
Overview of Docker 1

�
Overview of Docker
What is a docker ?

Docker is an open-source platform for building, deploying, and managing
containerized applications.

Why Docker?:

Simplifies container creation and management.

Provides a consistent environment for development, testing, and
production.

Key Terms:

Image A lightweight, stand-alone, and executable package that
includes everything an application needs (code, runtime, libraries,
dependencies).

Container A runtime instance of an image. While images are static,
containers are dynamic and can be started, stopped, or moved across
environments.

Dockerfile A text file with instructions to build a Docker image. It
defines the steps to configure an environment, install dependencies,
and set up the application.

Overview of Docker 2

Docker Hub A cloud-based repository for finding and sharing container
images, both public and private.

Why Use Docker in Modern Development?
Consistency Across Environments:

Docker ensures that the application runs the same regardless of
where it's deployed (local machine, production server, or cloud).

Isolation:

Containers provide process isolation, so multiple applications or
microservices can run side by side without interfering with each
other.

Scalability:

Containers are lightweight and can be easily scaled horizontally
(replicating containers to handle more traffic).

Efficiency:

Compared to virtual machines, containers use fewer resources since
they share the host machine's kernel, making them much faster to
start and stop.

Portability:

Overview of Docker 3

Applications packaged in Docker containers can be easily moved
across environments, cloud platforms, and OSes, ensuring smooth
and reliable deployments.

Key Docker Components
Docker Engine The runtime that runs and manages containers.

Docker Hub A public repository where users can publish and share
container images.

Dockerfile A text file that contains instructions on how to build a Docker
image.

Installing Docker on Various Platforms

Windows:
Step 1 Go to the Docker Desktop for Windows download page.

Step 2 Download the Docker Desktop installer.

Step 3 Double-click the installer and follow the prompts to install.

Step 4 Ensure that Windows Subsystem for Linux WSL 2 is enabled
for a smoother experience.

Overview of Docker 4

Step 5 Once installed, launch Docker Desktop. You can verify the
installation by running the following in PowerShell or CMD

docker --version

macOS:
Step 1 Go to the Docker Desktop for Mac download page.

Step 2 Download the installer for macOS.

Step 3 Open the .dmg file and drag Docker.app to the Applications
folder.

Step 4 Launch Docker from the Applications folder. Once it is running,
verify by opening a terminal and typing:

docker --version

Linux (Ubuntu Example):
Step 1 Update the package index:

sudo apt update

Step 2 Install Docker:

sudo apt install docker.io

Step 3 Start Docker and enable it on boot:

sudo systemctl start docker

sudo systemctl enable docker

Step 4 Verify installation:

docker --version

Post-Installation Steps (All Platforms):

Overview of Docker 5

Step 1 Run the Docker hello-world image to confirm everything is set up
correctly:

docker run hello-world

Step 2 Ensure you have permissions to run Docker as a non-root user:

For Linux, add your user to the docker group:

sudo usermod -aG docker $USER

Building and Running Applications in Docker Containers
� Dockerfile Structure:

Base Image The starting point (e.g., openjdk:17 for Java
applications).

WORKDIR The directory inside the container where the application
will reside.

COPY Copies files from the host system into the container.

RUN Executes commands (e.g., installing dependencies).

CMD Defines the default command to run when the container starts
(e.g., java -jar app.jar).

Example Dockerfile for a Spring Boot application:

FROM openjdk:17-jdk-slim

WORKDIR /app

COPY target/musicFinder-1.0.jar app.jar

EXPOSE 8080

ENTRYPOINT ["java", "-jar", "app.jar"]

� Building the Docker Image:

Command: docker build -t my-app .

This command builds the Docker image by reading the
Dockerfile .

� Running the Docker Container:

Overview of Docker 6

Command: docker run -p 8080:8080 my-app

This command runs the container, mapping the container's port
8080 to the host's port 8080.

Docker Best Practices
� Keep Images Lightweight:

Use minimal base images (e.g., alpine) to reduce the size of the final
image, leading to faster build times and fewer security
vulnerabilities.

� Multi-Stage Builds:

Separate the build environment from the final image to reduce size
and improve performance.

FROM maven:3.8-jdk-11 AS builder

WORKDIR /build

COPY . .

RUN mvn clean package

FROM openjdk:11-jre-slim

WORKDIR /app

COPY --from=builder /build/target/app.jar /app.jar

CMD ["java", "-jar", "/app.jar"]

� Use .dockerignore :

Similar to .gitignore , it prevents unnecessary files from being copied
into the container, optimizing build times.

� Tagging:

Tag your images (docker build -t my-app:v1 .) for version control and
easier management of deployments.

� Security Best Practices:

Regularly update base images to avoid security vulnerabilities.

Avoid running containers as root (use non-root users).

Scan your Docker images for vulnerabilities (e.g., using tools like
Clair or Anchore).

Overview of Docker 7

Common Docker Commands
Listing Containers:

docker ps List running containers.

docker ps -a List all containers (including stopped ones).

Stopping/Removing Containers:

docker stop container_id Stops a running container.

docker rm container_id Removes a stopped container.

Viewing Logs:

docker logs container_id Shows the logs of a container.

Entering a Running Container:

docker exec -it container_id /bin/bash Opens a terminal inside the
running container.

Advantages of Docker in Development
Consistency Eliminates the "works on my machine" problem by
providing a consistent environment across all stages of development.

Efficiency Uses fewer system resources and has fast startup times
compared to traditional VMs.

Easy Integration Seamlessly integrates with CI/CD tools and workflows.

