
CT2109 - OBJECT-ORIENTED PROGRAMMING: DATA
STRUCTURES & ALGORITHMS

ASSIGNMENT 01

Andrew Hayes

Student ID: 21321503

2BCT

University of Galway

January 20, 2023



CT2109 ASSIGNMENT 01

1 Problem Statement with Analysis & Design Notes

At its most basic, this assignment will require an array of all the letters of the alphabet, and two methods: one
to loop through the array in alphabetical order, and the other to loop it in counter-alphabetical order.

There will be a choice presented to the user whether to loop through the alphabet forwards (alphabetical
order) or backwards (counter-alphabetical) order. To choose between these two options there will be a case
statement. A char will be scanned in from the user. If the char is equal to ’f’, then the forwards() method
will be executed, and the time taken will be printed out. If the char is equal to ’b’, then the backwards()
method will be executed, and the time taken will be printed out. The default of the case statement will be
to print an error message and exit with code 1. While the use of two separate methods for the alphabetical &
counter-alphabetical versions is not the absolute most efficient option in terms of lines of code, the use of
separate functions enhances the readability of the code and allows for a cleaner implementation, at the cost of
repeating only two or three lines of code. It also reduces the need for nested if statements, which are both
inefficient and often difficult to read.

The forwards() & backwards() methods will be essentially the same. They will both return the long data
type, which will be the time taken in seconds. To calculate the time taken in seconds, before the “game”
begins, the start time will be recorded with System.currentTimeMillis(). The end time will be recorded
in a similar manner at the end, and the total will be calculated from subtracting one from the other. This total
will then be divided by 1000 (to convert from milliseconds to seconds) and then returned, where it will then
be printed out.

The game itself will work in a similar manner in both methods: the array of the letters of the alphabet will be
looped through using a while loop A character will be scanned in from the user. If the character is correct, a
success message will be printed and the index variable incremented or decremented as appropriate for the
method. Otherwise, the loop will be executed again on the same character, effectively ignoring the input,
until the appropriate character is entered. If the index is at the last character of either sequence (alphabetical
or counter-alphabetical), a special message will be printed out if the answer is correct.

The only real difference between the two methods will be the way in which they loop through the alphabet
array. forwards() will loop through the array in alphabetical order, starting at index 0 and incrementing the
index for each correct answer, with the loop condition while (i < 26). backwards() will loop the array
in counter-alphabetical order, starting at index 25 and decrementing the index for each correct answer, with
the loop condition while (i >= 0).

2 Code

1 import java.util .*;
2 import java.io.*;
3

4 public class Alphabet {
5 // initialising a String containing all the letters of the alphabet and

turning it into a character array (to save typing)
6 public static String alphabetString = "abcdefghijklmnopqrstuvwxyz";
7 public static char alphabet [] = alphabetString.toCharArray ();
8

9 // declaring a Scanner object to use to scan in the user input
10 public static Scanner scanner = new Scanner(System.in);
11

12 public static void main(String args []) {
13

14 System.out.println("Type the alphabet in order (lowercase).");
15

16 // prompting the user to enter ’f’ or ’b’ and scanning in the input (only
scanning the 0th character of input)

17 System.out.println("Forwards or Backwards? (f/b): ");
18 char fb = scanner.next().charAt (0);
19

1



CT2109 ASSIGNMENT 01

20 // switch statement to determine forward or backwards , or exit
21 switch(fb) {
22 case ’f’:
23 System.out.println("Time taken: " + forwards () + "s");
24 break;
25

26 case ’b’:
27 System.out.println("Time taken: " + backwards () + "s");
28 break;
29

30 default:
31 System.out.println("Invalid input!. You must enter either ’f’

or ’b’ to start.");
32 System.exit (1);
33

34 }
35 }
36

37 // method for going through the alphabet forwards
38 private static long forwards () {
39 // getting the time when the user started
40 long start = System.currentTimeMillis ();
41

42 // looping for each of the 26 letters
43 int i = 0;
44 while (i < 26) {
45 // checking if the scanned in character was the correct one
46 // if the it was not , then i will not be incremented , and it will

loop again on the same letter.
47 if (scanner.next().charAt (0) == alphabet[i]) {
48 if (i == 25) { // checking if it’s the last letter , and if so,

printing a special message
49 System.out.println("Correct! Well done!");
50 i++;
51 }
52 else { // otherwise , prompting the user to enter the

next letter
53 System.out.println("[" + alphabet[i] + ": Correct! Now type ’

" + alphabet [++i] + "’]"); // i gets incremented
54 }
55 }
56

57 }
58

59 // calculating the total time taken
60 long total = System.currentTimeMillis () - start;
61

62 // returning the total time taken in seconds (by dividing by 1000)
63 return total / 1000;
64 }
65

66 // method for going through the alphabet backwards
67 private static long backwards () {
68 // getting the time when the user started
69 long start = System.currentTimeMillis ();
70

71 // looping for each of the 26 letters
72 int i = 25;
73 while (i >= 0) {
74 // checking if the scanned in character was the correct one
75 // if the it was not , then i will not be decremented , and it will

loop again on the same letter.
76 if (scanner.next().charAt (0) == alphabet[i]) {

2



CT2109 ASSIGNMENT 01

77 if (i == 0) { // checking if it’s the last letter , and if so,
printing a special message

78 System.out.println("Correct! Well done!");
79 i--;
80 }
81 else { // otherwise , prompting the user to enter the

next letter
82 System.out.println("[" + alphabet[i] + ": Correct! Now type ’

" + alphabet[--i] + "’]"); // i gets decremented
83 }
84 }
85

86 }
87

88 // calculating the total time taken
89 long total = System.currentTimeMillis () - start;
90

91 // returning the total time taken in seconds (by dividing by 1000)
92 return total / 1000;
93 }
94

95 }

Listing 1: Alphabet.java

3 Testing

There are two main scenarios that must be tested for both the forwards() & backwards() methods: correct
input & incorrect input. Of these two main scenarios, we should test them at the first character of the sequence,
the last character of the sequence, and some of the middle characters. The main reason for this is that the
first & last characters are in a sense special, particularly the last one, so what may work for the “middle”
characters may not work for the others.

Furthermore, the case statement to choose between forwards & backwards should be tested with input f, b,
and some incorrect, third option.

Figure 1: Testing invalid input to the case statement

3



CT2109 ASSIGNMENT 01

Figure 2: Testing forwards with valid & invalid, first, middle, & last input

4



CT2109 ASSIGNMENT 01

Figure 3: Testing backwards with valid & invalid, first, middle, & last input

5


	Problem Statement with Analysis & Design Notes
	Code
	Testing

