import pandas as pd import matplotlib.pyplot as plt import numpy as np plt.style.use('seaborn-v0_8-muted') file_path = "results.tsv" # Update this path if needed df = pd.read_csv(file_path, sep='\t') color_encrypt = "#AEC6CF" # Pastel blue color_decrypt = "#F4C2C2" # Pastel red # Filter data for 100MB and 1000MB df_100MB = df[df["Data Size (MB)"] == 100] df_1000MB = df[df["Data Size (MB)"] == 1000] # Function to create and save bar chart def create_bar_chart(df, title, filename): labels = df.apply(lambda row: f"{row['Cipher']}, {row['Key Size']} bits, {row['Mode']}", axis=1) x = np.arange(len(labels)) # Label locations width = 0.35 # Bar width fig, ax = plt.subplots(figsize=(12, 6)) ax.bar(x - width/2, df["Encryption Time (s)"], width, label="Encryption Time", color=color_encrypt) ax.bar(x + width/2, df["Decryption Time (s)"], width, label="Decryption Time", color=color_decrypt) # Labels and title ax.set_xlabel("Cipher, Keysize (bits), Mode") ax.set_ylabel("Time (s)") ax.set_title(title) ax.set_xticks(x) ax.set_xticklabels(labels, rotation=45, ha="right") ax.legend() ax.grid(True, axis='y', linestyle='--', alpha=0.5) plt.tight_layout() plt.savefig(filename, dpi=300) plt.close() # Create and save bar charts create_bar_chart(df_100MB, "Encryption & Decryption Times for 100MB Data", "../latex/images/100mb.png") create_bar_chart(df_1000MB, "Encryption & Decryption Times for 1000MB Data", "../latex/images/1000mb.png")