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Homework Assignment 2

[Homework Assignment 2 has started]

» Part 1: A written (i.e., Python-free) assignment. You can find the
details at https://www.niallmadden.ie/2425-CS4423/.
Specifically, the questions are at https:
//www.niallmadden.ie/2425-CS4423/CS4423-HW2-1.pdf. To
help you work on that, I've also prepared a “tutorial sheet” for
Questions 5-9, which you can work on in classes this week. See
https://www.niallmadden.ie/2425-CS4423/
CS4423-HW2-1-tutorial.pdf

» Part 2: A programming/networkx-based assignment, which will be
posted Thursday morning, and which are can work on next week.

» Deadline: 5pm. Friday, 28 March.

Questions?
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Outline

This weeks notes are split between PDF slides, and a Jupyter Notebook.

Recall: the Erdés-Rényi Geg(n, m) Expected size and average degree

model ® Ger(n, p)
Model B: Ger(n, p) Degree Distribution
Properties m Example

m Probability distributions m Poisson distribution

Slides are at:
https://www.niallmadden.ie/2425-CS4423
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Recall: the Erdés-Rényi Gggr(n, m) model

Last week we met:

ER Model Ggg(n, m): Uniform Random Graphs

Let n>1, IetN:(’z’) and let 0 < m < N.
The model Gggr(n, m) consists of the ensemble of graphs G on
the n nodes X = {0,1,...,n—1}, and m randomly selected

edges, chosen uniformly from the N = (J) possible edges.

Equivalently, one can choose uniformly at random one network in
the set G(n, m) of all networks on a given set of n nodes with

exactly m edges.
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Recall: the Erdos-Rényi Geg(n, m) model

How many different graphs are there in Gegr(4,3)7?
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Recall: the Erdos-Rényi Geg(n, m) model

One could think of G(n, m) as a probability distribution
P: G(n,m) — R, that assigns to each network G € G(n, m) the

same probability
P(G) = AN,
~\m/)

where N = (g)
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Recall: the Erdos-Rényi Ggg(n, m) model

Some networks drawn from Ggg(20, 15).

AL A,
\\ :NN:
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Model B: Ggg(n, p)

Erdos-Rényi: Randomly selected edges

ER Model G.z(n, p): Random Edges

Let n > 1, IetN:(g) and let 0 < p < 1.
The model Ggz(n, p) consists of the ensemble of graphs G on
the n nodes X = {0,1,...,n—1}, with each of the possible

N = () edges chosen with probability p.

The probability P(G) of a particular graph G = (X, E) with
X ={0,1,...,n—1} and m = |E| edges in the Gx(n, p) model is

P(G) = p"(1—p)" "
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Model B: Gggr(n, p)

[Some networks drawn from Ggg(20, 0.5).]

e,
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Model B: Gggr(n, p)

Of the two models, Ger(n, p) is the more studied. They are many
similarities, but they do differ. For example:

1. Ger(n, m) will have m edges with probability 1.

2. A graph in Gggr(n, p) with have m edges with probability
(m)P"(p = 1)V,

30 40 50 60 70 80 90 100
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Properties

We'd like to investigate (theoretically and computationally) the
properties of such graphs. For example

>

>
>
>

v

When might it be a tree?
Does it contain a tree, or other cycles? If so, how many?
When does it contain a small complete graph?

When does it contain a large component, larger than all
other components?

When does the network form a single connected
component?

How do these properties depend on n and m (or p)?
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Properties Probability distributions

Denote by G, the set of all graphs on the n points
X =10,...,n—1}.

Set N = ('2’) the maximal number of edges of a graph G € G,,.

Regard the ER models A and B as probability distributions
P:G,— R.

Notation: m Denote m(G): the number of edges of a graph G.

As we have seen, the probability of a specific graph G to be
sampled from the model G(n, m) is:

(N)_l, if m(G) = m,

m

Pic) = {0, else.

And the probability of a specific graph G to be sampled from the
model G(n, p) is:

PG — nM(1 _ A \N—m
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Expected size and average degree

Let's use the following notation:

» 3 is the expected value of property a (that is, as the graphs
vary across the ensemble produced by the model).

» (a) is the average of property a over all the nodes of a graph.
In G(n, m), the expected size is
m=m,

as every graph G in G(n, m) has exactly m edges. The expected

average degree is
2m

Ky = 22

(ky =27,
as every graph has average degree 2m/n.

Other properties of G(n, m) are less straightforward, and it is
easier to work with the G(n, p).
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Expected size and average degree Ger(n, p)

In G(n, p), with N = (7),
> the expected size is
m= pN
(Also: variance is 02, = Np(1 — p)).
» the expected average degree is (we'll see why soon):

(k) = p(n— 1)
with standard deviation o, = /p(1 — p)(n — 1).

» In particular, the relative standard deviation of the size of a
random model B graph is

om 1 \/ 2 2
m o pn( n—l n(k)y  n(n—1)

a quantity that converges to 0 as n — oo if p(n — 1) = (k),
the average node degree, is kept constant.
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Degree Distribution

Definition (Degree distribution)

The degree distribution p: Ng — R, k — py of a graph G is
defined as
s
Pk = —,
n

where, for k > 0, ny is the number of nodes of degree k in G.

This definition can be extended to ensembles of graphs with n
nodes (like the random graphs G(n, m) and G(n, p)), by setting

Pk = ﬁk/na

where n, denotes the expected value of the random variable ny
over the ensemble of graphs.
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Degree Distribution

The degree distribution in a random graph G(n, p) is a binomial
distribution

n—1 1 .
pk:( . )pk(l—p)" 1k _ Bin(n 1, p, k)

That is, in the G(n, p) model, the probability that a node has
degree k is py.

Also, the average degree of a randomly chosen node is

n—1

(k) = kpk = p(n—1)

k=0

(with standard deviation o = /p(1 — p)(n — 1)).
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Degree Distribution Example

Example (Q3(c) from 2023 /24 exam)

Suppose one constructed a graph G on 120 nodes by tossing a
(fair, 6-sided) die once for each possible edge, adding the edge
only if the die shows 3 or 6. Then pick a node at random in this
graph. What is the probability that this node has degree 507 (You
do not need to return a numerical value. It is enough to give an
explicit formula in terms of the given data.)
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Degree Distribution Poisson distribution

In general, it is not so easy to compute
n—1 1
( . >p"(1—p)” ok

However, in the limit n — oo, with (k) = p(n — 1) kept constant,
the binomial distribution Bin(n — 1, p, k) is well approximated by
the Poisson distribution

k

A
pk = e—*F = Pois(\, k),

where A\ = p(n —1).
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