N

CT5191
CRYPTOGRAPHY AND NETWORK SECURITY

HASH FUNCTIONS AND MESSAGE AUTHENTICATION
CODES

Dr. Michael Schukat

Lecture Overview
N

0 In the previous lectures we have covered block and
stream ciphers that provide data confidentiality

0 In this slide deck we focus on data integrity, i.e.,
“Guarding against improper information modification or
destruction, and includes ensuring information non-
repudiation and authenticity”

0 Such integrity protection can be provided via
0 Message authentication codes

0 Hash functions

Recap: Types of Security Attacks on

Information in Transit
e

0 Integrity checks are particularly

important for data in transit 0 0
0 Here we need to consider the o o
fO”OWing QCiive Cmd pQSSive QH'QCkS: (a) Normal flow

O Interception - of info-traffic flow,

attacks confidentiality O—'| O O é) ’O

O Interruption - of service,
attacks availability

(b) Interruption (c) Interception

O Modification - of info, attacks integrity

o Fabrication - of info, attacks

authentication O g O O

0 In all these scenarios the attacker is a

1 H . (d) Modificati (e) Fabricati
“Man-in-the-Middle” (MitM) ifation ¢ Fabriction

Recap: Passive Attacks
N

0 Passive attacks are in the nature of eavesdropping
or the monitoring of transmissions:

O Release of plaintext message content

O Traffic analysis of encrypted data communication

m Allows to analyse patterns of message exchange (sender,
receiver, timing) rather than content

0 Tools like Wireshark allow for passive attacks

Recap: Active Attacks
N

0 Active attacks involve the modification or the creation
of data in a stream:

0 Masquerade

m Attacker pretends to be a legitimate sender or receiver of
data

O Replay

m Attacker retransmits (encrypted) data which has been previously
captured via eavesdropping

o Modification of message content

m Attacker intercepts a message in transit, modifies it and
forwards it to the receiver

0 Denial of Service (DoS)
m Attacker Inhibits the normal use of communication services

Attack Scenario
B

0 Your company sends the software patch as email attachment to all
the clients

0 The patch is encrypted using a secret key, which is pairwise shared
with your clients
0 However, an attacker can

O intercept these emails in transit, changes randomly a few bytes of the
encrypted executable and forwards them to their destination, or

o0 forge a similar looking email with some random file attached that claims
to be a bug fix

0 Your clients replace the executable on their local machines, which
of course won’t work and bring the entire factory floor to a halt
0 -2 financial losses for your clients, huge reputational loss for your
company!

0 Therefore, your clients need some mechanism to validate the
origin of the email, as well as the integrity of its content

Case Study 2: Weakness of Mode

Block Cipher Modes

0 In CBC, the IV is tagged to an encrypted message as plaintext (thereby allowing
the receiver to decrypt the message), a MitM attacker can do changes in transit.

Here:
O Flipping the i IV-bit (1) flips also the i plaintext bit (2)

O Flipping a ciphertext bit (3) will change the entire plaintext block (5), and the

corresponding bit of the next plaintext block (4)

0 Other modes show similar weaknesses, i.e. changing one bit in a single block of an
encrypted message (in transit) will corrupt the correct decoding of a following

blocks

0 The receiver needs the ability to validate the integrity of the received message

(blocks) !

Ciphertext g Cipheraxt
I ITTTTJTITTIITT]

Kay

¢

Plaintext 5

aE
Plaintext E

Ciphertext

K AES K AES
By decryption ey decryption

&

B

4
ITTTTTT]

e

Plaintaxt

Message Authentication Code (MAC)

0 Message authentication = message integrity [+ source
authentication]

0 A MAC (also called authentication tag, fingerprint, or
cryptographic checksum), is a short piece of information used
for authenticating and integrity-checking a message

0 A MAC condenses a variable-length message M using a secret
key K and some algorithm C to a fixed-sized authenticator:

MAC = C (M)
0 After its calculation, the MAC is appended to the message
before it is sent

0 Note that the message:
O can have any length
O is not automatically encrypted!

Typical Use of a MAC (Wikipedia)

0 If both MACs are identical, the receiver knows, that
O the message was not altered in transit,
O the message was sent by the alleged sender, and

o0 if the message includes a sequence number, that the sequence
was not altered

0 The term CMAC is used for

q MAC thqf iS CGICUIGTed MESSAGE MESSAGE
using a (block) cipher i\ /’ |
o This contrasts to a HMAC, ey (0> [igorithm T Mac] T Y * ~*|gerithm
. el
where a hash function (later) | \ |
. [IMAC| [MAC|—»> +[MAC
and a secret key is used Had mad é} mad
MAC: If the same MAC is found: then
Message Authentication Code itrr:ti Tﬁssfr?scte?jumentic and
Else(h::J soinething is not right.

Typical CMAC Implementation

Time =1 Time =2 Time=~N-1 Time=N
Dy
(64 bhits)

D> Dyv_j

DES . DES ”
K St K L K DES
(56 bits) Encrypt Encrypt ¢ e Encrypt
h J 4 ' Y h 4
0 0 | Oy Oy
(64 bits) 2 L. N-1 N

——

DAC
(16 to 64 bits)

0 Generally:

O Any modern block cipher may be used (i.e., it’s only DES in the example above)
Message padding shall apply as seen before
MAC = C (M), where K is secret key and C is a symmetric block cipher (DES above)
MAC guarantees message integrity AND source authentication

This construction is also called Encrypt-then-MAC

Message Authentication Benefits
S =

0 In summary there are four types of attacks on data in transit, which
are addressed by message authentication:
O Masquerade: insertion of messages into the network from a fraudulent source
o Content modification
O Sequence modification: change the order of messages as they arrive
o Timing modification: delete or repeat messages

0 Note that the above may require a unique (i.e. incremented) sequence
number in every message

0 Therefore, message authentication is concerned with:
O Protecting the integrity of a message
O Validating identity of originator
O Validating sequencing and timeliness

0 Non-repudiation of origin (dispute resolution)

Example: Authentication of TCP/IP

Packets
N

0 In TCP/IP data communication, a MAC cannot only
cover the payload (i.e., the TCP Data field), but also

the TCP header, as well as the non-modifiable fields of
the IP header

ETHEEMET FRAME

Cvest hatich Saoutce
elhethet
addbess addre=s

/ 1P FPACKET

Frotacal Crata

Checksum

\

Length

Protacol

Checksum

Soutce
1P address

Desti nation
1P address

Crata

/T':E| FACKET

\

Sootee TCP
address

Drestinatioh
TCP address

SEQ | ack

Basic Use Cases of CMACs

- Source——

+—Destination——— =] M: MGSSCIge

<

K

'

Compare

!

M e M
K !
% lf
£
c CKIM)
ia) Message authentication
M L

(b} Message authentication and confidentiality: authentication tied to plaintext

Egal M| CgytM)]

EgalM]

M

M

Koo =
2y
Cro My

0 K: Secret key
0 C: Block cipher

0 | | :Concatenat
ion operation

Compare

¥ ¥
Compare

Kj

*

&
C (EgalM1)

i) Message authentication and confidentiality: authentication tied to ciphertext

M

Case Study CMAC

0 Assume you operate a distributed weather station with
battery-operated sensors located across Ireland

0 You use “public” networks (i.e. Wi-Fi, Internet) to collect
data and send it for processing to a central hub in
Galway

0 Which basic uses of a CMAC as shown in the previous
slide would be most appropriate?

O In your suggestion consider data privacy concerns and
energy budget

The AES-CBC-HMAC Mode

0 An example on how to combine

authentication with a block CCLLLLITTTT LTI L
Clph er mode Initialization vEctoE % 45
0 Based on CBC mode (top), but ey —| Dlock cipher | |y | blockcipher | | g | block cipher
with additional authentication — — |
(bottom) e ohenent e ohenet T Cohenext |
0 Here the HMAC takes a single Cipher Block Chaining (CBC) mode encryption

variable length input, i.e. the
concatenation of IV + ciphertext
+ HMAC key, and creates a fix o MACKey
length authentication key

O The diagram is misleading as it shows two
separate inputs

0 How many secret keys would this " S—— authenticaton tag
Scheme require? LITTTTTTTTITTTITT] COTTTTTT I T T I T AT I T I T T AT T | LTI T I T T ITTIT70d

Block Cipher Mode of Operation: The

Galois ‘ Counter Mode
s

0 What are weaknesses of the mode below and the AES-
CBC-HMAC Mode (previous slide), i.e.
o0 Can it be parallelised?
Ols a 16- to 64-bit DAC sufficient?

Time =1 Time =2 Time=N-1 Time=N

)]
(64 b]itsl " DA-1 Dy

(64 bits)

DAC
(16 to 64 bits)

Block Cipher Mode of Operation: The
Galois / Counter Mode

0 Extension of
counter mode

0 Recall advantages
of this mode?

Nonce Counter Nonce Counter Nonce Counter
c58hbcf35. elelelelelelele] c58bcf35. olelelelelelenl c58bcf35. [olelelelelele)
OTTTTTITTTT OTTTTTITTTT1 TTTTTTTTITT
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
Plaintext ? Plaintext ? Plaintext ?
OTTTTTTTITT OTTTTTITTTT TTTTITTTTT7
OTTTTTITTTT OTTTTTITTTT1 TITTTTTTITT
Ciphertext Ciphertext Ciphertext

Counter (CTR) mode encryption

Nonce Counter Nonce Counter Nonce Counter
c58bcf35. elelelelelelele] c58bcf35. [eleleelclelenl c58bcf35. [eleleleleleler
LITITIITTIT LITITIITITT CITITTITTIT
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
Ciphertext—n? Ciphertext—:-% Ciphertext ———=
I TTTITTITT I TTTTITTIT T TITITTITTT
T TTTITITT TTTTTITTIT I TTTITTIT1T
Plaintext Plaintext Plaintext

Counter (CTR) mode decryption

Block Cipher Mode of Operation: The

Galois ‘ Counter Mode
i

0 GCM provides both data authenticity (integrity) and confidentiality

0 It belongs to the class of authenticated encryption with associated data
(AEAD) methods, i.e. it takes as an input

O an initialisation vector IV
O a single secret key K,
O the plaintext P, and
O some associated data AD
0 It encrypts the plaintext (similar to counter mode) using the key to produce

ciphertext C, and computes an authentication tag T from the ciphertext
and the associated data (which remain unencrypted)

0 A recipient with knowledge of K, upon reception of AD, C and T, can
decrypt the ciphertext to recover the plaintext P and can check the tag T
to ensure that neither ciphertext nor associated data were tampered with

0 GCM uses a block cipher with block size 128 bits (i.e., AES-128), and uses
arithmetic in the Galois field GF(2'28) to compute the authentication tag

o That's modular arithmetic with a modulus of 2128

Features of AEAD

key OxXBES6E. ..

AN

L
& a

A key DXBBEE...
plaintext "hellc" AEAD
ad “from alice” encrypt

ciphertext+tag 0x&eala. ..

1. Alice and Bob meet in real life to agree on a key.

1. Alice can now use it to encrypt messages with
an AEAD algorithm and the symmetric key.
She can also add some optional associated data.

o
« = = ciphertext+tag D:-:-Eeﬂe...—l*'

ﬂ *— ciphertext+tag 0xTa0e...

ﬁ key 0xXB83866...
ciphertext+tag ox7zoe... AEAD
ad "from alice” decrypt

errer

3. The ciphertext and tag are sent to Bob.
An observer on the way intercepts them
and modifies the ciphertext.

4. Bob uses the AEAD decryption algorithm on
the modified ciphertext with the same key.
The decryption falls.

Block Cipher Mode of Operation: The

Galois ‘ Counter Mode
20

0 A 96-bit IV is concatenated witha [v]
32-bit counter (initialised with 0), - _ - _ __
e (IV<<32) || C [Comero 1~)—»|c1 (e)—{ ¢ |

o Eyis AES with a 128 — 256 bit key (& | (-

(AES-128, AES-192 or AES-256)

_

k.

WU
"

0 mult, is a hash-function (later) that =
produces a 128-bit (hash) output [Cipnertori 1] Clphariext 2
O Auth_Data_1 has a variable A
N

length (but its hash is 128-bit

wide) (e) [}—

0 len(A) and and len(C) are 64-bit

, |E_ D
@k

values that are the lengths (in [Auth Data 1 |
bytes) of Auth_Data_1 and all :
ciphertext blocks respectively [o
0 € is the bitwise XOR function P
W

Auth Tag

i

Hash Functions and HMAC

0 A hash function produces a fixed size hash code (i.e. hash
or fingerprint) based on a variable size input message

O A hash function
® does not need a key
W guarantees the integrity of the message

0 However, since a hash function is public and is not keyed,
a hash value may have to be protected (i.e., encrypted)

o0 A HMAC (hash-based message authentication code) is a
specific type of MAC involving a cryptographic hash function
and a secret cryptographic key

0 A HMAC verifies both message integrity and its authenticity
0 Modern hash functions calculate 256 - 512-bit hashes

Basic Uses of HMACs

o o o o O

I A L S

-+ Source

M

(1)

(a)

K

M

Egl M| H(M) | ko

Destination—— =

M

‘ —— = Compare

ib)

Message

Hash Function

Block Cipher Encryption
Block Cipher Decryption

Concatenation operation

= % @
o K Comparg
o 1
o D
Egc| HiM) |
Note:
0 Scenario (a) (and (f) provide confidentiality
and message authentication
O Scenario (b) (and (c)) provide message

authentication only

Basic Uses of HMACSs
e

0 In scenarios (e) and (f) a symmetric secret seed S is used, which is
shared between sender and receiver

0 S is used to authenticate all messages exchanged between both
endpoints

0 Scenario (f) also uses a symmetric key K for confidentiality, which is
independent from S

M

S| S

g Compare
I
s Hqii S

(e}

> M g

Compare
< o
Eg[MIHMI$] &,
]Ii.{l 5)

Case Study HMAC

0 Assume you operate a distributed weather station
with battery-operated sensors located across Ireland

0 You use “public” networks (i.e. Wi-Fi, Internet) to
collect data and send it for processing to a central
hub in Galway

0 Which basic uses of a Hash function as shown in the
previous slides would be most appropriate and
efficient?

Requirements for a Hash Function H(x)
B

0 One-way property (also called pre-image resistance):
For a given hash function H and a hash value h it is
infeasible to find x such that H(x) = h

o l.e., it is virtually impossible to generate a message given a
hash

0 Such a situation is also called a hash collision
0 Why is the one-way property important?

0 See Figure (e): An opponent could intercept M | | H(M, S),
create inputs M | | X (with some random value X), until a hash
collision is found (i.e.)

Requirements for a Hash Function H(x)

S
0 Weak collision resistance (also called second pre-image
resistance):

For a given hash function H and a known input X it is infeasible
to find another ing;u’r v with

vy 1= x and H(x) = H(y)

0 Why is the weak collision resistance important?

O See Figure (b): An opponent could
m calculate h (M) (as both h and M are known)
m find an alternate message with the same hash code (a hash collision), and
® send it together with the encrypted (original) hash code to the receiver

O The receiver would not be able to realise that the original message
had been tampered with

m Think of the previous software patch example

Requirements for a Hash Function H(x)
B

0 Strong collision resistance (also called collision resistance):
It is computational infeasible to find any pair of inputs (i.e.,
messages) (x, y) withH(x) = H(y)

0 Why is the strong collision resistance important?

O Again, see Figure (b), but this time the attack vector is different:

® Rather than intercepting a hashed message in transit, the attacker presents
the signing authority a crafted authentic message that has the same hash
as a fraudulent message

m Generating such a crafted message is accommodated by the Birthday
Paradox discussed earlier

Birthday Paradox Attack

0 Rather than thinking of birthdays, we consider messages and their hashes

0 In the BPA the attacker does not intercept a hashed message in transit, but
presents the signing authority a crafted authentic message that has the
same hash as a fraudulent message (HMAC use case b)

0 For a hash value that is m-bit long, the attacker creates a large number
(i.e., in the order of 29°M) of variations of:
O correct messages
0 fraudulent replacement messages
0 The birthday paradox will make it more likely to find among both sets a
correct message M. . that has the same hash as a fraudulent message M
O M, is presented to the signing authority, who
O hashes the message

O encrypt the hash using the secret key (only known to the signing authority and the
receiver)

O concatenate message and hash
0 Before the message is sent off, the attacker replaces M, . with

0 The receiver gets M but will assume that it was signed (and send) by the
signing authority

nasty

nasty’

Birthday Paradox

0 What is the minimum value k such that the probability is
greater than 0. 5 that at least 2 people in a group of k

people have the same birthday, assuming that a year
has 365 days?

0 Intuitively someone would assume that

k =365 / 2 = 183

0 Probability theory shows, that k = 23 is sufficient!

Birthday Paradox

0.9

0.8

0.6
0.5 /
0.4 /
0.3
2

/

0.1 /
{

BPA — How to create many
Variations of a Message

Dear Anthony,

{Thls let?e¥ 15} to introduce {you to} {Mr.} Alfred {P']
I am writing to you == —

0 The example gives o
37

Barton, the { new } {ChlEf

newly appointed| |senior

[] []
t th uropean area will take the
VArIATIONS wertem Pl favision) - vefias eaka) over (2]

P all . X watches and jewellery
responsibility for {the whole of} our interests in {jewellery and watches}

} jewellery buyer for {our}

the

letter in

area

in the { .
region

} . Dlease {afford} him { every may need}

give all the} help he { needs

to {seek cut

modern
find } the most {

. top
up to date} lines for the {

high} end of the

empowered
authorized

samples

market. He is .
specimens

} to receive on our behalf { } of the

{lateSt} {natch and jewellery} products, { up } to a Lnllmlt }

newast jewellery and watch subject aximum
) Carry . . letter
of ten thousand dollars. He will {hold} a signed copy of this {document}
f of identity. An ord ith his signat hich is |aPPended
as procf of identity. order wi is signature, which is § vv . o
authorizes } above
21lows yvou to charge the cost to this company at the head office

fully

address. We { } expect that our {level

of orders will increase in
volume

trust

following
} yvear and {hope

the { next

} that the new appointment will ﬁ)be }
rove

{advantageous

an advantage} to both our companies.

Case Study: Circulating Software

using the BPA
]

O

This is a typical insider attack (here conducted by Grumpy George
— GG — a disgruntled lead engineer in your team)

Again, your team develops an urgent software patch, which is
hashed

The 32-bit hash value is encoded using a symmetric key K, which is
shared with your client

The key is only known to you and you client, but not to GG

Software |
patch

Client validates

Your authenticator
(encrypted hash)

software patch

Case Study: Circulating Software

_ via a Birthdax Paradox Attack

0 GG as the lead engineer creates a large number of binary code versions for
O software patches (to be presented to quality team)
0 malicious software patches (to be circulated)

0 How can GG create > 2 * 216 different source code variations?

0 GG introduces in both source code files a new constant variable (e.g. long int) that is
not otherwise used, e.g.

const unsigned long int var = 12; // possible values are 0 ... 2°4-1

O GG then creates different source codes by systematically incrementing var
m GG is able to create 2°“ different versions of both programs if needs to be

0 GG compiles each of those software versions and calculates their hash

0 GG looks for a hash collision, i.e. a software patch and a malicious patch
that have the same hash code

0 GG present this software patch to quality team, who sign it using key K

0 GG replaces the software with the malicious patch before sending it to the
client

Hash Function Execution (Example

HAVALI
—

0 HAVAL creates a 256-bit fingerprint, for example:

0 "The quick brown fox jumps over the lazy dog*
will be translated into the (256 bit) hash
“b89c551cdfe2e0b6dbd4cea2belbc7d557416c58ebb4d07cb
c94e49f710c55be4”

O “The quick brown fox jumps over the lazy cog”
will be translated into the hash

“60983bb8c8f49ad3bea29899b78cd741f4c96e911bbc272e
5550a4f195a4077e”

0 l.e. very similar inputs result in totally different outputs,
there is no correlation between a hash and its original
input

A naive Hash Function based on XOR
I

0 Consider the XOR function @D:

00 The input is broken into m blocks

0 For the resulting hash value C, each bit C, is calculated

via
C.=b,®b, Db D... b,
Where

0 m = the number of n-bit blocks and

EX-OR Gate Truth Table
O b, is the i bit of the ™ block

A@B
o

~ QO
~ QO

1
1
o

A naive Hash Function based on
XOR

Bit 1 Bit 2 Bit n
Block 1 by, b, b1
Block 2 b, b, b,
Block m oI Do D
Hash code C, C, C,

A naive Hash Function based
on XOR

¢ Consider the ASCll-encoded input “ABC” and a hash function H that
calculates an 8-bit hash h:
» ASCII(A) = 65,, = 01000001,
= ASCII(B) = 66,, = 01000010,
m ASCII(C) = 67,,= 01000011,

gl B8 | Bit7 | Bite | Birs | Bitd | Bit3 | Bit2|Bitl
A 0 1 0 0 0 0 0 1

B o) 1 o) 0 o) o) 1 0
C o) 1 o) 0 o) o) 1 1
h 0] 1 0 0] 0 0 0 0

H(“ABC”) — h — 64]0) “@”

A naive Hash Function based
on XOR

¢ Does this algorithm fulfil the requirements of a hash function:
m One-way property?

B Weak collision resistance?

| | Bit8 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit]
A 0] 0 0 0 0 0 1

B 0]

C 0]

h 0 1

H(“ABC”) = 64,, = “@”

o) 0 0 o) 1 0
0 0 o) 0 1 1
0] 0 0] 0 0 0

Example: 8-bit Hash Function

based on XOR
e

¢ Fulfils requirements of hash function?
m One-way property? Certainly not!

m Weak collision resistance? H(“ABC”) = H*@@@") = H'@Q@QQ@QQ@Q@Q@") =
| Bit8 | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bitl
“@" 0 1 0 0 0 0 0] 0

“@“ 0] 0 0 0 0 0 0
“@“ 0] 0 0 0 0 0 0
h 0 1 0 0 0 0 0 0

H@@@") = 64,0 = *@”

A naive Hash Function based on rotating

XOR
]

-~ 16 bits L

0 Initially set the n-bit hash value to O

0 Process each successive n-bit block
a follows: i

]

140

o Rotate the current hash value to the
left by one bit

0 XOR the block into the hash value

—

(I EEEEEEEEEEEEEN [HINEEEEEEEEEEEEEN
XOR with 1-bit rotation to the right XOMR of every 16-bit block

A

Example: Simple Hash Function based on

Rotating XOR
N

0 Consider “ABCD”

o “AB” = 01000010 01000011,

o “CD” =01000100 01000101,

0 “CD” left-rotated = 10001000 10001010,

0 1 0 0 0
1 1 1
1 1 1

0 0
0 0
0 0

o o o

1 1 1
0 0 0
1 1 1

o o o
o o o

0
0 0
0 1

1
1
0]

Example: Simple Hash Function based on

Rotating XOR
N

- wis—] Assume a password must be
at least 2 ASCll-encoded
characters long

]

0 Fulfils requirements of hash
Function?

O One-way property?

1 Weak collision resistance?

—

(I EEEEEEEEEEEEEN [HINEEEEEEEEEEEEEN
XOR with 1-bit rotation to the right XOR of every 16-bit block

A

Examples for Hash Algorithms
S =

0 In order to meet the aforementioned requirements, a hash algorithm
must
O be non-trivial
O calculate long hash values

0 Popular hash functions include:
o MDb5:

® Produces a 128-bit hash value

m Specified as Internet standards (RFC1321)

m Still has some popularity, but unsafe for years (broken via collision attacks)
O SHA (Secure Hash Algorithm) - X:

®m Family of hash functions, designed by NIST & NSA
m SHA-3 (released 2015) produces 224-, 256-, 384- and 512-bits hash values

®m Internet standard

o RIPEMD-160:
m Creates a 160-bit hash value
m Developed in Europe

0 See https://defuse.ca/checksums.htm

https://defuse.ca/checksums.htm

FYI: MD5-An Overview

Padding Message length

(1 to 512 bits) (K mod 264)
-t L S12bits=N 32 bits -
- K bits \\‘7
Message 100..0
512 bits——pt——512 bits—f al——512 bits——p ——512 bits—
& & YL_I

128-hit
digest

FYIl: MD5-Processing of a Single 512 Bit Block (left)

and Elementary MD5 Operation
]

Y C‘b"q
128

A

. /1
Ay Ry Oy I

F, T]1..16], X[i]
16 steps

Ay By Oy In

G, TI17..32]. X 7]
16 steps

X[k]

Ay By Oy I
H, T[33..48], X[ai] N
: lﬁst!p,s : J I III

Ay By Oy Iy

L T[49..64], X[4i]
16 steps

LhLL

Y ¥ Yy ¥°¥

(+]+ +[+
'Ir* Y

CVgr1

FYI: MD5-Table T

T[1]
T[2]
T[2]
T[4]
T[5]
T[]
T[7]
T[2]
T[2]
T [10]
T[11]
T [12]
T[12]
T[14]
T[15]

T[1&]

D7cAR4LTE

ES8CTB756

2420700B

C1BDCEEE

FETCOFAF

4787Ce20

AB3204c513

FD459501

62809808

EB44FTAF

FFFFEEREL

EOBCDTEE

6B901122

FDoB71593

AETO438E

45B40821

T [17]
T [12]
T [19]
T [20]
T [21]
T [22]
T[23]
T [24]
T [25]
T [26]
T [27]
T [28]
T [29]
T [20]
T[21]

T[22]

FE1EZ562

CD40EB240

265EBRE]

E9QE6CTAR

De2F105D

02441453

DER1EGE]L

ETD3IFRBCE

21E1CDES

C33707D6&

FAD50DA7T

455114FED

AO9E3IESOS

FCEFA3FE

&TEFOZD9

ADZR4ACAA

T [23]
T [24]
T [25]
T [26]
T [27]
T[2a]
T[29]
T [40]
T [41]
T [42]
T [43]
T [44]
T [45]
T [46]
T [47]

T[48]

FFEAZ 042

8771Fe81

&00DE122

FDESZ2B0C

L4EBEEER44

4BDECFALSD

F&EB4B& O

EEEFECTO

2B9BTECS

EARTIZ2TRA

D4EF3085

04281D05

Dapb4aD0o3g9

EECBSOES

1FRAZTCFE

C4ACEEEE

T[49]
T[50]
T[51]
T[52]
T[53]
T[54]
T[55]
T[56]
T[57]
T[58]
T[59]
T[&0]
T[61]
T[&2]
T[63]

T[&54d]

Fa202244

432AFF27

LBO423AT

FCO3R039

&55B59C32

BFOCCCoZ2

FFEFF47D

258450D1

aFABTE4AF

FE2CE&EOD

5320143214

4FE081121

FT537E82

ED3AFZ235

2ADTDZER

EBEcD321

FYI: MD5-Primitive Functions and

their Truth Tables
I

Round | Primitive functiong | g(b, c, d)
1 F(b, c, d) (b AND c) OR (NOT b AND d)
2 G(b, c, d) (b AND d) OR (c AND NOT d)
3 H(b, c, d) B EXORcEXORd
4 I(a, b,) C EXOR (b or NOT d)

b c d F G H |
0 0 0 0 0 0]
0 0 | I (] 0
0 | 0 0]] 0
0 | |] 0 0]
| 0 0 0 (0]]
| 0 | (] 0]
| | 0]] 0 0
| | |]]] 0

Non-Cryptographic Hash Functions aka

Checksums
.

0 Checksums are designed to detect bit errors of files or data streams, e.g.
O Hard disk storage errors
O Data transmission errors

0 CRC (Cyclic Redundancy Code) is a well know example

0 Such checksums are too short and vulnerable to brute force attacks, and are not
suitable for cryptographic purposes

20 00 20 VA 3F ZE 20 00 20 20 2A AE 0e oo IP, ARP, etc. 0o 20 20 3A
Destination MAC Address Source MAC Address EtherType FPayload CREC Checksum
MAC Header Data
(14 bytes) {46 - 1500 bytes) (4 bytes)

Emernethg e |l Frame
(64 ta bytes)

	Slide 1: CT5191 Cryptography and network security Hash functions and message authentication codes
	Slide 2: Lecture Overview
	Slide 3: Recap: Types of Security Attacks on Information in Transit
	Slide 4: Recap: Passive Attacks
	Slide 5: Recap: Active Attacks
	Slide 6: Attack Scenario
	Slide 7: Case Study 2: Weakness of Mode Block Cipher Modes
	Slide 8: Message Authentication Code (MAC)
	Slide 9: Typical Use of a MAC (Wikipedia)
	Slide 10: Typical CMAC Implementation
	Slide 11: Message Authentication Benefits
	Slide 12: Example: Authentication of TCP/IP Packets
	Slide 13: Basic Use Cases of CMACs
	Slide 14: Case Study CMAC
	Slide 15: The AES-CBC-HMAC Mode
	Slide 16: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 17: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 18: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 19: Features of AEAD
	Slide 20: Block Cipher Mode of Operation: The Galois / Counter Mode
	Slide 21: Hash Functions and HMAC
	Slide 22: Basic Uses of HMACs
	Slide 23: Basic Uses of HMACs
	Slide 24: Case Study HMAC
	Slide 25: Requirements for a Hash Function H(x)
	Slide 26: Requirements for a Hash Function H(x)
	Slide 27: Requirements for a Hash Function H(x)
	Slide 28: Birthday Paradox Attack
	Slide 29: Birthday Paradox
	Slide 30: Birthday Paradox
	Slide 31: BPA – How to create many Variations of a Message
	Slide 32: Case Study: Circulating Software using the BPA
	Slide 33: Case Study: Circulating Software via a Birthday Paradox Attack
	Slide 34: Hash Function Execution (Example HAVAL)
	Slide 35: A naive Hash Function based on XOR
	Slide 36: A naive Hash Function based on XOR
	Slide 37: A naive Hash Function based on XOR
	Slide 38: A naive Hash Function based on XOR
	Slide 39: Example: 8-bit Hash Function based on XOR
	Slide 40: A naive Hash Function based on rotating XOR
	Slide 41: Example: Simple Hash Function based on Rotating XOR
	Slide 42: Example: Simple Hash Function based on Rotating XOR
	Slide 44: Examples for Hash Algorithms
	Slide 45: FYI: MD5-An Overview
	Slide 46: FYI: MD5-Processing of a Single 512 Bit Block (left) and Elementary MD5 Operation
	Slide 47: FYI: MD5-Table T
	Slide 48: FYI: MD5-Primitive Functions and their Truth Tables
	Slide 49: Non-Cryptographic Hash Functions aka Checksums

