use the histogram equalisation technique as it gave the best contrast, as seen from the calculated standard deviation in

contrast above and in the output images below.

1.3 Thresholding

Task 1.3: Thresholding
import cv2

read in chosen enhanced image

image = cv2.imread("./output/histogram equalised.jpg", cv2.IMREAD GRAYSCALE)

perform otsu thresholding to find the optimal threshold

threshold value, otsu thresholded = cv2.threshold(image, 0, 255, cv2.THRESH BINARY + cv2.THRESH 0TSU)
cv2.imwrite("./output/otsu.jpg", otsu thresholded)

print("Threshold value used: " + str(threshold value))

Listing 3: 3_thresholding.py

& Image Processing/ ignments ignment2/

& Image Pr

Figure 15: Output of 3_thresholding.py

T'used Otsu’s algorithm to find the optimal threshold value that best separated the foreground (objects of interest) from the
background. As can be seen from the above output, the optimal value chosen was 129.

gL~

Lo

"

2 ’ '

1.4 Noise Removal

import cv2

image = cv2.imread("./output/otsu.jpg", cv2.IMREAD GRAYSCALE)

for kernel size in range(1l, 16, 2):

structuring element = cv2.getStructuringElement(cv2.MORPH ELLIPSE, (kernel size, kernel size))

opened image = cv2.morphologyEx(image, cv2.MORPH OPEN, structuring element)

cv2.imwrite(f"./output/kernel size {kernel size}.jpg", opened image)

Listing 4: 4_noise_removal.py

Figure 21: kernel size = 9 Figure 23: kernel_size = 13

Figure 18: kernel size = 3 Figure 20: kernel size = 7 Figure 22: kernel size = 11 Figure 24: kernel size = 15

	A Morphological Image Processing Pipeline for Medical Images
	Conversion to A Single-Channel Image
	Image Enhancement
	Thresholding
	Noise Removal

