
Dr. Finlay Smith

Room 430, IT Building

Finlay.smith@UniversityofGalway.ie

2

Introduction to Prolog

Prolog

3

 Used to solve problems involving objects, and relationships
between objects.

 The basics:
 Facts

 Questions

 Variables

 Conjunctions

 Rules

 Declaring Facts about objects and their relationships.

 Defining Rules about objects and their relationships.

 Asking Questions about objects and their relationships.

Prolog Syntax

4

 A program is a list/database of clauses.

 These clauses can be:

 Facts

 Relations

 Rules

 The logic database is queried.

 Program can be thought of as a storehouse of facts and rules.

 Conversational Language: The user can ask questions about the set
of facts and rules in the Prolog program.

Prolog Abstractions

5

 Data Structure: List

 Control:

Recursion.

Ordering of clauses.

Built-in control facilities:

cut operator, - should be avoided

fail, not.

Features of Prolog (Clocksin and Mellish)

6

• Several dialects

• Syntax relatively easy but writing efficient Prolog
programs is not so easy

• Prolog performs a task in response to a question
(query) from the programmer

• A question provides a conjunction of goals to be
satisfied

• Prolog uses known clauses in the database to try
satisfy the goals.

Facts and Backtracking

7

• A fact can cause a goal to be satisfied immediately
whereas a rule can only reduce the task to that of
satisfying a conjunction of sub goals.

• A clause can only be used if it matches the goal under
consideration.

• If a goal cannot be satisfied, backtracking will occur.

• Backtracking consists of reviewing what has been done
and attempting to re-satisfy the goals by finding the
alternative way to satisfying them.

• Prolog attempts to satisfy the goals in a conjunction in a
left to right order/top down manner.

Simple Facts

8

 Statements which are true in a given knowledge base

 In Prolog we can make some statements by using facts.

 Particular item

 A relation between items.

 We can represent the fact that it is sunny by writing the program:

sunny.

 We can now ask a query of Prolog by asking

?- sunny.

 ?- is the Prolog prompt.

 To this query, Prolog will answer yes. sunny is true

 Prolog matches it in its database of facts.

Syntax Rules for Facts

9

 Begin with a lowercase letter.

 End with a full stop.

 Any letter or number

combination

 …and underscore _

character.

 Names containing the

characters -, +, *, /, or other

mathematical operators should

be avoided.

sunny.

happy.

this_is_fun.

Logic database 1:

Examples

10

joe_gymnast. /* Joe is a gymnast */

mary_is_confused. /* Mary is confused*/

2happy_today. /* Incorrect syntax for fact */

foggy. /* It is foggy */

Ed_is_lost!!. /* Incorrect syntax for fact*/

 ?- raining.

 no

 ?- foggy.

 yes

Facts with Arguments

11

 More complicated facts consist of a relation and the items that

this refers to.

 These items are called arguments.

 Facts can have arbitrary number of arguments (zero upwards)

 A general model is shown below:

relation(<argument1>,<argument2>,....,<argumentN>).

 Relation names must begin with a lowercase letter

 likes(bill, cake).

Facts with Arguments

12

owns(joe,computer).

 “Joe owns the computer”

 Relationship: ownership

 Objects: Joe, Computer

 Directional: Joe owns the computer

Not: The computer owns Joe

Parts of a Fact

13

owns(joe,computer).

lowercase

relationship

round parentheses

objects

separated by commas

full stop at the end

Relations

14

• Used to declare “world” of relations

• Arguments may be

• Instantiated variable

• Un-instantiated variables

Database 2:

happy(ted).

sunny.

likes(ted, sun).

likes(ted, beer).

likes(ted, beach).

Querying the Database

15

 The database contains the facts from which the questions

are answered.

 A Question can look exactly like a fact:

likes(ted,sun).

 The difference is in which mode one is in…

Querying the Database

16

 Interactive question mode is indicated by:

 Question mark and dash ?-

 Question example: ?- likes(ted,sun).

 Meaning:

 If ted is interpreted as a person called Ted, and sun is

interpreted as the sun, then:

 ?- likes(ted,sun). means: Does Ted like the sun?

Variables and Unification

17

 When querying a database:

 In order to match arguments we must use a variable.

 The process of matching items with variables is known
as unification.

 Variables are distinguished by starting with a capital
letter.

 Examples;

 X /* Begins with capital letter */

 VaRiAbLe /* Can be made up of either case of letters */

 My_name /* we can link words together via '_') */

Querying Database 2

18

 ?- likes(ted, sun).

 yes

 ?- likes(ted, holidays).

 no

 What does ted like?

 ?- likes(ted, X). /* X is an un-instantiated variable */

 What will the result be?

happy(ted).

sunny.

likes(ted, sun).

likes(ted, beer).

likes(ted, beach).

Database 2:

Results

19

 X = sun ;

 X = beer ;

 X = beach ;

 no

Why did we receive these results?

?- likes(ted, X).

20

 2nd argument, X, is un-instantiated and may match anything,
provided ted is first argument.

Database searched from top to bottom.
 First match in database is X = sun, i.e. likes(ted, sun).
 sun is output
 The place of this clause in the database is marked so that X won’t be

instantiated to sun again on subsequent searches
 Backtracking occurs when we ask Prolog to keep searching (;) to see

if there are any more matches ..
 X is un-instantiated again and the search begins from after the

marking in database … thus next match is X = beer . beer is output
and database is marked.

 Backtracking occurs when we ask Prolog to keep searching (;) to see
if there are any more matches ..

 X is un-instantiated again and the search begins from after the
marking in database … thus next match is X = beach . beach is
output and database is marked.

 Backtracking occurs when we ask Prolog to keep searching (;) to see
if there are any more matches ..

 No more matches and have checked everything so Prolog outputs no

Place Marker

21

 The first match is found: X=sun.

 The user acknowledges.

 From that place on the next match is found

 The search continues.

 If at the place of the last instantiation no more match is

found: The answer will be: no.

22

 Try:

?- likes(Y, beach).

 Write out all steps as in previous example

happy(ted).

sunny.

likes(mary,beach).

likes(ted,beer).

likes(ted,beach).

Database

Conjunction

23

 A conjunction between the two terms will result in the

whole expression to evaluate to true if both terms evaluate

to true. If either or both terms in the expression

evaluate to false, the whole expression evaluates to false.

 The word "conjunction" is used mainly in the context of

logic and logic programming

 It is equivalent to an "AND" in Java, C++..

Conjunction Example

24

 In Prolog, a comma means a conjunction:

?- likes(john,mary), likes(mary,john).

 Answer: no

 A match for likes(john,mary)

 No match for likes(mary,john)

likes(mary,food).

likes(mary,wine).

likes(john,wine).

likes(john,mary).

Database

Conjunction using Variables

25

 Is there anything that both mary and john like?

 Find out what Mary likes and then see if John likes it:

?- likes(mary,X), likes(john,X).

Classification of Prolog

26

A language for programming in Logic

Relational

Descriptive

Declarative

