
Andrew Hayes
21321503

a.hayes18@nuigalway.ie
CT2109 Assignment 3 2023-05-01

Expandable Binary Tree Guessing Game

1 Problem Statement

The problem of this assignment is to create an expandable binary tree guessing game, not unlike the popular
web game “Akinator”. There will be a tree which will consist of question nodes. Each node will contain some
String data: this will be the question that the node represents. These questions will be “yes” or “no” questions.
Each node will have a maximum of two children. These children will represent the next question after the
parent has been answered.

The tree will be traversed node by node, starting at the root node. Each node’s data will be printed to
the user, and they will be prompted to answer the question by entering either “y” or “n”. If the user answers
“y”, then the next node traversed will be the left child of the current node, but if the answer is “n”, then the
next node will be the right child. Nodes on the left represent an affirmative answer to the parent’s question,
and nodes on the right will represent a negative answer to the parent’s question.

Eventually, a leaf node will be reached (a node with no children). If a node is a leaf node, then this
means that this node represents a guess by the game. These guesses will be in the form of a “yes” or “no”
question, e.g., “Is it a dog?”. If the user enters “y”, then the program has won, and the game will be over. If the
user enters “n”, then the user won the game, and the program will expand it’s knowledge by asking the user
for a question that distinguishes the game’s guess from the correct answer. This question will then be inserted
in the tree to replace the leaf node that was the game’s guess. The user will then be asked if the answer to the
distinguishing question for the correct answer should be “y” or “n”, and the initial incorrect guess & the correct
answer will be inserted as children of this parent node in the appropriate positions, depending on what the
answer to the distinguishing question is.

This program will also implement the ability to save the binary tree to a file and to load a binary tree
from a file. The standard way of doing such a thing in Java is to implement the Serializable interface.
This allows for an object to be written to a file and recovered at a later date, after an indefinite time period has
elapsed, regardless of whether the program has been running or not.

2 Analysis & Design Notes

The main method of the program will consist of an infinite loop. The loop will firstly call a loadTree()
method which does one of three things: load a tree from a file, generate a pre-built tree that’s hardcoded in, or
use an already defined tree in memory, if one exists. The user will be asked whether or not the tree should
be loaded from a file. A case statement will be used to react to the user’s inputs, “y” for “yes”, “n” for “no”.
This will loop until a valid input is given. If the answer is “y”, then the user will be prompted to enter the
name of the file from which the tree should be loaded. This will loop until a valid filename is given (one that
exists). Then, the program will attempt to de-serialize the file into a BinaryTree<String> object, throwing
an error and exiting if any problems are encountered. Because this is not necessarily a safe operation, we
presume that the user knows only to supply the program with valid files, and do not check for safety, instead
opting to use @SuppressWarnings("unchecked") at the top of the class definition. Although it would of
course be better practise to ensure file safety, this is somewhat beyond the scope of the assignment, and not
really relevant to the theory at hand. If the user opts to not load the tree from a file, one will be generated
from some hardcoded values, provided that the existing tree is null. If the existing tree is not null, then the
existing tree is used instead. This will only occur on rematches.

After the tree has been loaded, the gameplay() method will be called, and the game will begin. This
method will loop over each node, starting at the root node, while the current node is not a leaf node (i.e.,
while the current node has children). The data of this node (a question String) will be printed out, and the
user will enter “y” or “n” to answer the question. If the user enters anything else, it will loop on this question
until an appropriate answer is given. Then, depending on the input, the current node will be replaced with the
left or the right child of the current node, left for “y”, right for “n”. An appropriate answer will break out of the

1

mailto:a.hayes18@nuigalway.ie


loop using a label.

When a leaf node is reached, the loop will end and a guess will be made. The user will be asked to
verify the guess, and this will loop until an appropriate answer is given. If the user confirms the guess as
correct, the game ends, and the user will be presented with a game menu. Otherwise, the user will be asked
what they were thinking of. They will then be asked to provide a question to distinguish what they were
thinking of from the program’s guess, and the appropriate answer to that distinguishing question for the
answer they were thinking of. The current node will then be replaced with the distinguishing question, and
the guessed answer & the real answer will become child nodes of this node, placed appropriately on the right
or left according to the user’s instructions.

Finally, after the gameplay() method has completed execution, the user will be presented with the op-
tions to play again, quit, or save the tree to a file. If they choose play again, the infinite loop simply repeats,
and they are presented with the loadTree() operations again. If they choose to quit, the program will exit
with code 0. If they choose to save the tree to a file, the storeTree() method will be called. This method
prompts the user to enter a filename to which the serialized tree should be saved. The serialized object is then
written to this file, overwriting any data that was already in that file, if it existed.

3 Code

1 import java.util.*;
2 import java.io.*;
3

4 @SuppressWarnings("unchecked") // ignoring warnings lol
5 public class GuessingGame implements Serializable {
6 private static BinaryTree<String> tree = new BinaryTree<String>();
7 private static String input; // string to which input will be read
8 private static Scanner sc = new Scanner(System.in); // scanner to read in input
9

10 public static void main(String[] args) {
11 while (1 == 1) {
12 // pick the tree that will be used for the game, either from a file or built-in
13 loadTree();
14

15 // play the game
16 gameplay();
17

18 playAgainLoop: while (1 == 1) {
19 System.out.printf("Enter ’1’ to play again, ’2’ to quit, or ’3’ to save the tree to a

file\n> ");
20 input = sc.nextLine();
21

22 switch (input) {
23 case "1": // going back to start of loop
24 break playAgainLoop;
25

26 case "2":
27 System.exit(0);
28 break playAgainLoop;
29

30 case "3": // storing the tree, this should not break the loop
31 storeTree();
32 break;
33

34 default:
35 // loop
36 }
37 }
38 }
39 }
40

41 // method that serializes a tree object to a file
42 public static void storeTree() {
43 // scanning in the name of the file from the user
44 System.out.printf("Enter the name of the file that it the tree should be stored as\n> ");
45 input = sc.nextLine();
46

47 try {
48 // creating output streams
49 FileOutputStream fos = new FileOutputStream(input);
50 ObjectOutputStream oos = new ObjectOutputStream(fos);
51

52 // writing the tree object ot the file
53 oos.writeObject(tree);
54

55 // closing output streams
56 oos.close();
57 fos.close();
58 }
59 // catching IOExceptions
60 catch (IOException E) {

2



61 System.out.println(E);
62 System.exit(1);
63 }
64 }
65

66 // method to load a tree, either from a file, from memory, or hardcoded in
67 public static void loadTree() {
68 // looping until an appropriate choice is made
69 loadTreeLoop: while (1 == 1) {
70 System.out.printf("Load a tree from a file? If no, then the built-in tree will be used. y/n\n

> ");
71 input = sc.nextLine();
72

73 switch (input) {
74 case "y":
75 // looping until valid filename is entered
76 while (1 == 1) {
77 System.out.printf("Enter the file from which the tree should be loaded\n> ");
78 input = sc.nextLine();
79

80 File treefile = new File(input);
81

82 // breaking if the file exists
83 if (treefile.exists()) {
84 break;
85 }
86 }
87

88 try {
89 // creating input streams
90 FileInputStream fis = new FileInputStream(input);
91 ObjectInputStream ois = new ObjectInputStream(fis);
92

93 // deserializing tree object
94 tree = (BinaryTree<String>) ois.readObject();
95

96 // closing input streams
97 ois.close();
98 fis.close();
99 }

100 // printing errors and crashing
101 catch(IOException E) {
102 System.out.println(E);
103 System.exit(1);
104 }
105 catch (ClassNotFoundException E) {
106 System.out.println(E);
107 System.exit(1);
108 }
109

110 break loadTreeLoop;
111

112 case "n":
113 // if no tree is defined building the default tree
114 if (tree.getRootNode() == null) {
115 // first the leaves
116 BinaryTree<String> cowTree = new BinaryTree<String>("Is it a cow?");
117 BinaryTree<String> dogTree = new BinaryTree<String>("Is it a dog?");
118 BinaryTree<String> fishTree = new BinaryTree<String>("Is it a goldfish?");
119 BinaryTree<String> geckoTree = new BinaryTree<String>("Is it a gecko?");
120

121 // Now the subtrees joining leaves:
122 BinaryTree<String> mammalTree = new BinaryTree<String>("Is it a farm animal?",

cowTree, dogTree);
123 BinaryTree<String> notMammalTree = new BinaryTree<String>("Is it a type of fish?"

, fishTree, geckoTree);
124

125 // Now the root
126 tree.setTree("Is it a mammal?", mammalTree, notMammalTree);
127 }
128

129 break loadTreeLoop;
130

131 default:
132 // loop
133 }
134 }
135 }
136

137 public static void gameplay() {
138 System.out.println("Enter ’y’ for ’yes’, ’n’ for ’no’");
139

140 BinaryNodeInterface<String> curr = tree.getRootNode(); // current node
141

142 // looping until a leaf node is reached
143 while (!curr.isLeaf()) {
144 // looping until an appropriate reply is given by the user
145 answerloop: while (1 == 1) {
146 // printing the question & scanning in the answer
147 System.out.printf(curr.getData() + "\n> ");
148 input = sc.nextLine();
149

3



150 switch (input) {
151 case "y": // continuing via left node if answer to question is yes
152 curr = curr.getLeftChild();
153 break answerloop;
154

155 case "n": // continuing via right node if answer to question is no
156 curr = curr.getRightChild();
157 break answerloop;
158

159 default:
160 // loop
161 }
162 }
163 }
164

165 // making a guess
166 // looping until an appropriate reply is given by the user
167 guessloop: while (1 == 1) {
168 // printing the question & scanning in the answer
169 System.out.printf(curr.getData() + "\n> ");
170 input = sc.nextLine();
171

172 switch (input) {
173 case "y": // printing a success message if the answer is yes
174 System.out.println("Success! The guess was correct");
175 break guessloop;
176

177 case "n": // inserting a new question and putting the two guesses beneath it if wrong
178 System.out.printf("Enter the animal that you were thinking of\n> ");
179 String thinkingOf = sc.nextLine();
180 String wrong = curr.getData();
181

182 // ask the user for a question to distinguish the wrong guess from the correct answer
183 System.out.printf("Enter a question to distinguish %s from ’%s’\n> ", thinkingOf,

wrong);
184 String question = sc.nextLine();
185

186 // replacing the current node with the question to distinguish it
187 curr.setData(question);
188

189 // asking the user for the correct answer to the question for the animal they were
thinking of

190 addNodeLoop: while (1 == 1) { // looping until an appropriate answer is given
191 System.out.printf("Enter the correct answer to the question that you entered for

%s (y or n)\n> ", thinkingOf);
192 input = sc.nextLine();
193

194 switch (input) {
195 case "y": // adding thinkingOf to the left of the question node if the

answer is yes
196 curr.setLeftChild(new BinaryNode<String>("Is it a " + thinkingOf + "?"));
197 curr.setRightChild(new BinaryNode<String>(wrong));
198 break addNodeLoop;
199

200 case "n": // adding thinkingOf to the left of the question node if the
answer is no

201 curr.setLeftChild(new BinaryNode<String>(wrong));
202 curr.setRightChild(new BinaryNode<String>("Is it a " + thinkingOf + "?"))

;
203 break addNodeLoop;
204

205 default:
206 // loop
207 }
208 }
209

210 break guessloop;
211

212 default:
213 // loop
214 }
215 }
216 }
217 }

GuessingGame.java

4



4 Testing

The first thing to be tested is just basic functionality of the game. The screenshot below shows basic testing
with valid & invalid input, but only with animals known to the game. Invalid input should just be re-prompted
to be entered.

Figure 1: Basic Testing of the Game with the In-Built Tree

The next bit of testing is testing of an animal that the game doesn’t know, adding it to the tree, and saving it to
a file, as shown in the screenshot below.

Figure 2: Testing of the Saving a Tree to a File

5



The next bit of testing is testing restoring a binary tree from a file on disk, using the file made above.

Figure 3: Testing of the Restoring a Tree from a File

Testing trying to load a tree from a non-existent file on disk. This should loop until a valid input is given.

Figure 4: Testing Trying to Load a Non-Existent Tree File from Disk

Testing trying to load a normal text file as a binary tree file. Should throw an error and exit gracefully.

Figure 5: Testing Trying to Load a Non-Binary Tree File from Disk

6


	Problem Statement
	Analysis & Design Notes
	Code
	Testing

