
CT5191

CRYPTOGRAPHY AND NETWORK SECURITY

HASH FUNCTIONS AND MESSAGE AUTHENTICATION 

CODES

Dr. Michael Schukat



Lecture Overview
2

 In the previous lectures we have covered block and 

stream ciphers that provide data confidentiality

 In this slide deck we focus on data integrity, i.e., 

“Guarding against improper information modification or 

destruction, and includes ensuring information non-

repudiation and authenticity”

 Such integrity protection can be provided via

 Message authentication codes

 Hash functions



Recap: Types of Security Attacks on 

Information in Transit

 Integrity checks are particularly 
important for data in transit

 Here we need to consider the 
following active and passive attacks:

 Interception - of info-traffic flow, 
attacks confidentiality 

 Interruption - of service, 
attacks availability 

 Modification - of info, attacks integrity 

 Fabrication - of info, attacks 
authentication 

 In all these scenarios the attacker is a 
“Man-in-the-Middle” (MitM)



Recap: Passive Attacks

 Passive attacks are in the nature of eavesdropping 

or the monitoring of transmissions:

 Release of plaintext message content

 Traffic analysis of encrypted data communication

◼ Allows to analyse patterns of message exchange (sender, 

receiver, timing) rather than content

 Tools like Wireshark allow for passive attacks



Recap: Active Attacks

 Active attacks involve the modification or the creation 
of data in a stream:
 Masquerade

◼ Attacker pretends to be a legitimate sender or receiver of 
data

 Replay
◼ Attacker retransmits (encrypted) data which has been previously 

captured via eavesdropping

 Modification of message content
◼ Attacker intercepts a message in transit, modifies it and 

forwards it to the receiver 

 Denial of Service (DoS)
◼ Attacker Inhibits the normal use of communication services



Attack Scenario

 Your company sends the software patch as email attachment to all 
the clients

 The patch is encrypted using a secret key, which is pairwise shared 
with your clients

 However, an attacker can

 intercept these emails in transit, changes randomly a few bytes of the 
encrypted executable and forwards them to their destination, or

 forge a similar looking email with some random file attached that claims 
to be a bug fix

 Your clients replace the executable on their local machines, which 
of course won’t work and bring the entire factory floor to a halt

 → financial losses for your clients, huge reputational loss for your 
company!

 Therefore, your clients need some mechanism to validate the 
origin of the email, as well as the integrity of its content



Case Study 2: Weakness of Mode 

Block Cipher Modes

 In CBC, the IV is tagged to an encrypted message as plaintext (thereby allowing 
the receiver to decrypt the message), a MitM attacker can do changes in transit. 
Here:

 Flipping the ith IV-bit (1) flips also the ith plaintext bit (2)

 Flipping a ciphertext bit (3) will change the entire plaintext block (5), and the 
corresponding bit of the next plaintext block (4)

 Other modes show similar weaknesses, i.e. changing one bit in a single block of an 
encrypted message (in transit) will corrupt the correct decoding of a following 
blocks

 The receiver needs the ability to validate the integrity of the received message 
(blocks) !



Message Authentication Code (MAC)

 Message authentication = message integrity [+ source 
authentication]

 A MAC (also called authentication tag, fingerprint, or 
cryptographic checksum), is a short piece of information used 
for authenticating and integrity-checking a message

 A MAC condenses a variable-length message M using a secret 
key K and some algorithm C to a fixed-sized authenticator:
MAC = CK(M)

 After its calculation, the MAC is appended to the message 
before it is sent

 Note that the message:

 can have any length

 is not automatically encrypted!



Typical Use of a MAC (Wikipedia)

 If both MACs are identical, the receiver knows, that

 the message was not altered in transit,

 the message was sent by the alleged sender, and

 if the message includes a sequence number, that the sequence 
was not altered

 The term CMAC is used for 
a MAC that is calculated  
using a (block) cipher

 This contrasts to a HMAC,
where a hash function (later)
and a secret key is used



Typical CMAC Implementation

 Generally:

 Any modern block cipher may be used (i.e., it’s only DES in the example above)

 Message padding shall apply as seen before

 MAC = CK(M), where K is secret key and C is a symmetric block cipher (DES above)

 MAC guarantees message integrity AND source authentication

 This construction is also called Encrypt-then-MAC



Message Authentication Benefits

 In summary there are four types of attacks on data in transit, which 
are addressed by message authentication: 

 Masquerade: insertion of messages into the network from a fraudulent source

 Content modification

 Sequence modification: change the order of messages as they arrive

 Timing modification: delete or repeat messages

 Note that the above may require a unique (i.e. incremented) sequence 
number in every message

 Therefore, message authentication is concerned with: 

 Protecting the integrity of a message

 Validating identity of originator

 Validating sequencing and timeliness

 Non-repudiation of origin (dispute resolution)



Example: Authentication of TCP/IP 

Packets
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 In TCP/IP data communication, a MAC cannot only 

cover the payload (i.e., the TCP Data field), but also 

the TCP header, as well as the non-modifiable fields of 

the IP header



Basic Use Cases of CMACs

 M: Message

 K: Secret key

 C: Block cipher

 ¦¦:Concatenat
ion operation 



Case Study CMAC

 Assume you operate a distributed weather station with 

battery-operated sensors located across Ireland

 You use “public” networks (i.e. Wi-Fi, Internet) to collect 

data and send it for processing to a central hub in 

Galway 

 Which basic uses of a CMAC as shown in the previous 

slide would be most appropriate?

 In your suggestion consider data privacy concerns and 

energy budget



The AES-CBC-HMAC Mode
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 An example on how to combine 
authentication with a block 
cipher mode

 Based on CBC mode (top), but 
with additional  authentication 
(bottom)

 Here the HMAC takes a single 
variable length input, i.e. the 
concatenation of IV + ciphertext 
+ HMAC key, and creates a fix 
length authentication key

 The diagram is misleading as it shows two 
separate inputs

 How many secret keys would this 
scheme require?



Block Cipher Mode of Operation: The 

Galois / Counter Mode
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 What are weaknesses of the mode below and the AES-
CBC-HMAC Mode (previous slide), i.e.

 Can it be parallelised?

 Is a 16- to 64-bit DAC sufficient?



Block Cipher Mode of Operation: The 

Galois / Counter Mode
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 Extension of 

counter mode

 Recall advantages 

of this mode?



Block Cipher Mode of Operation: The 

Galois / Counter Mode
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 GCM provides both data authenticity (integrity) and confidentiality

 It belongs to the class of authenticated encryption with associated data 
(AEAD) methods, i.e. it takes as an input

 an initialisation vector IV

 a single secret key K,

 the plaintext P, and 

 some associated data AD

 It encrypts the plaintext (similar to counter mode) using the key to produce 
ciphertext C, and computes an authentication tag T from the ciphertext 
and the associated data (which remain unencrypted)

 A recipient with knowledge of K, upon reception of AD, C and T, can 
decrypt the ciphertext to recover the plaintext P and can check the tag T 
to ensure that neither ciphertext nor associated data were tampered with

 GCM uses a block cipher with block size 128 bits (i.e., AES-128), and uses 
arithmetic in the Galois field GF(2128) to compute the authentication tag

 That’s modular arithmetic with a modulus of 2128



Features of AEAD
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Block Cipher Mode of Operation: The 

Galois / Counter Mode
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 A 96-bit IV is concatenated with a 
32-bit counter (initialised with 0), 
i.e. (IV << 32) || C

 EK is AES with a 128 – 256 bit key 
(AES-128, AES-192 or AES-256)

 multH is a hash-function (later) that 
produces a 128-bit (hash) output

 Auth_Data_1 has a variable 
length (but its hash is 128-bit 
wide) 

 len(A) and and len(C) are 64-bit 
values that are the lengths (in 
bytes) of Auth_Data_1 and all 
ciphertext blocks respectively 

  is the bitwise XOR function



Hash Functions and HMAC

 A hash function produces a fixed size hash code (i.e. hash 
or fingerprint) based on a variable size input message

 A hash function 

◼ does not need a key

◼ guarantees the integrity of the message

 However, since a hash function is public and is not keyed, 
a hash value may have to be protected (i.e., encrypted)

 A HMAC (hash-based message authentication code) is a 
specific type of MAC involving a cryptographic hash function 
and a secret cryptographic key

 A HMAC verifies both message integrity and its authenticity

 Modern hash functions calculate 256 - 512-bit hashes



Basic Uses of HMACs

 M: Message

 H: Hash Function

 E: Block Cipher Encryption

 D: Block Cipher Decryption

 ¦¦: Concatenation operation 

Note:

 Scenario (a) (and (f) provide confidentiality 

and message authentication

 Scenario (b) (and (c)) provide message 

authentication only



Basic Uses of HMACs

 In scenarios (e) and (f) a symmetric secret seed S is used, which is 

shared between sender and receiver

 S is used to authenticate all messages exchanged between both 

endpoints

 Scenario (f) also uses a symmetric key K for confidentiality, which is 

independent from S



Case Study HMAC

 Assume you operate a distributed weather station 
with battery-operated sensors located across Ireland

 You use “public” networks (i.e. Wi-Fi, Internet) to 
collect data and send it for processing to a central 
hub in Galway 

 Which basic uses of a Hash function as shown in the 
previous slides would be most appropriate and 
efficient?



Requirements for a Hash Function H(x)

 One-way property (also called pre-image resistance):

For a given hash function H and a hash value h it is 

infeasible to find x such that H(x) = h

 I.e., it is virtually impossible to generate a message given a 

hash

 Such a situation is also called a hash collision

 Why is the one-way property important?

 See Figure (e): An opponent could intercept M || H(M, S),  

create inputs M || X (with some random value X), until a hash 

collision is found (i.e. S)



Requirements for a Hash Function H(x)

 Weak collision resistance (also called second pre-image 
resistance):
For a given hash function H and a known input x it is infeasible 
to find another input y with
y != x and H(x) = H(y)

 Why is the weak collision resistance important?

 See Figure (b): An opponent could 
◼ calculate h(M)(as both h and M are known)

◼ find an alternate message with the same hash code (a hash collision), and 

◼ send it  together with the encrypted (original) hash code to the receiver

 The receiver would not be able to realise that the original message 
had been tampered with
◼ Think of the previous software patch example 



Requirements for a Hash Function H(x)

 Strong collision resistance (also called collision resistance):

It is computational infeasible to find any pair of inputs (i.e., 

messages)  (x, y) with H(x) = H(y)

 Why is the strong collision resistance important?

 Again, see Figure (b), but this time the attack vector is different:

◼ Rather than intercepting a hashed message in transit, the attacker presents 

the signing authority a crafted authentic message that has the same hash 

as a fraudulent message 

◼ Generating such a crafted message is accommodated by the Birthday 

Paradox discussed earlier



Birthday Paradox Attack

 Rather than thinking of birthdays, we consider messages and their hashes

 In the BPA the attacker does not intercept a hashed message in transit, but 
presents the signing authority a crafted authentic message that has the 
same hash as a fraudulent message (HMAC use case b)

 For a hash value that is m-bit long, the attacker creates a large number 
(i.e., in the order of 20.5m) of variations of:
 correct messages

 fraudulent replacement messages

 The birthday paradox will make it more likely to find among both sets a 
correct message Mnice that has the same hash as a fraudulent message Mnasty

 Mnice is presented to the signing authority, who
 hashes the message

 encrypt the hash using the secret key (only known to the signing authority and the 
receiver)

 concatenate message and hash

 Before the message is sent off, the attacker replaces Mnice with Mnasty

 The receiver gets Mnasty, but will assume that it was signed (and send) by the 
signing authority



Birthday Paradox

 What is the minimum value k such that the probability is 

greater than 0.5 that at least 2 people in a group of k 

people have the same birthday, assuming that a year 

has 365 days?

 Intuitively someone would assume that 

k = 365 / 2 = 183

 Probability theory shows, that k = 23 is sufficient!



Birthday Paradox



BPA – How to create many 

Variations of a Message

 The example gives a 

letter in 237 variations



Case Study: Circulating Software 

using the BPA 

 This is a typical insider attack (here conducted by Grumpy George 
– GG –  a disgruntled lead engineer in your team)

 Again, your team develops an urgent software patch, which is 
hashed

 The 32-bit hash value is encoded using a symmetric key K, which is 
shared with your client

 The key is only known to you and you client, but not to GG

Software 

patch

Your authenticator 

(encrypted hash)

Client validates 

software patch



Case Study: Circulating Software 

via a Birthday Paradox Attack 

 GG as the lead engineer creates a large number of binary code versions for 
 software patches (to be presented to quality team)

 malicious software patches (to be circulated)

 How can GG create > 2 * 216 different source code variations?
 GG introduces in both source code files a new constant variable (e.g. long int) that is 

not otherwise used, e.g.
…
const unsigned long int var = 12; // possible values are 0 … 264-1

 GG then creates different source codes by systematically incrementing var
◼ GG is able to create 264 different versions of both programs if needs to be

 GG compiles each of those software versions and calculates their hash

 GG looks for a hash collision, i.e. a software patch and a malicious patch 
that have the same hash code

 GG present this software patch to quality team, who sign it using key K

 GG replaces the software with the malicious patch before sending it to the 
client   



Hash Function Execution (Example 

HAVAL)

 HAVAL creates a 256-bit fingerprint, for example:

 "The quick brown fox jumps over the lazy dog“
will be translated into the (256 bit) hash
“b89c551cdfe2e06dbd4cea2be1bc7d557416c58ebb4d07cb
c94e49f710c55be4”

 “The quick brown fox jumps over the lazy cog”
will be translated into the hash
“60983bb8c8f49ad3bea29899b78cd741f4c96e911bbc272e
5550a4f195a4077e”

 I.e. very similar inputs result in totally different outputs, 
there is no correlation between a hash and its original 
input



A naive Hash Function based on XOR

 Consider the XOR function :

 The input is broken into m blocks

 For the resulting hash value C, each bit Ci is calculated 

via

  Ci = bi1 bi2 bi3… bim

 Where 

 m = the number of n-bit blocks and 

 bij is the ith bit of the jth block



A naive Hash Function based on 

XOR

Bit 1 Bit 2 … Bit n

Block 1 b11 b21 bn1

Block 2 b12 b22 bn2

…

Block m b1m b2m bnm

Hash code C1 C2 Cn



A naive Hash Function based 

on XOR

 Consider the ASCII-encoded input “ABC” and a hash function H that 

calculates an 8-bit hash h:

◼ ASCII(A) = 6510 = 010000012

◼ ASCII(B) = 6610 = 010000102

◼ ASCII(C) = 6710 = 010000112

 Perform bitwise XOR to calculate hash value h:Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

A 0 1 0 0 0 0 0 1

B 0 1 0 0 0 0 1 0

C 0 1 0 0 0 0 1 1

h 0 1 0 0 0 0 0 0

H(“ABC”) = h = 6410 = “@”



A naive Hash Function based 

on XOR

 Does this algorithm fulfil the requirements of a hash function:

◼ One-way property?

◼ Weak collision resistance?

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

A 0 1 0 0 0 0 0 1

B 0 1 0 0 0 0 1 0

C 0 1 0 0 0 0 1 1

h 0 1 0 0 0 0 0 0

H(“ABC”) = 6410 = “@”



Example: 8-bit Hash Function 

based on XOR

 Fulfils requirements of hash function?

◼ One-way property? Certainly not!

◼ Weak collision resistance? H(“ABC”) = H(“@@@”) = H(“@@@@@@“)  = 

…

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

“@“ 0 1 0 0 0 0 0 0

“@“ 0 1 0 0 0 0 0 0

“@“ 0 1 0 0 0 0 0 0

h 0 1 0 0 0 0 0 0

H(“@@@”) = 6410 = “@”



A naive Hash Function based on rotating 

XOR

 Initially set the n-bit hash value to 0

 Process each successive n-bit block 
a follows:

 Rotate the current hash value to the 
left by one bit

 XOR the block into the hash value



Example: Simple Hash Function based on 

Rotating XOR

 Consider “ABCD”

 “AB” = 01000010 010000112 

 “CD” = 01000100 010001012 

 “CD” left-rotated = 10001000 100010102 

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0

h 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1

h = CBC916



Example: Simple Hash Function based on 

Rotating XOR

 Assume a password must be 

at least 2 ASCII-encoded 

characters long

 Fulfils requirements of hash 

Function?

 One-way property?

 Weak collision resistance?



Examples for Hash Algorithms  

 In order to meet the aforementioned requirements, a hash algorithm 
must
 be non-trivial

 calculate long hash values 

 Popular hash functions include:
 MD5:  

◼ Produces a 128-bit hash value

◼ Specified as Internet standards (RFC1321)

◼ Still has some popularity, but unsafe for years (broken via collision attacks) 

 SHA (Secure Hash Algorithm) - X: 
◼ Family of hash functions, designed by NIST & NSA

◼ SHA-3 (released 2015) produces  224-, 256-, 384- and 512-bits hash values

◼ Internet standard

 RIPEMD-160: 
◼ Creates a 160-bit hash value

◼ Developed in Europe

 See https://defuse.ca/checksums.htm 

https://defuse.ca/checksums.htm


FYI: MD5-An Overview



FYI: MD5-Processing of a Single 512 Bit Block (left) 

and Elementary MD5 Operation 



FYI: MD5-Table T



FYI: MD5-Primitive Functions and 

their Truth Tables

Round Primitive function g g(b, c, d)

1 F(b, c, d) (b AND c) OR (NOT b AND d)

2 G(b, c, d) (b AND d) OR (c AND NOT d)

3 H(b, c, d) B EXOR c EXOR d

4 I(a, b, c) C EXOR (b or NOT d)



Non-Cryptographic Hash Functions aka 

Checksums

 Checksums are designed to detect bit errors of files or data streams, e.g.

 Hard disk storage errors

 Data transmission errors

 CRC (Cyclic Redundancy Code) is a well know example

 Such checksums are too short and vulnerable to brute force attacks, and are not 
suitable for cryptographic purposes
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