
Name: AndrewHayes
Student ID: 21321503
E-mail: a.hayes18@universityofgalway.ie

ct437 2025–03–22

Assignment 2: Using & Benchmarking Block Ciphers with OpenSSL

1 Block Cipher Benchmarking

Cipher Key Size (bits) Mode Data Size (MB) Encryption Time (s) Decryption Time (s)

AES 128 ECB 100 0.011645 0.016149
AES 128 ECB 1000 0.115766 0.138276
AES 128 CBC 100 0.012991 0.015155
AES 128 CBC 1000 0.120283 0.144772
AES 128 CTR 100 0.013145 0.014195
AES 128 CTR 1000 0.123406 0.148595
AES 256 ECB 100 0.011633 0.016037
AES 256 ECB 1000 0.117581 0.146535
AES 256 CBC 100 0.012724 0.014844
AES 256 CBC 1000 0.123072 0.152202
AES 256 CTR 100 0.010960 0.014497
AES 256 CTR 1000 0.125039 0.146826
ARIA 128 ECB 100 0.513804 0.514874
ARIA 128 ECB 1000 5.165819 5.148774
ARIA 128 CBC 100 0.520173 0.513266
ARIA 128 CBC 1000 5.163050 5.168916
ARIA 128 CTR 100 0.523422 0.516402
ARIA 128 CTR 1000 5.185706 5.171717
ARIA 256 ECB 100 0.511218 0.523186
ARIA 256 ECB 1000 5.175878 5.191240
ARIA 256 CBC 100 0.531489 0.520085
ARIA 256 CBC 1000 5.211425 5.235387
ARIA 256 CTR 100 0.520419 0.526104
ARIA 256 CTR 1000 5.242562 5.266137
Camellia 128 ECB 100 0.430678 0.422496
Camellia 128 ECB 1000 4.305158 4.320622
Camellia 128 CBC 100 0.435216 0.440686
Camellia 128 CBC 1000 4.362768 4.397620
Camellia 128 CTR 100 0.446206 0.442398
Camellia 128 CTR 1000 4.446463 4.461865
Camellia 256 ECB 100 0.441961 0.441616
Camellia 256 ECB 1000 4.473938 4.449186
Camellia 256 CBC 100 0.447059 0.440549
Camellia 256 CBC 1000 4.448629 4.426780
Camellia 256 CTR 100 0.436507 0.451490
Camellia 256 CTR 1000 4.416296 4.432459

Table 1: Benchmarking results from TSV file

Tobenchmark theCPUtimeofmyprogram, I used the standardPOSIX getrusage() functiondeclared in the <sys/resource.h>
header, and wrote the collected experimental data to a tab-separated value (TSV) file defined in my benchmark.h header file, as
I generally prefer TSV to CSV due to its increased human-readability in plaintext form. I made sure to only open and write
to the results file after each benchmark had been measured to ensure that the data was accurate. The above table of results is
generated automatically from the TSV file using the LATEX pgfplots package, and the below bar charts were generated using a
simple Python script. Since I already run a Linux-based operating system on my laptop, I was able to run these benchmarks
natively on my machine, both making it slightly easier for me to run the tests but also likely greatly improving the performance
of the block ciphers as the program had full access to my system resources instead of limited virtualised hardware.

1

mailto://a.hayes18@universityofgalway.ie


Figure 1: Compiling and running the benchmarking program

Figure 2: Encryption & decryption times for 100MB data

Figure 3: Encryption & decryption times for 1000MB data

The above bar charts contain the time taken for encryption & decryption for each cipher, key size, & mode combination tested;
the blue columns represent the time taken for encryption and the red columns represent the time taken for decryption. The
graphs are separated by the size of the data being encrypted / decrypted. What is most immediately obvious to me when looking
at these two graphs is how similar the two are: the results and relative scaling look almost identical until you look at the y-axis
and see that each time result is about 10 times higher in the 1000MB experiment than in the 100MB experiment, which makes

2



perfect sense, as the one experiment involves 10 times the data of the other. Since block ciphers process only fixed-size blocks,
processing each block (theoretically) takes a constant amount of time, and so the CPU time of the algorithm will scale linearly
with the amount of data to be encrypted or decrypted.

The next feature of the bar charts that is immediately obvious is that the blue columns are approximately the same height as
the red columns: encryption time ≈ decryption time. This is what one would expect, as the block ciphers in question are
symmetric: the operations used for encryption & decryption are inverses of each other. The slight variations in some results can
be attributed to fluctuations in background processes consuming CPU on my laptop when I ran the tests. The one exception
here are the AES results: relative to the amount of time taken by encryption for the AES results, the decryption results are
quite a bit higher. Furthermore, the decryption results are consistently higher than the encryption results, unlike the other
algorithms where it appears to be more or less random noise. This is because of AES-NI (Advanced Encryption Standard
New Instructions): a set of hardware instructions on Intel/AMDCPUs that allow hardware acceleration of AES operations.
OpenSSL automatically detects if AES-NI is supported at runtime, and will automatically take advantage of these hardware
accelerations if available. On Linux-based operating systems, you can check if your CPU has AES flags in its CPU information
to check if AES-NI is supported by running grep -c aes /proc/cpuinfo.

Figure 4: Output of grep -c aes /proc/cpuinfo showing that my CPU supports AES-NI

As can be seen from the terminal screenshot above, my laptop’s CPU does indeed support AES-NI, which explains not only
the slightly slower (relatively speaking) AES decryption times, but also why the AES times are so much faster than both the
ARIA and Camellia times. Ordinarily, for similar amounts of data, one would expect that AES would take roughly the same
amount of time as ARIA or Camellia, and possibly be outperformed by something like Camellia as AES has more lookup
tables & transformations than Camellia, which can be costly in software implementations. However, since my CPU has
hardware-acceleration for AES operations with AES-NI, these operations occur in the hardware rather than the software, and
are therefore much, much faster.

We can also see from the bar charts that ARIA is consistently slower than Camellia; as there is no hardware acceleration
for either, this is down purely to their software implementations / algorithmic design. This can be explained by the fact that
ARIA has a computationally intensive round function that uses a substitution-permutation network structure (like AES) with
multiple layers of S-box substitutions, diffusion matrices, & key-dependent transformations. On the other hand, Camellia uses
a Feistel network which is more lightweight and better-suited for software execution.

If you look carefully at the graphs, you can see that encryption & decryption with a 256-bit key is just slightly slower than
encryption & decryption with a 128-bit key. A larger key size means more encryption rounds and more computation per block,
thus making using 256-bit key slower than a 128-bit key. However, this speed decrease is usually well worth it, as it makes the
encryption far stronger and much more difficult to brute force.

The last aspect of the bar charts to discuss is the impact of the various modes on encryption & decryption time. The dif-
ferences here are the most difficult to see in the bar charts but are there if you look closely; they may be easier to see in the
tabulated results.

1. ECBmode is the fastest of the threemodes because each block is encrypted independentlywith no chaining or initialisation
vector required, making it simple & fast, and easy to parallelise in both encryption & decryption. However, it is not
particularly secure: identical plaintext blocks will result in identical ciphertext blocks, and it can leak data patterns in the
encrypted data.

2. CTRmode is the second fastest, as it works by converting the block cipher into a stream cipher and uses a counter & a
nonce to generate a keystream. It encrypts the counter, then XORs it with the plaintext. This is highly parallelisable for
both encryption & decryption, and uses the same logic for both. It is also much more secure than ECBmode, as the
counter never repeats.

3. The slowest of the three modes is CBCmode: in CBCmode, each plaintext block is XORed with the previous ciphertext
block before encryption, requiring an IV for the first block. This makes it more secure than ECB as it removes repeating
patterns, but it is not parallelisable as each block depends on the previous, making encryption much slower. However,
decryption can be parallelised somewhat, as ciphertext blocks can be decrypted independently before they are XORed with
the previous ciphertext block, but it is not clear from the results whether or not such parallelisation was utilised, and if it
was, it had little impact on the performance.

3



2 Implementing & Benchmarking Triple-DES

Cipher Key Size (bits) Mode Data Size (MB) Encryption Time (s) Decryption Time (s)

TripleDES 192 ECB 100 2.998096 2.828663
TripleDES 192 CBC 100 3.034894 2.988420
TripleDES 192 ECB 1000 29.170444 28.621023
TripleDES 192 CBC 1000 30.095597 29.524169

Table 2: Benchmarking results from TSV file

Figure 5: Compiling & running the benchmarking program

Figure 6: Encryption & decryption times for Triple-DES

As before, what is immediate obvious about this graph is that the times for 1000MB of data are pretty much exactly 10 times that
of the times for 100MB of data, as Triple-DES is a block cipher and so the computational time scales linearly with input data size.
We can also see that decryption is generally a little faster than encryption but is more or less the same speed. This is likely due in
part due to background noise, but is also possibly due to internal caching behaviour or other optimisations for decryption in
the OpenSSL implementation. In general, however, one would expect encryption & decryption to take more or less the same
amount of time, as Triple-DES is a symmetric algorithm and therefore decryption requires the same steps as encryption, just
inverted. As before, since ECB encrypts each block independently, it is faster than CBC due to being parallelisable, whereas
CBC has dependency between blocks and is therefore not parallelisable and thus slower.

The main comparison to be drawn from comparing the Triple-DES results to the results from the first experiment is that
Triple-DES is much slower, taking 5–10 times more time to execute than any other algorithm from the first experiment. This

4



is down to three primary reasons: DES operates on 64-bit blocks which is less efficient, is very outdated so has no hardware
acceleration and not much software optimisation, and because Triple-DES runs DES three times, so it’s automatically going
to be 3 times slower. For example Triple-DES took about 6 times longer to run than Camellia in ECBmode on 1000MB of
data: ∼30 seconds versus∼5 seconds. This makes sense, as we would expect DES to be about twice as slow as Camellia and,
Triple-DES will naturally be three times slower than DES, adding up to a 6× speed decrease.

5


	Block Cipher Benchmarking
	Implementing & Benchmarking Triple-DES

