
CT5106
SOFTWARE ENGINEERING II

1: Introduction

Lecture Topics (not fully pinned down yet)

 Technical Side
 Web Application Development

 Servlets
 Java Server Pages
 Java Server Faces

 Enterprise Java Beans
 Session Beans
 Entity Beans
 Message Driven Beans

 Contexts and Dependency
Injection

 Persistence
 JDBC
 Java Persistence API

 Web Services with JAX-RS
 WebSocket

 Software Processes (DevOps)
Side
 Continuous Integration / Delivery

/ Deployment
 Project Management

Module Format

 1 assignment per week
 Exam at end of semester
 Marking: 50% exam + 50% CA

What is Java Enterprise

 The Java Platform, Enterprise Edition (Java EE) builds
upon the Java SE platform and provides a set of
technologies for developing and running portable,
robust, scalable, reliable and secure server-side
applications

 This means not just server-side web programming, but
also business logic, object persistence, messaging,
security,…

 It is built on the client-server model, and in particular
we will be looking at implementing MVC applications

Jakarta = Java EE (Enterprise Edition)

 Java EE is a set of (interoperable) API specifications
 Was known as JEE and J2EE – currently known as

Jakarta EE (handed over from Oracle to Eclipse
Foundation, Java EE 8 became Jakarta 8)
 Specifications created through a community approval

process

 Java EE 8 still widely deployed, and application
servers mainly support both Jakarta and Java EE

Some Important Java EE specifications

 Web Specifications
 Servlet- defines how you can manage HTTP requests either in a synchronous or

asynchronous way
 WebSocket- this API provides a set of APIs to facilitate WebSocket connections
 Java Server Faces- helps in building GUIs out of components.
 (Unified) Expression Language- a simple language which was designed to

facilitate web application developers.
 Web Service Specifications

 Java API for RESTful Web Services
 Java API for JSON Processing
 Java API for JSON Binding- for binding or parsing a JSON file into Java

classes.
 Java Architecture for XML Binding- for binding of xml into Java objects.
 Java API for XML Web Services- SOAP is an xml based protocol to access web

services over http. This API allows you to create SOAP web services.

Some Important Java EE specifications
(continued)

 Enterprise Specifications
 Contexts and Dependency Injection
 Enterprise JavaBean- APIs provided by object containers to provide transactions, remote

procedure calls, and concurrency control.
 Java Persistence API- object-relational mapping between relational database tables and

Java classes.
 Java Transaction API- It contains the interfaces and annotations to establish interaction

between transaction support offered by Java EE
 Java Message Service- It provides a common way to Java program to create, send and

read enterprise messaging system's messages.
 Other Specifications of Java EE

 Validation
 Batch applications- It provides the means to run long running background tasks which

involve a large volume of data and which need to be periodically executed.
 Java EE Connector Architecture- This is a Java-based technological solution for connecting

Java servers to Enterprise Information Systems

Overview

Java EE Server and Containers

 Java EE server: The runtime portion
of a Java EE product. A Java EE
server provides EJB and web
containers.

 EJB container: Manages the
execution of enterprise beans for
Java EE applications. Enterprise
beans and their container run on the
Java EE server.

 Web container: Manages the
execution of web pages, servlets,
and some EJB components for Java
EE applications. Web components
and their container run on the Java
EE server.

 Application client container:
Manages the execution of
application client components.
Application clients and their
container run on the client.

Application Servers

 Application Server – hosts your JEE application, running
the components you develop within containers, which
provide the interfaces to manage them, provide
security, transaction management,…

 Reference implementation of Java EE server, Glassfish,
also handed over to Eclipse

 Number of open source and commercial servers
(certified Java EE compliant) which you can deploy Java
EE applications on, e.g.
 Glassfish, Liberty (IBM), WildFly (Red Hat), Jboss (Red Hat),

WebLogic (Oracle), JEUS (TmaxSoft), InforSuite (Shandong),
Tomee (Apache), Payara (Payara), Interstage (Fujitsu),
NetWeaver (SAP)

Which application server?

 There are lot of commercial and open source
application servers for Java EE

 Each will have their versions, supporting different
versions of Java Enterprise spec, and sometimes not
100% of it
 For example Apace Tomcat supports servlets and JSP

(basic Java web components), whereas TomEE also
supports back-end business logic components
(enterprise java beans) and related specs

main Java EE Components

 Web applications: applications executed in a web
container and respond to HTTP requests from web
clients.
 Made of servlets, servlet filters, JSP pages, and JSF (Java

Server Faces).
 Servlets also support web services (endpoints)

 Enterprise Java Beans: container-managed components
for processing transactional business logic. They can be
accessed locally and remotely through RMI (or HTTP for
SOAP and RESTful web services).

Java EE Application

 In a Java EE application:
 The model -- business layer functionality represented

by JavaBeans or EJBs
 The view -- the presentation layer functionality

represented by JSPs or JSFs in a web application
 The controller -- Servlet mediating between model and

view

 Must accommodate input from various clients
including HTTP requests from web clients

EJB

 Server-side components
 Encapsulate business logic
 Take care of transactions and security
 Used in building business layers to sit on top of the

persistence layer and as an entry point for
presentation-tier technologies such as JSP, JSF

 Can be built by annotating a POJO that will be
deployed into a container

Type of EJBs

 Session beans and Message-driven Beans (MDBs)
 Session Beans are used to encapsulate high-level

business logic and can be
 Stateful: the state of the bean is maintained across multiple

method calls. The "state" refers to the values of its instance
variables. Because the client interacts with the bean, this
state is often called the conversational state. Stateful session
bean contains conversational state, which must be retained
across method invocations for a single user

 Stateless: contains no conversational state between
invocations, and any instance can be used for any client

 Singleton: A single session bean is shared between clients
and supports concurrent access

Packaging Java EE Web Application

 A web application module contains:
 servlets, JSPs, JSF pages, ejbs, and web services,
 as well as HTML and XHTML pages, Cascading Style

Sheets(CSS), JavaScripts, images, videos, and so on.
 All these artifacts are packaged in a jar file with a

.war extension -- i.e., a war file, or Web Archive
including
 web deployment descriptors such as WEB-INF/web.xml
 class files in WEB-INF/classes
 any dependent jar files in WEB-INF/lib

MVC Architecture

MVC Architecture

 Model:
 Represents the business data and any business logic that governs access to and

modification of the data. The model notifies views when it changes and lets the
view query the model about its state. It also lets the controller access application
functionality encapsulated by the model.

 View:
 The view renders the contents of a model. It gets data from the model and

specifies how that data should be presented. It updates data presentation when
the model changes. A view also forwards user input to a controller.

 Controller:
 The controller defines application behavior. It dispatches user requests and

selects views for presentation. It interprets user inputs and maps them into actions
to be performed by the model. In a web application, user inputs are HTTP GET
and POST requests. A controller selects the next view to display based on the
user interactions and the outcome of the model operations.

MVC- typical example

 Using the controller servlet to act as router / dispatcher for incoming HTTP
requests

 Session Bean acts as a façade hiding the complexity of the JPA interface,
while the JPA API does the object-relational mapping for us

 Java Server Pages for example display object data retrieved via session
bean

Web Application

 In Java EE platform, web components provide the
dynamic extension capabilities for a web server.
 Web components are either Java servlets, web pages,

web service endpoints, JSP pages, or JSFs

 A lot of web servers (e.g. Tomcat) support the Java
EE web specification, and there are plenty of
hosting services which support them

Can start small

 Pretty easy to build a robust web application just
using servlets, Java Server Pages and SQL
 E.g. https://bushansirgur.in/creating-mvc-database-web-application-

in-jsp-and-servlets-create-read-update-delete/

The View layer in Web Applications

 Display information according to client types
 Display result of business logic (Model)
 Not concerned with how the information was

obtained, or from where (since that is the
responsibility of Model)

Model layer in Web Application

 Models the data and behavior behind the business
process
 What it’s responsible for:
 Performing DB queries
 Calculating the business process
 Processing orders

 Encapsulation of data and behavior which are
independent of presentation

Controller in Web Application

 Serves as the logical connection between the user's
interaction and the business services on the back
end servers

 Responsible for making decisions among multiple
presentations
 e.g. User's language, locale or access level dictates a

different presentation.
 A request enters the application through the control

layer, which will decide how the request should be
handled and what information should be returned

Download and install Apache NetBeans
Install Application Server (Payara)
Create, Deploy and run test application

Getting Started

Download NetBeans

Choose relevant installer

Choose relevant installer

Run the installer

Running the installer

 Use ‘Services’
tab to add a
new application
server – this is
where your
application will
be deployed

 Use the
Payara server

 Java EE 8 version
seems to work /
be compatible
with the JDK
installed by the
NetBeans installer

 These options
work OK

 Creates an
instance of the
Payara server

 Leave username and
password blank for
now

 It will listen for HTTP
requests on port
8080

 The admin console
can be access via
port 4848

 Enable Hot Deploy,
so that the server
doesn’t have to be
restarted every time
you make a change
to an application re-
deploy it

Payara admin console (port 4848)

 Create a new
Web App,
using Maven as
the build tool

New Project to test installation OK

Choose Chrome as the default browser
to run this app with

This is just the web server returning
index.html

NetBeans 18 (latest version)

 Runs OK with JDK 17 for both Java Shell and Maven
 To check Java versions select Tools / Options

However

 the pom.xml (Maven build file) seems to be using an old version of a plugin
used to package the application into a .war file

 So changed to a later version (3.3.2) and it works OK

Now add a servlet

 Right click on project and select New/ Servlet

Specify package ‘servlets’ and give
the servlet a name

No need to select anything here - Finish

Run the application again and
call servlet using the URL specified

 See servlet code:

 @WebServlet(name = "NewServlet", urlPatterns = {"/NewServlet"})

Can also use “Run File”

 Right click in code in servlet and select Run File
 Gives you the option to specify request parameters

in the URL (e.g. for testing purposes)

Core method being used in servlet

 Servlets process HTTP requests – the default code created in NetBeans
redirects both GET and POST requests to the method processRequest

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet NewServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Servlet NewServlet at " + request.getContextPath() + "</h1>");

 out.println("</body>");

 out.println("</html>");

 } }

What to do this week

 Install NetBeans
 Create Web App
 Create servlet which returns your name, e.g.

	CT5106�Software Engineering II
	Lecture Topics (not fully pinned down yet)
	Module Format
	What is Java Enterprise
	Jakarta = Java EE (Enterprise Edition)
	Some Important Java EE specifications
	Some Important Java EE specifications (continued)
	Overview
	Java EE Server and Containers
	Application Servers
	Which application server?
	main Java EE Components
	Java EE Application
	EJB
	Type of EJBs
	Packaging Java EE Web Application
	MVC Architecture
	MVC Architecture
	MVC- typical example
	Web Application
	Can start small
	The View layer in Web Applications
	Model layer in Web Application
	Controller in Web Application
	Getting Started
	Download NetBeans
	Choose relevant installer
	Choose relevant installer
	Run the installer
	Running the installer
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Payara admin console (port 4848)
	New Project to test installation OK
	Slide Number 46
	Choose Chrome as the default browser to run this app with
	This is just the web server returning index.html
	NetBeans 18 (latest version)
	However
	Now add a servlet
	Specify package ‘servlets’ and give the servlet a name
	No need to select anything here - Finish
	Run the application again and�call servlet using the URL specified �
	Can also use “Run File”
	Core method being used in servlet
	What to do this week

