
Design Patterns: Creational 1

�
Design Patterns: Creational

Creational Patterns:
Creational patterns focus on the process of object creation, ensuring
that objects are created in a way that suits the systemʼs design
requirements.

These patterns allow developers to manage and control how objects are
instantiated, giving flexibility to change the instantiation process without
altering existing code.

Design Patterns: Creational 2

What is a Singleton Pattern?
The Singleton Pattern ensures that a class has only one instance and
provides a global point of access to that instance.

This is particularly useful in scenarios where exactly one object is
needed to coordinate actions across the system.

Why do we need a Singleton?

Some applications require only a single instance of a class to control
access to resources.

Examples:

Logger classes (global logging for the entire application).

Configuration managers (central management of app
configuration).

Database connection pools (ensure only one connection pool
exists).

Benefits of Singleton Pattern

Controlled access to the sole instance.

Rather than creating multiple objects, a single instance manages
everything.

All parts of the system use the same instance, ensuring uniform
behaviour across the application.

Design Patterns: Creational 3

Singleton
Singleton is a creational design pattern that lets you
ensure that a class has only one instance, while
providing a global access point to this instance.

https://refactoring.guru/design-patterns/singleton

Singletons in Java | Baeldung
See how to implement the Singleton Design Pattern in
plain Java.

https://www.baeldung.com/java-singleton

Basic Implementation of Singleton Pattern
Hereʼs a simple implementation of the Singleton pattern in Java:

public class Logger {

 // Step 1: Create a private static instance of

the class

 private static Logger instance;

 // Step 2: Private constructor to prevent insta

ntiation

 private Logger() {}

 // Step 3: Public method to provide global acce

ss to the instance

 public static Logger getInstance() {

 if (instance == null) {

 instance = new Logger();

 }

 return instance;

 }

 // Example method

 public void logMessage(String message) {

 System.out.println("Log: " + message);

https://refactoring.guru/design-patterns/singleton
https://www.baeldung.com/java-singleton

Design Patterns: Creational 4

 }

}

Key Points about the Basic Implementation

Private Constructor Prevents instantiation from outside the class.

Static Instance Ensures a single instance across the entire
application.

Lazy Initialisation The instance is created only when itʼs needed
(first time getInstance() is called).

Thread-Safe Singleton Implementation
In a multi-threaded environment, multiple threads could try to
instantiate the Singleton at the same time. To prevent this, we need to
make the Singleton thread-safe.

� Synchronized Method → One simple approach is to synchronise
the getInstance method, but this can lead to performance issues.

public class ThreadSafeLogger {

 private static ThreadSafeLogger instance;

 private ThreadSafeLogger() {}

 public static synchronized ThreadSafeLogger

getInstance() {

 if (instance == null) {

 instance = new ThreadSafeLogger();

 }

 return instance;

 }

 public void logMessage(String message) {

 System.out.println("Log: " + message);

 }

}

Design Patterns: Creational 5

� Double-Checked Locking → A more efficient thread-safe
approach using double-checked locking.

public class EfficientThreadSafeLogger {

 private static volatile EfficientThreadSafeL

ogger instance;

 private EfficientThreadSafeLogger() {}

 public static EfficientThreadSafeLogger getI

nstance() {

 if (instance == null) {

 synchronized (EfficientThreadSafeLog

ger.class) {

 if (instance == null) {

 instance = new EfficientThre

adSafeLogger();

 }

 }

 }

 return instance;

 }

 public void logMessage(String message) {

 System.out.println("Log: " + message);

 }

}

Common Pitfalls in Singleton
Global State Singleton can introduce global state, making it
harder to isolate components during testing.

Testing Challenges Itʼs hard to mock or substitute the
singleton class in unit tests, unless dependency injection or
mock frameworks are used.

Tight Coupling Singleton can lead to tight coupling between
classes, reducing flexibility and increasing dependency

Design Patterns: Creational 6

management complexity.
Eager Initialisation vs. Lazy Initialisation
Eager Initialisation Singleton instance is created at the time of class
loading.

public class EagerLogger {

 // Step 1: Initialize the instance at class loa

d time

 private static final EagerLogger instance = new

EagerLogger();

 private EagerLogger() {}

 public static EagerLogger getInstance() {

 return instance;

 }

 public void logMessage(String message) {

 System.out.println("Log: " + message);

 }

}

Lazy Initialisation Singleton instance is created when itʼs actually
needed, as shown in the previous examples.

public static void main(String[] args) {

 Logger logger = Logger.getInstance();

 logger.logMessage("Singleton pattern in act

ion!"); // Output: Log: Singleton pattern in actio

n!

 }

Which one to use?

Eager Initialisation Use when the instance is lightweight and
expected to be used frequently.

Design Patterns: Creational 7

Lazy Initialisation Use when the instance might not always be
needed and can be created on demand.

Common Pitfalls of Singleton:
Global State

A Singleton can inadvertently introduce global state into the
application.

Global state refers to variables or data that are accessible
throughout the entire application.

While Singleton ensures that only one instance of a class
exists, it also means that every part of the program shares that
one instance.

If that instance contains mutable data, it can lead to
unintended consequences when different parts of the system
change that state.

Example Scenario:

Imagine we have a Singleton ConfigManager that holds application-
wide configuration settings.

public class ConfigManager {

 private static ConfigManager instance;

 private String setting;

 private ConfigManager() {}

 public static ConfigManager getInstance() {

 if (instance == null) {

 instance = new ConfigManager();

 }

 return instance;

 }

 public void setSetting(String setting) {

 this.setting = setting;

 }

 public String getSetting() {

Design Patterns: Creational 8

 return setting;

 }

}

Since all parts of the program use the same instance of
ConfigManager , a change in one part can unexpectedly affect other
parts of the system.

Testing Example:

public class ConfigManagerTest {

 @Test

 void testGlobalStateIssue() {

 ConfigManager configManager = ConfigMana

ger.getInstance();

 configManager.setSetting("Development");

 // In a different part of the program, a

nother test runs

 ConfigManager anotherReference = ConfigM

anager.getInstance();

 anotherReference.setSetting("Productio

n");

 // Original reference has now changed un

expectedly

 assertEquals("Production", configManage

r.getSetting());

 }

}

Here, the shared instance leads to a global state issue, where
modifying the setting in one place affects all other places. This
makes it difficult to predict the systemʼs behaviour.

Testing Challenges

Design Patterns: Creational 9

Testing Singleton classes is tricky because of their global
nature.

Since Singleton classes control their instantiation, it becomes
hard to substitute them with mock objects or different
instances in unit tests.

It can also interfere with test isolation.

Example Scenario:

Imagine a Singleton DatabaseConnection that connects to a database.

public class DatabaseConnection {

 private static DatabaseConnection instance;

 private DatabaseConnection() {

 // Expensive connection setup

 }

 public static DatabaseConnection getInstance

() {

 if (instance == null) {

 instance = new DatabaseConnection();

 }

 return instance;

 }

 public String query(String sql) {

 // Database query implementation

 return "Result";

 }

}

When running tests, we might want to mock the database
connection or use a different instance for isolation, but Singleton
makes this challenging.

Test Challenge:

Design Patterns: Creational 10

public class DatabaseConnectionTest {

 @Test

 void testQuery() {

 DatabaseConnection dbConn = DatabaseConn

ection.getInstance();

 // Hard to isolate or mock this connecti

on in a unit test

 String result = dbConn.query("SELECT * F

ROM users");

 assertEquals("Result", result);

 }

 @Test

 void testWithMock() {

 DatabaseConnection mockConn = Mockito.mo

ck(DatabaseConnection.class);

 Mockito.when(mockConn.query("SELECT * FR

OM users")).thenReturn("Mocked Result");

 // But there's no easy way to inject thi

s mock into the Singleton structure

 }

}

Solution:

This can be mitigated by using dependency injection DI
frameworks or testing libraries that allow mocking singletons (like
Mockito with PowerMock). Alternatively, refactoring to avoid a
Singleton can also resolve this issue.

Tight Coupling

Singleton can create tight coupling between classes.

When multiple classes depend on a Singleton, it becomes
harder to change the Singletonʼs implementation or switch to a
different pattern.

Design Patterns: Creational 11

Over time, this can lead to spaghetti code and a rigid
architecture.

Example Scenario:

Letʼs assume we have multiple classes relying on a Logger
Singleton. As the system grows, they become tightly coupled to
the specific Singleton implementation.

public class Logger {

 private static Logger instance;

 private Logger() {}

 public static Logger getInstance() {

 if (instance == null) {

 instance = new Logger();

 }

 return instance;

 }

 public void log(String message) {

 System.out.println(message);

 }

}

// Multiple classes relying on Logger Singleton

public class ServiceA {

 public void performAction() {

 Logger.getInstance().log("ServiceA is pe

rforming an action");

 }

}

public class ServiceB {

 public void performAction() {

 Logger.getInstance().log("ServiceB is pe

rforming an action");

Design Patterns: Creational 12

 }

}

If we want to replace Logger with a different logging framework,
weʼd have to refactor all classes that rely on Logger.getInstance() ,
which introduces tight coupling.

Testing Example:

public class LoggerTest {

 @Test

 void testLoggerWithMultipleServices() {

 Logger logger = Logger.getInstance();

 // Logger instance used in multiple plac

es can create coupling issues

 ServiceA serviceA = new ServiceA();

 ServiceB serviceB = new ServiceB();

 serviceA.performAction(); // Relies on t

he same Logger

 serviceB.performAction(); // Relies on t

he same Logger

 }

}

What is the Factory Method Pattern?
The Factory Method Pattern defines an interface for creating objects
but allows subclasses to alter the type of objects that will be created.

The essence of the pattern is that object creation is deferred to a
specialised method, often called a factory method.

Problem You have a class that needs to create objects, but you
want to delegate the responsibility of deciding which class to
instantiate.

Solution Use the Factory Method Pattern, where the object
creation is delegated to subclasses or a specific factory class.

Design Patterns: Creational 13

The Factory Design Pattern in Java | Baeldung
Explore the factory design pattern.

https://www.baeldung.com/java-factory-pattern

Factory Method
Factory Method is a creational design pattern that
provides an interface for creating objects in a
superclass, but allows subclasses to alter the type of

https://refactoring.guru/design-patterns/factory-
method

Example Scenario
Imagine you are building a logistics system.

Depending on whether you are handling land or sea
transportation, you will need to instantiate different kinds of
vehicles, such as trucks or ships.

In a standard scenario, you might use new to create these objects,
but this approach would make your code less flexible if new
vehicle types are introduced later.

Step-by-Step Example

https://www.baeldung.com/java-factory-pattern
https://refactoring.guru/design-patterns/factory-method

Design Patterns: Creational 14

Step 1 Define the Product Interface Common Interface for
Products)

You define a common interface for the types of objects you want
to create.

public interface Transport {

 void deliver();

}

Step 2 Concrete Products Specific Object Types)

You create concrete classes that implement the common
interface, such as Truck and Ship .

public class Truck implements Transport {

 @Override

 public void deliver() {

 System.out.println("Delivering by land i

n a truck");

 }

}

public class Ship implements Transport {

 @Override

 public void deliver() {

 System.out.println("Delivering by sea in

a ship");

 }

}

Step 3 Factory Interface or Abstract Class

Now, define an abstract class (or an interface) that declares the
factory method responsible for creating objects of type Transport .

public abstract class Logistics {

 // The Factory Method

 public abstract Transport createTransport();

Design Patterns: Creational 15

 // Other methods using the product created b

y the factory method

 public void planDelivery() {

 Transport transport = createTransport();

 transport.deliver();

 }

}

Step 4 Concrete Factories Classes that decide which product
to create)

Concrete factory classes will override the factory method to
decide which Transport to create.

public class RoadLogistics extends Logistics {

 @Override

 public Transport createTransport() {

 return new Truck(); // Concrete Product

(Truck)

 }

}

public class SeaLogistics extends Logistics {

 @Override

 public Transport createTransport() {

 return new Ship(); // Concrete Product

(Ship)

 }

}

Step 5 Client Code

The client code calls the factory method but doesnʼt need to know
the exact class of the object that will be created.

public class LogisticsApp {

 public static void main(String[] args) {

 // Choosing the type of logistics dynami

cally

 Logistics logistics = new RoadLogistics

Design Patterns: Creational 16

();

 logistics.planDelivery(); // Output: De

livering by land in a truck

 logistics = new SeaLogistics();

 logistics.planDelivery(); // Output: De

livering by sea in a ship

 }

}

Why Use the Factory Method Pattern?
The factory method separates the process of creating an object
from the client code that uses it This allows you to introduce
new types of products without modifying existing code.

If new product types are introduced (e.g., AirLogistics), they can
be handled by creating a new concrete class without modifying
the existing code.

It gives flexibility in object creation while ensuring the client
remains decoupled from specific product implementations.

Common Pitfalls of Factory Method:
Over-complication

The Factory Method Pattern introduces abstraction by
creating additional classes (factory and product classes) to
decouple object creation. However, if your application only
requires a small number of product variations, this extra
complexity may become burdensome rather than beneficial.

Over-complication occurs when the Factory Method Pattern
introduces too much overhead for a problem that could be
solved with simpler constructs, like constructors or static
methods.

Example:

Consider a scenario where you're building a system that only
deals with two vehicle types: Car and Bike .

If you apply the Factory Method Pattern here, you'll need:

Design Patterns: Creational 17

A Vehicle interface.

A Car class implementing Vehicle .

A Bike class implementing Vehicle .

A VehicleFactory abstract class or interface.

A CarFactory and BikeFactory that inherit from
VehicleFactory .

While this is technically correct, the amount of boilerplate
code introduced far outweighs the benefit of using the Factory
Method Pattern.

For two types of vehicles, it might be better to use a simple
constructor or a static method rather than adding
unnecessary layers of abstraction.

// Example: Overcomplicated Factory for Two Vehi

cle Types

interface Vehicle {

 void move();

}

class Car implements Vehicle {

 @Override

 public void move() {

 System.out.println("Car is moving");

 }

}

class Bike implements Vehicle {

 @Override

 public void move() {

 System.out.println("Bike is moving");

 }

}

abstract class VehicleFactory {

 public abstract Vehicle createVehicle();

}

Design Patterns: Creational 18

class CarFactory extends VehicleFactory {

 @Override

 public Vehicle createVehicle() {

 return new Car();

 }

}

class BikeFactory extends VehicleFactory {

 @Override

 public Vehicle createVehicle() {

 return new Bike();

 }

}

In this case, simply using direct instantiation would be far more
efficient:

// Simpler Code

Vehicle car = new Car();

Vehicle bike = new Bike();

Violation of the Open/Closed Principle

The Open/Closed Principle OCP suggests that classes
should be open for extension but closed for modification.
This means that when you add new functionality (e.g., adding
a new product type), you should extend existing classes
rather than modifying them.

However, in some cases, the Factory Method Pattern can lead
to violations of this principle if you find yourself constantly
modifying existing factory logic to accommodate new
products.

Example:

Suppose your logistics system initially only supports Truck and
Ship .

Later, you need to introduce Plane and Train .

Design Patterns: Creational 19

If the factory classes or factory methods have to be modified
repeatedly to accommodate these new vehicle types, you are
violating OCP by constantly updating the same code.

// Violating OCP by Modifying Factory

class Logistics {

 public Transport createTransport(String t

ype) {

 if (type.equals("Truck")) {

 return new Truck();

 } else if (type.equals("Ship")) {

 return new Ship();

 } else if (type.equals("Plane")) {

 return new Plane(); // Modifying

the factory logic

 } else if (type.equals("Train")) {

 return new Train(); // Modifying

again for Train

 } else {

 throw new IllegalArgumentExceptio

n("Invalid transport type");

 }

 }

}

Each time you add a new type of vehicle, you modify the
createTransport method. This violates the Open/Closed

Principle because instead of extending the code with new
subclasses, you're constantly modifying the original logic.

Solution:

To solve this, you can structure your code so that new vehicle
types can be extended without modifying existing factory logic.
This can be achieved by creating a separate factory for each new
type of vehicle or by using an Abstract Factory.

// Extending Without Modifying Existing Code (OC

P Compliant)

abstract class TransportFactory {

Design Patterns: Creational 20

 public abstract Transport createTransport();

}

class TruckFactory extends TransportFactory {

 @Override

 public Transport createTransport() {

 return new Truck();

 }

}

class PlaneFactory extends TransportFactory {

 @Override

 public Transport createTransport() {

 return new Plane();

 }

}

class TrainFactory extends TransportFactory {

 @Override

 public Transport createTransport() {

 return new Train();

 }

}

Now, adding a new type of vehicle (e.g., Plane) doesn't require
modifying existing classes. You just need to create a new factory
that extends TransportFactory , keeping the rest of the code intact.

