Outline

Planned topics for this lesson:

e \What is DevSecOps ?
THE NEED FOR SECVRITY (N DEVOPS

e Static code analysis
STATIC ANALYSIS AND CODE QUALITY CHECKS

—-—-——---l-----

CT417 : Software Engineering Il " /16] 4

WKO04 DevsSecOps |

Detect

Monitoring Monitoring

& Analytics & Analytics

Respond

r
B S e e e e e e e s s S e e e e e e S e e e e

CI/CD Pipeline

Example of a continuous software development system:

CT417 : Software Engineering |l

WKO04 DevSecOps |

CI/CD Pipeline

Example of a continuous software development system:

Secure
Coding

SAST

White box
DAST

Black box
DAST

Requirement

Analysis
SECURITY
Develop
o ¢
y/)
N 05;\
Sec
Dev
A
2
AN
< 04
Test
SECURITY
Digital
Sign

CT417 : Software Engineering Il

Secure
Transfer

Develop

Ops

Monitor

Security
Analysis

WKO04 DevsecOps |

Security
Coding

Security
Scan

o
% Security
® Patch

Security
Audit

Security
Monitor

CT417 : Software Engineering Il

WKO04 DevSecOps |

Security in DevOps

Example of a continuous software development system:

Why Security:
. Traditional development cycles had security at the end, leading to costly vulnerabilities in production.
. Modern applications involve complex microservices, cloud infrastructures, and frequent releases that

Increase attack surfaces.

Key Risks in Modern Development:
. Faster Development = Higher Risks:
- Without security baked into the process, vulnerabilities go unnoticed until late stages.
. Complex Architectures:
- Containerised environments and cloud infrastructure create new attack vectors.
. Increasing Cyberattacks:

- 2023 saw arise in supply chain attacks, phishing, and ransomware incidents.

Security in DevOps

Example of a continuous software development system:

DEVOPS

I
. OPERATIONS

CT417 : Software Engineering |l

WKO04 DevSecOps |

DEVSECOPS

DEVLOPMENT

CT417 : Software Engineering Il " /16] 4

WKO04 DevsSecOps |

What is DevsecOps?

Shifting Security Left

e [ntegrating security throughout the entire DevOps lifecycle.
e Shift-left security: Moving security practices earlier in the development process to catch vulnerabilities before deployment.

Why Shift Left?:

Detecting vulnerabilities early is cheaper El ®\ (EW‘
Dev

and easier to fix.

Test Staging Production

Reduces attack vectors from the start of

the development process. @ @ 4 $ $ $

Real-time visibility into security risks

during development, not just post- Cost & Time to identify and fix problems
deployment. a a

Security Shift Security Left

CT417 : Software Engineering Il

WKO04 DevsecOps |

Core Principal of DevSecOps

Requirement Secure

. Security
Analysis f
ySi Transfer Coding
Secure SECURITY
Coding Develop Develop Security
Scan
. s
% & %
SAST o S Security
ec 2
3 D ev OpS ® Patch
A
@
AR
White box ¢ % R
DAST Audit
Test Monitor
SECURITY
Black box 50 i SMCURY
Digital Security Monitor
DAST . i
Sign Analysis

CT417 : Software Engineering Il

WKO04 DevSecOps |

Traditional Security vs DevSecOps

DevOps VS

[C J Collaborate on project goals. W

DevSecOps

Plan with threat modeling for security. ﬂ
[%%J Develop application code. j—“— Code securely to prevent vulnerabilities. |
. @ . . .
[@@J Compile code and create artifacts. \ (Build \ Integrate automated security checks. .
J . J
[QJ Verify application functionality. j—“— Perform security testing for vulnerabilities.
: 4 A \
Prepare deployable artifacts. Release Ensure secure release management. —O,C
N\ /
[él J Deploy changes to production. Dep|oy Establish incident response procedures.
[@:J Monitor and maintain performance. [0perate } Incorporate real-time security monitoring.

[C:@J Monitor performance and user feedback. jm_ Continuously monitor for security threats.
o D

Plan

YN
__/

J N/

——

Benefits of DevSecOps

Why Implement DevSecOps?

e Reduced Time to Fix Bugs: Fixing vulnerabillities
earlier in development is faster and cheaper.

e (Continuous Security: Automated tests and
monitoring ensure security across the pipeline.

e Better Compliance: Ensures adherence to industry
standards (e.g., GDPR, PCI-DSS) through
continuous security checks.

e |mproved Collaboration: Security becomes a
shared responsibility, promoting teamwork.

Gi1tHub
Actions

4 — &

CT417 : Software Engineering Il " /18] -

WKO04 DevsSecOps |

x docker
Report
RS e D R

NETFLIX

—E—v—&

TRIVY IMAGE RUN CONTAINER

CT417 : Software Engineering Il " /18] -

1T
WKO04 DevsecOps |
Key Vulnerabilities
Continuous Security O
Monitoring Threat
Security Response Team modeding
Incident response
Security bulletins INSECURE DEPENDENCIES
Securnty mailboxes
White head hacker relations
SECURITY MISCONFIGURATION
Secunty IDE plug-ins
Code reviews/pair work
Static code analysis > INTECTION ATTACKS

Third-party scans
Fuzz testing
Code signing

HUMAN ERROR ?!!

Application
Penetration Security
Testing O

Infrastructure scans
Malware scans
Dynamic scans

CT417 : Software Engineering Il

Security Challenges

WKO04 DevsSecOps |

Key Metrics MEAN TIME TO DETECTION
- HOW FAST CAN YOV DETECT SECURITY
VULNERABILITIES?
MEAN TIME TO REMEDIATION
- HOW QUICKLY CAN YOV FIX
MTBE VULNERABILITIES ONCE DETECTED?

MEAN TIME TO FAILVRE

MTTD MTTR

MTTF MTTF

MTTF =

Total Operational Time

Number of failures

First Begin End Second
Failure Repair Repair Failure

MTBF (Mean Time Between Failures)
® similar metric for repairable systems
e include the time to failure and the time it takes to repair the system

MTBF = MTTD + MTTR

— AVERAGE AMOVNT OF TIME A NON-
REPAIRABLE SYSTEM IS EXPECTED TO
FUNCTION BEFORE T FAILS

CT417 : Software Engineering Il

WKO04 DevsSecOps |

Security Challenges

Best Practices

2) IDE Security 1) Address Technical 10) Security Technical 6) Signature Verify, 7) RASP, UEBA/

Plug-Ins Security Debt, DevSec Debt, Modify Incident Integrity Checks, Network Monitoring,
Metrics, Threat Modeling, Response, Modify DND Defense In-Depth Penetration Test
Security Tool Training Measures

N\,

~ Configure Detect

Log and Perimeter

Monitoring
Security Monitoring 8"? OpS Monitoring WSl el
and and
Champs Analytics Q§ AUELERNY AP| Gateway

Security and
Performance Logs

| Preprod Respond
3) SAST/DAST/ 4) Chaos Monkey, 5) Software Signing 9) Dev Consumable, 8) Security Orchestration,
IAST, SCA Input Fuzzing, Correlated Vulnerability RASP/WAF Shielding,
Integration Test Analysis, loC/TI STIX TAXII Obfuscation

© 2017 Gartner. Inc

CT417 : Software Engineering Il

WKO04 DevSecOps |

Security Challenges

Best Practices

e Security as Code: Treat security policies and tests like code. Use version control,
collaboration, and automationReduces attack vectors from the start of the
development process.

e Automated Testing: Integrate automated security testing into CI/CD pipelines
(static, dynamic, and dependency checks).

e Continuous Monitoring: Implement tools for real-time monitoring of security
events in production.

 Infrastructure as Code (IaC): Automate secure configurations of infrastructure to
avoid security misconfigurations.

* Training and Awareness: Regularly train teams on the latest security practices
and vulnerabilities.

CT417 : Software Engineering Il " /18] -

1T
WKO04 DevsecOps |
Key Vulnerabilities
Continuous Security O
Monitoring Threat
Security Response Team modeding
Incident response
Security bulletins INSECURE DEPENDENCIES
Securnty mailboxes
White head hacker relations
SECURITY MISCONFIGURATION
Secunty IDE plug-ins
Code reviews/pair work
Static code analysis > INTECTION ATTACKS

Third-party scans
Fuzz testing
Code signing

HUMAN ERROR ?!!

Application
Penetration Security
Testing O

Infrastructure scans
Malware scans
Dynamic scans

