
Spring Boot Application in Docker 1

�
Spring Boot Application in
Docker

Spring Boot Overview
What is Spring Boot?

Framework for building stand-alone Java applications.

Simplifies development with embedded servers and auto-configuration.

Why use Spring Boot with Docker?

Consistency across environments.

Easy deployment and scaling.

Portable, lightweight, and efficient.

Prerequisites
What you need:

� Java 17 SDK Installed and configured.

� Spring Boot CLI Optional but useful for scaffolding projects.

� Docker Installed and running on your machine.

Spring Boot Application in Docker 2

� Maven For build automation.

Creating a Simple Spring Boot Application
Step 1 Initialise a Spring Boot project with Maven.

Use Spring Initializr to generate the project structure.

Choose Maven as the project, Java version, and Spring Web
dependency.

Group: com.example , Artifact: song-suggester

Download the project and unzip it.

 Writing the Random Song Suggester App
Step 2 Create the Song Suggester logic.

In src/main/java/com/example/songsuggester/SongSuggesterController.java :

package com.example.songsuggester;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestControll

er;

import org.springframework.web.client.RestTemplate;

import org.json.JSONObject;

import java.util.Random;

@RestController

public class SongSuggesterController {

 @GetMapping("/suggest")

 public String suggestSong() {

 String apiUrl = "https://itunes.apple.com/search?te

rm=pop&limit=10";

 RestTemplate restTemplate = new RestTemplate();

 String result = restTemplate.getForObject(apiUrl, S

tring.class);

https://start.spring.io/

Spring Boot Application in Docker 3

 // Parse the JSON response

 JSONObject jsonObject = new JSONObject(result);

 var tracks = jsonObject.getJSONArray("results");

 // Randomize the selection

 Random rand = new Random();

 int randomIndex = rand.nextInt(tracks.length());

 var randomTrack = tracks.getJSONObject(randomInde

x);

 // Extract the song and artist name

 String song = randomTrack.getString("trackName");

 String artist = randomTrack.getString("artistNam

e");

 return "Today's song suggestion: " + song + " by "

+ artist;

 }

}

Running the Application Locally
Step 3 Build and run the Spring Boot application.

Navigate to the project folder.

Run the Maven build command:

mvn clean install

Start the Spring Boot application:

mvn spring-boot:run

Access the application:

Open your browser and go to: http://localhost:8080/suggest

Preparing the Application for Docker

Spring Boot Application in Docker 4

Step 4 Write a Dockerfile .

In the root of your project directory, create a Dockerfile :

Use an official OpenJDK runtime as a parent image

FROM openjdk:17-jdk-slim

Set the working directory inside the container

WORKDIR /app

Copy the project JAR file into the container

COPY target/song-suggester-0.0.1-SNAPSHOT.jar app.jar

Expose the port the app runs on

EXPOSE 8080

Run the JAR file

ENTRYPOINT ["java", "-jar", "app.jar"]

Building the Docker Image
Step 5 Build the Docker image from the Dockerfile.

Run this command in the project directory where the Dockerfile is
located:

docker build -t song-suggester .

This command builds the image with the name song-suggester using the
current directory (.).

Running the Docker Container
Step 6 Run the Docker container.

Run this command to start the container and map port 8080

docker run -p 8080:8080 song-suggester

Spring Boot Application in Docker 5

Test the application Open your browser and go to
http://localhost:8080/suggest to see the random song suggestion.

Docker Best Practices
Best Practices for Docker:

� Use minimal base images For smaller, faster containers.

� Use multi-stage builds To reduce the final image size.

� Include a .dockerignore To exclude unnecessary files during the build.

Useful Links and Resources

What is a Container? | Docker
A container is a standard unit of software that packages up
code and all its dependencies so the application runs
quickly and reliably from one computing environment to

https://www.docker.com/resources/what-container

Play with Docker
Play with Docker PWD is a project hacked by Marcos Liljedhal and Jonathan Leibiusky and
sponsored by Docker Inc.
https://labs.play-with-docker.com/

Get started
Get started with Docker

https://docs.docker.com/get-started/

Educational resources
Get started resources learning docker

https://docs.docker.com/get-started/resources/

https://www.docker.com/resources/what-container
https://labs.play-with-docker.com/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/resources/

