
CT5191

CRYPTOGRAPHY AND NETWORK SECURITY

HASH FUNCTIONS AND MESSAGE AUTHENTICATION

CODES

Dr. Michael Schukat

Lecture Overview
2

 In the previous lectures we have covered block and

stream ciphers that provide data confidentiality

 In this slide deck we focus on data integrity, i.e.,

“Guarding against improper information modification or

destruction, and includes ensuring information non-

repudiation and authenticity”

 Such integrity protection can be provided via

 Message authentication codes

 Hash functions

Recap: Types of Security Attacks on

Information in Transit

 Integrity checks are particularly
important for data in transit

 Here we need to consider the
following active and passive attacks:

 Interception - of info-traffic flow,
attacks confidentiality

 Interruption - of service,
attacks availability

 Modification - of info, attacks integrity

 Fabrication - of info, attacks
authentication

 In all these scenarios the attacker is a
“Man-in-the-Middle” (MitM)

Recap: Passive Attacks

 Passive attacks are in the nature of eavesdropping

or the monitoring of transmissions:

 Release of plaintext message content

 Traffic analysis of encrypted data communication

◼ Allows to analyse patterns of message exchange (sender,

receiver, timing) rather than content

 Tools like Wireshark allow for passive attacks

Recap: Active Attacks

 Active attacks involve the modification or the creation
of data in a stream:
 Masquerade

◼ Attacker pretends to be a legitimate sender or receiver of
data

 Replay
◼ Attacker retransmits (encrypted) data which has been previously

captured via eavesdropping

 Modification of message content
◼ Attacker intercepts a message in transit, modifies it and

forwards it to the receiver

 Denial of Service (DoS)
◼ Attacker Inhibits the normal use of communication services

Attack Scenario

 Your company sends the software patch as email attachment to all
the clients

 The patch is encrypted using a secret key, which is pairwise shared
with your clients

 However, an attacker can

 intercept these emails in transit, changes randomly a few bytes of the
encrypted executable and forwards them to their destination, or

 forge a similar looking email with some random file attached that claims
to be a bug fix

 Your clients replace the executable on their local machines, which
of course won’t work and bring the entire factory floor to a halt

 → financial losses for your clients, huge reputational loss for your
company!

 Therefore, your clients need some mechanism to validate the
origin of the email, as well as the integrity of its content

Case Study 2: Weakness of Mode

Block Cipher Modes

 In CBC, the IV is tagged to an encrypted message as plaintext (thereby allowing
the receiver to decrypt the message), a MitM attacker can do changes in transit.
Here:

 Flipping the ith IV-bit (1) flips also the ith plaintext bit (2)

 Flipping a ciphertext bit (3) will change the entire plaintext block (5), and the
corresponding bit of the next plaintext block (4)

 Other modes show similar weaknesses, i.e. changing one bit in a single block of an
encrypted message (in transit) will corrupt the correct decoding of a following
blocks

 The receiver needs the ability to validate the integrity of the received message
(blocks) !

Message Authentication Code (MAC)

 Message authentication = message integrity [+ source
authentication]

 A MAC (also called authentication tag, fingerprint, or
cryptographic checksum), is a short piece of information used
for authenticating and integrity-checking a message

 A MAC condenses a variable-length message M using a secret
key K and some algorithm C to a fixed-sized authenticator:
MAC = CK(M)

 After its calculation, the MAC is appended to the message
before it is sent

 Note that the message:

 can have any length

 is not automatically encrypted!

Typical Use of a MAC (Wikipedia)

 If both MACs are identical, the receiver knows, that

 the message was not altered in transit,

 the message was sent by the alleged sender, and

 if the message includes a sequence number, that the sequence
was not altered

 The term CMAC is used for
a MAC that is calculated
using a (block) cipher

 This contrasts to a HMAC,
where a hash function (later)
and a secret key is used

Typical CMAC Implementation

 Generally:

 Any modern block cipher may be used (i.e., it’s only DES in the example above)

 Message padding shall apply as seen before

 MAC = CK(M), where K is secret key and C is a symmetric block cipher (DES above)

 MAC guarantees message integrity AND source authentication

 This construction is also called Encrypt-then-MAC

Message Authentication Benefits

 In summary there are four types of attacks on data in transit, which
are addressed by message authentication:

 Masquerade: insertion of messages into the network from a fraudulent source

 Content modification

 Sequence modification: change the order of messages as they arrive

 Timing modification: delete or repeat messages

 Note that the above may require a unique (i.e. incremented) sequence
number in every message

 Therefore, message authentication is concerned with:

 Protecting the integrity of a message

 Validating identity of originator

 Validating sequencing and timeliness

 Non-repudiation of origin (dispute resolution)

Example: Authentication of TCP/IP

Packets
12

 In TCP/IP data communication, a MAC cannot only

cover the payload (i.e., the TCP Data field), but also

the TCP header, as well as the non-modifiable fields of

the IP header

Basic Use Cases of CMACs

 M: Message

 K: Secret key

 C: Block cipher

 ¦¦:Concatenat
ion operation

Case Study CMAC

 Assume you operate a distributed weather station with

battery-operated sensors located across Ireland

 You use “public” networks (i.e. Wi-Fi, Internet) to collect

data and send it for processing to a central hub in

Galway

 Which basic uses of a CMAC as shown in the previous

slide would be most appropriate?

 In your suggestion consider data privacy concerns and

energy budget

The AES-CBC-HMAC Mode
15

 An example on how to combine
authentication with a block
cipher mode

 Based on CBC mode (top), but
with additional authentication
(bottom)

 Here the HMAC takes a single
variable length input, i.e. the
concatenation of IV + ciphertext
+ HMAC key, and creates a fix
length authentication key

 The diagram is misleading as it shows two
separate inputs

 How many secret keys would this
scheme require?

Block Cipher Mode of Operation: The

Galois / Counter Mode
16

 What are weaknesses of the mode below and the AES-
CBC-HMAC Mode (previous slide), i.e.

 Can it be parallelised?

 Is a 16- to 64-bit DAC sufficient?

Block Cipher Mode of Operation: The

Galois / Counter Mode
17

 Extension of

counter mode

 Recall advantages

of this mode?

Block Cipher Mode of Operation: The

Galois / Counter Mode
18

 GCM provides both data authenticity (integrity) and confidentiality

 It belongs to the class of authenticated encryption with associated data
(AEAD) methods, i.e. it takes as an input

 an initialisation vector IV

 a single secret key K,

 the plaintext P, and

 some associated data AD

 It encrypts the plaintext (similar to counter mode) using the key to produce
ciphertext C, and computes an authentication tag T from the ciphertext
and the associated data (which remain unencrypted)

 A recipient with knowledge of K, upon reception of AD, C and T, can
decrypt the ciphertext to recover the plaintext P and can check the tag T
to ensure that neither ciphertext nor associated data were tampered with

 GCM uses a block cipher with block size 128 bits (i.e., AES-128), and uses
arithmetic in the Galois field GF(2128) to compute the authentication tag

 That’s modular arithmetic with a modulus of 2128

Features of AEAD
19

Block Cipher Mode of Operation: The

Galois / Counter Mode
20

 A 96-bit IV is concatenated with a
32-bit counter (initialised with 0),
i.e. (IV << 32) || C

 EK is AES with a 128 – 256 bit key
(AES-128, AES-192 or AES-256)

 multH is a hash-function (later) that
produces a 128-bit (hash) output

 Auth_Data_1 has a variable
length (but its hash is 128-bit
wide)

 len(A) and and len(C) are 64-bit
values that are the lengths (in
bytes) of Auth_Data_1 and all
ciphertext blocks respectively

  is the bitwise XOR function

Hash Functions and HMAC

 A hash function produces a fixed size hash code (i.e. hash
or fingerprint) based on a variable size input message

 A hash function

◼ does not need a key

◼ guarantees the integrity of the message

 However, since a hash function is public and is not keyed,
a hash value may have to be protected (i.e., encrypted)

 A HMAC (hash-based message authentication code) is a
specific type of MAC involving a cryptographic hash function
and a secret cryptographic key

 A HMAC verifies both message integrity and its authenticity

 Modern hash functions calculate 256 - 512-bit hashes

Basic Uses of HMACs

 M: Message

 H: Hash Function

 E: Block Cipher Encryption

 D: Block Cipher Decryption

 ¦¦: Concatenation operation

Note:

 Scenario (a) (and (f) provide confidentiality

and message authentication

 Scenario (b) (and (c)) provide message

authentication only

Basic Uses of HMACs

 In scenarios (e) and (f) a symmetric secret seed S is used, which is

shared between sender and receiver

 S is used to authenticate all messages exchanged between both

endpoints

 Scenario (f) also uses a symmetric key K for confidentiality, which is

independent from S

Case Study HMAC

 Assume you operate a distributed weather station
with battery-operated sensors located across Ireland

 You use “public” networks (i.e. Wi-Fi, Internet) to
collect data and send it for processing to a central
hub in Galway

 Which basic uses of a Hash function as shown in the
previous slides would be most appropriate and
efficient?

Requirements for a Hash Function H(x)

 One-way property (also called pre-image resistance):

For a given hash function H and a hash value h it is

infeasible to find x such that H(x) = h

 I.e., it is virtually impossible to generate a message given a

hash

 Such a situation is also called a hash collision

 Why is the one-way property important?

 See Figure (e): An opponent could intercept M || H(M, S),

create inputs M || X (with some random value X), until a hash

collision is found (i.e. S)

Requirements for a Hash Function H(x)

 Weak collision resistance (also called second pre-image
resistance):
For a given hash function H and a known input x it is infeasible
to find another input y with
y != x and H(x) = H(y)

 Why is the weak collision resistance important?

 See Figure (b): An opponent could
◼ calculate h(M)(as both h and M are known)

◼ find an alternate message with the same hash code (a hash collision), and

◼ send it together with the encrypted (original) hash code to the receiver

 The receiver would not be able to realise that the original message
had been tampered with
◼ Think of the previous software patch example

Requirements for a Hash Function H(x)

 Strong collision resistance (also called collision resistance):

It is computational infeasible to find any pair of inputs (i.e.,

messages) (x, y) with H(x) = H(y)

 Why is the strong collision resistance important?

 Again, see Figure (b), but this time the attack vector is different:

◼ Rather than intercepting a hashed message in transit, the attacker presents

the signing authority a crafted authentic message that has the same hash

as a fraudulent message

◼ Generating such a crafted message is accommodated by the Birthday

Paradox discussed earlier

Birthday Paradox Attack

 Rather than thinking of birthdays, we consider messages and their hashes

 In the BPA the attacker does not intercept a hashed message in transit, but
presents the signing authority a crafted authentic message that has the
same hash as a fraudulent message (HMAC use case b)

 For a hash value that is m-bit long, the attacker creates a large number
(i.e., in the order of 20.5m) of variations of:
 correct messages

 fraudulent replacement messages

 The birthday paradox will make it more likely to find among both sets a
correct message Mnice that has the same hash as a fraudulent message Mnasty

 Mnice is presented to the signing authority, who
 hashes the message

 encrypt the hash using the secret key (only known to the signing authority and the
receiver)

 concatenate message and hash

 Before the message is sent off, the attacker replaces Mnice with Mnasty

 The receiver gets Mnasty, but will assume that it was signed (and send) by the
signing authority

Birthday Paradox

 What is the minimum value k such that the probability is

greater than 0.5 that at least 2 people in a group of k

people have the same birthday, assuming that a year

has 365 days?

 Intuitively someone would assume that

k = 365 / 2 = 183

 Probability theory shows, that k = 23 is sufficient!

Birthday Paradox

BPA – How to create many

Variations of a Message

 The example gives a

letter in 237 variations

Case Study: Circulating Software

using the BPA

 This is a typical insider attack (here conducted by Grumpy George
– GG – a disgruntled lead engineer in your team)

 Again, your team develops an urgent software patch, which is
hashed

 The 32-bit hash value is encoded using a symmetric key K, which is
shared with your client

 The key is only known to you and you client, but not to GG

Software

patch

Your authenticator

(encrypted hash)

Client validates

software patch

Case Study: Circulating Software

via a Birthday Paradox Attack

 GG as the lead engineer creates a large number of binary code versions for
 software patches (to be presented to quality team)

 malicious software patches (to be circulated)

 How can GG create > 2 * 216 different source code variations?
 GG introduces in both source code files a new constant variable (e.g. long int) that is

not otherwise used, e.g.
…
const unsigned long int var = 12; // possible values are 0 … 264-1

 GG then creates different source codes by systematically incrementing var
◼ GG is able to create 264 different versions of both programs if needs to be

 GG compiles each of those software versions and calculates their hash

 GG looks for a hash collision, i.e. a software patch and a malicious patch
that have the same hash code

 GG present this software patch to quality team, who sign it using key K

 GG replaces the software with the malicious patch before sending it to the
client

Hash Function Execution (Example

HAVAL)

 HAVAL creates a 256-bit fingerprint, for example:

 "The quick brown fox jumps over the lazy dog“
will be translated into the (256 bit) hash
“b89c551cdfe2e06dbd4cea2be1bc7d557416c58ebb4d07cb
c94e49f710c55be4”

 “The quick brown fox jumps over the lazy cog”
will be translated into the hash
“60983bb8c8f49ad3bea29899b78cd741f4c96e911bbc272e
5550a4f195a4077e”

 I.e. very similar inputs result in totally different outputs,
there is no correlation between a hash and its original
input

A naive Hash Function based on XOR

 Consider the XOR function :

 The input is broken into m blocks

 For the resulting hash value C, each bit Ci is calculated

via

 Ci = bi1 bi2 bi3… bim

 Where

 m = the number of n-bit blocks and

 bij is the ith bit of the jth block

A naive Hash Function based on

XOR

Bit 1 Bit 2 … Bit n

Block 1 b11 b21 bn1

Block 2 b12 b22 bn2

…

Block m b1m b2m bnm

Hash code C1 C2 Cn

A naive Hash Function based

on XOR

 Consider the ASCII-encoded input “ABC” and a hash function H that

calculates an 8-bit hash h:

◼ ASCII(A) = 6510 = 010000012

◼ ASCII(B) = 6610 = 010000102

◼ ASCII(C) = 6710 = 010000112

 Perform bitwise XOR to calculate hash value h:Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

A 0 1 0 0 0 0 0 1

B 0 1 0 0 0 0 1 0

C 0 1 0 0 0 0 1 1

h 0 1 0 0 0 0 0 0

H(“ABC”) = h = 6410 = “@”

A naive Hash Function based

on XOR

 Does this algorithm fulfil the requirements of a hash function:

◼ One-way property?

◼ Weak collision resistance?

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

A 0 1 0 0 0 0 0 1

B 0 1 0 0 0 0 1 0

C 0 1 0 0 0 0 1 1

h 0 1 0 0 0 0 0 0

H(“ABC”) = 6410 = “@”

Example: 8-bit Hash Function

based on XOR

 Fulfils requirements of hash function?

◼ One-way property? Certainly not!

◼ Weak collision resistance? H(“ABC”) = H(“@@@”) = H(“@@@@@@“) =

…

Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

“@“ 0 1 0 0 0 0 0 0

“@“ 0 1 0 0 0 0 0 0

“@“ 0 1 0 0 0 0 0 0

h 0 1 0 0 0 0 0 0

H(“@@@”) = 6410 = “@”

A naive Hash Function based on rotating

XOR

 Initially set the n-bit hash value to 0

 Process each successive n-bit block
a follows:

 Rotate the current hash value to the
left by one bit

 XOR the block into the hash value

Example: Simple Hash Function based on

Rotating XOR

 Consider “ABCD”

 “AB” = 01000010 010000112

 “CD” = 01000100 010001012

 “CD” left-rotated = 10001000 100010102

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0

h 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1

h = CBC916

Example: Simple Hash Function based on

Rotating XOR

 Assume a password must be

at least 2 ASCII-encoded

characters long

 Fulfils requirements of hash

Function?

 One-way property?

 Weak collision resistance?

Examples for Hash Algorithms

 In order to meet the aforementioned requirements, a hash algorithm
must
 be non-trivial

 calculate long hash values

 Popular hash functions include:
 MD5:

◼ Produces a 128-bit hash value

◼ Specified as Internet standards (RFC1321)

◼ Still has some popularity, but unsafe for years (broken via collision attacks)

 SHA (Secure Hash Algorithm) - X:
◼ Family of hash functions, designed by NIST & NSA

◼ SHA-3 (released 2015) produces 224-, 256-, 384- and 512-bits hash values

◼ Internet standard

 RIPEMD-160:
◼ Creates a 160-bit hash value

◼ Developed in Europe

 See https://defuse.ca/checksums.htm

https://defuse.ca/checksums.htm

FYI: MD5-An Overview

FYI: MD5-Processing of a Single 512 Bit Block (left)

and Elementary MD5 Operation

FYI: MD5-Table T

FYI: MD5-Primitive Functions and

their Truth Tables

Round Primitive function g g(b, c, d)

1 F(b, c, d) (b AND c) OR (NOT b AND d)

2 G(b, c, d) (b AND d) OR (c AND NOT d)

3 H(b, c, d) B EXOR c EXOR d

4 I(a, b, c) C EXOR (b or NOT d)

Non-Cryptographic Hash Functions aka

Checksums

 Checksums are designed to detect bit errors of files or data streams, e.g.

 Hard disk storage errors

 Data transmission errors

 CRC (Cyclic Redundancy Code) is a well know example

 Such checksums are too short and vulnerable to brute force attacks, and are not
suitable for cryptographic purposes

	Slide 1: CT5191 Cryptography and network security Hash functions and message authentication codes
	Slide 2: Lecture Overview
	Slide 3: Recap: Types of Security Attacks on Information in Transit
	Slide 4: Recap: Passive Attacks
	Slide 5: Recap: Active Attacks
	Slide 6: Attack Scenario
	Slide 7: Case Study 2: Weakness of Mode Block Cipher Modes
	Slide 8: Message Authentication Code (MAC)
	Slide 9: Typical Use of a MAC (Wikipedia)
	Slide 10: Typical CMAC Implementation
	Slide 11: Message Authentication Benefits
	Slide 12: Example: Authentication of TCP/IP Packets
	Slide 13: Basic Use Cases of CMACs
	Slide 14: Case Study CMAC
	Slide 15: The AES-CBC-HMAC Mode
	Slide 16: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 17: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 18: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 19: Features of AEAD
	Slide 20: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 21: Hash Functions and HMAC
	Slide 22: Basic Uses of HMACs
	Slide 23: Basic Uses of HMACs
	Slide 24: Case Study HMAC
	Slide 25: Requirements for a Hash Function H(x)
	Slide 26: Requirements for a Hash Function H(x)
	Slide 27: Requirements for a Hash Function H(x)
	Slide 28: Birthday Paradox Attack
	Slide 29: Birthday Paradox
	Slide 30: Birthday Paradox
	Slide 31: BPA – How to create many Variations of a Message
	Slide 32: Case Study: Circulating Software using the BPA
	Slide 33: Case Study: Circulating Software via a Birthday Paradox Attack
	Slide 34: Hash Function Execution (Example HAVAL)
	Slide 35: A naive Hash Function based on XOR
	Slide 36: A naive Hash Function based on XOR
	Slide 37: A naive Hash Function based on XOR
	Slide 38: A naive Hash Function based on XOR
	Slide 39: Example: 8-bit Hash Function based on XOR
	Slide 40: A naive Hash Function based on rotating XOR
	Slide 41: Example: Simple Hash Function based on Rotating XOR
	Slide 42: Example: Simple Hash Function based on Rotating XOR
	Slide 44: Examples for Hash Algorithms
	Slide 45: FYI: MD5-An Overview
	Slide 46: FYI: MD5-Processing of a Single 512 Bit Block (left) and Elementary MD5 Operation
	Slide 47: FYI: MD5-Table T
	Slide 48: FYI: MD5-Primitive Functions and their Truth Tables
	Slide 49: Non-Cryptographic Hash Functions aka Checksums

