OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2109

OOP: Data Structures
and Algorithms

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Important Notice

The lecture slides are provided so that you can focus on understanding the
material as it is being discussed and take supplementary notes.

Additional material will be covered in lectures that does not appear in
these notes.

Getting the notes is not a substitute for attending lectures!
Sample programs will be available for download on Blackboard.

These notes were originally developed by Prof. Michael Madden and they
have been updated/extended by Dr. Frank Glavin.

CT2109 Learning Objectives

1. Explain the structure, properties and use of data structures including Linked Lists, Stacks, Queues,
Trees, Binary Search Trees, and Graphs, including algorithms to process them.

2. Implement these data structures, use the implementations, and explain them.

3. Explain and apply the concepts of recursion and dynamic programming.

4. Define, discuss, and apply the concept of O-notation as related to algorithmic complexity.
Contrast this to other notations such as big Omega & big Theta,

5. Define and provide examples for P, NP, NP-Hard and NP-Compete problems.

6. Explain the general operation and algorithm details of a variety of sorting algorithms and
implement and analyse them.

7. Explain the concepts of lossy and lossless compression and describe and implement lossless
compression algorithms.

8. Analyse the space and time requirements of any algorithm encountered in this module,
theoretically and empirically.

9. Evaluate algorithms and data structures, analyse their complexity, discuss their relative merits,
and make rational choices about which is best for an application.

10. Create your own algorithmic solutions to problems and implement them in Java.

\LLy
%I OLLSCOILNAGAILLIMHE

5
o
.-

o Ve ¥y UNIVERSITY oF GALWAY

School of Computer Science

CT2109 Module Content 1/2

List-Based Abstract Data Structures
Queues; Stacks; Linked lists
Design, OOP implementation, analysis
Algorithm Analysis
Speed and storage

Dynamic Programming Algorith ms

Theoretical & empirical analysis
Sorting Algorithms

Quick Sort, Shell Sort, Radix Sort, others
Design, OOP implementation, analysis

m
X
o
M
:.
3
)
=
(o
F

WL Ly,
A\ OLLSCOILNAGAILLIMHE

Ll ™

- sipnle -
o':L-li UNIVERSITY oF GALWAY
LW/

School of Computer Science

CT2109 Module Content 2/2

Tree Structures

Binary trees; tree algorithms; depth-first and
breadth-first searching; balanced trees; AVL trees
Design, OOP implementation, analysis

Data Compression
Huffman Encoding

Practical Considerations [cross-cutting theme]

Analysing, choosing, implementing & applying
algorithms & data structures in useful programs.

\LLy
P\ OLLSCOILNA GAILLIMUE
UNIVERSITY OF GALWAY

c School of Computer Science

We Assume You Studied CT2106 ...

Java Language
Syntax, Important libraries, Strings, Arrays, ArrayLists
Coding conventions, Numeric precision

Object Oriented Programming
Composition, Inheritance, Polymorphism, Abstraction,
Constructors, Casting, Interfaces, Abstract Classes, < a V a
Java Collections Framework =

Good Practice - -
Debugging, Exception handling, Unit testing, —

Test-driven development, Design Patterns

\LL 7
NV OLLSCOILNAGAILLIMHE
> Clnls
5'-'7- UNIVERSITY 0F GALWAY

School of Computer Science

Teaching and Assessment

Lab assignments (30% weight)
Written exam in Summer (70%)

Lecture 1: Friday 9:00 — 9:50
Lecture 2: Friday, 10:00 — 10:50

2 hours/week starting in Week 2:

Thursdays 12:00-14:00 (2BLE, 2BP, others)
Fridays 12:00-14:00 (2BCT)

(OLLSCOIL NA(GAILLIMHE
RSITY oF GALWAY

School of Compute

Resources

Suggested Reading:
"Data Structures and Algorithms In Java",
Goodrich & Tamassia DATA STRUCTURES
"Data Structures and Abstractions with Java", and ABSTRACTIONS
Carrano & Savitch
“Java: How to Program”, Deitel & Deitel
(General-purpose Java book)
Others: see library
Notes and lectures!

with JAYA ™

Course Website:

http://nuigalway.blackboard.com
Sample programs, assignments, announcements

Java IDEs: Frank M. Carrano B Timothy M. Henry
https://hackr.io/blog/best-java-ides

P Pearson

\ L L /(
VAT OLLSCOILNAGAILLIMHE
> Clnls
5'.-.-.'? UNIVERSITY OF GALWAY

4w

School of Computer Science

LL,
“/efinvs\ OLLSCOILNAGAILLIMME

O [jaag

. slmals -
ojl-li UNIVERSITY OF GALWAY
L W

CT2109
Topic 1: Stacks and Queues

University
ofGalway.ie

Define what o Abstract « Implement Stack and

Datow Type is Queue based onArrays,
including basic and more

Explain the purpose and uses advanced implementation

of Stack and C?WA bstract detoils

Datw Types

What You’ll Achieve in this Topic

10 School of Computer Science

Abstract Data Type (ADT) 1/2

An abstract model of a data structure, that specifies
* Data stored
* Operations that may be performed on data

Composite ADTs
* Used to manage collections of data
* Array, List, Stack, Queue, Hash Table, ...

\LLy
P\ OLLSCOILNA GAILLIMUE
;' UNIVERSITY oF GALWAY

11

Abstract data type

List

/

Data structure

School of Computer Science

Abstract Data Type (ADT) 2/2

ADT Specifies what each operation does, but not how
In OOP languages like Java, corresponds naturally to an Interface Definition

An ADT is realised as a concrete data structure
In Java, this is a class that implements the interface

ADT specification of a list?

WLLy
;%T_‘; OLLSCOILNA GAILLIMHE
. Sliwls -
Narmly UNIVERSITY OF GALWAY

O T A
4w

1 School of Computer Science

Stacks & Queues: Overview

Stacks and Queues:
Linearly ordered ADTs for list-structured data

Stack:
Last In, First Out:
ltems can only enter/leave via the top
Push and Pop to add and remove
Example Applications:
Processing nested structures
‘Undo’ operation in editor

((
(

<<<

A

WLLy,
;@Tjﬁ OLLSCOILNA GAILLIMHE
. slmils -

Callf UNIVERSITY oF GALWAY

oV
O var A
4w

13 School of Computer Science

Stack Example: A Stack-Machine

Assignment / simple expression written in a high-level programming language (e.g. C):
a=1+(2%*5);

Machine instructions after compilation:
PUSH 1
PUSH 2
PUSH 5
MULT
ADD

PUSH 1 PUSH 2 PUSH 5 MULT ADD

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

1 School of Computer Science

Stacks & Queues: Overview

Queue:
First In, First Out:
ltems enter at the rear, leave at the front
Enqueue and Dequeue to add and remove

Example Applications:

34 Ensuring fair treatment’ to each of a list of pending

gl’ tasks (first come first served)

¥ Simulation: modelling and analysing real-world systems

\“L/(
;%T_’; OLLSCOILNA GAILLIMHE
” slirls -
B~ T[INIVERSITY OF GALWAY

I School of Computer Science

Queue Exam ple: Queues in a Process Scheduler of an Operating System

Release
=

~ Ready Queue
Adm': > I Dispatch e
! Timeout
Blocked Queue '
Event Event Wait
Occurs_l | | |"'

\LL ’_
VAT OLLSCOILNAGAILLIMHE
> Clnls
j'.-.-.'i UNIVERSITY 0F GALWAY
Lw’

16

Single Blocked Queue

School of Computer Science

Stack ADT

Stack is a last in, first out list. No sort order assumed.

Objects stored in stack:

A finite sequence of elements of the same type. -

Operations:
n: Node
s.push(n)
s.pop()—>n

s.top() —>n
s.isEmpty() > b
s.isFull() —> b

\LL 7
NV OLLSCOILNAGAILLIMHE
> Clnls
5'-'7- UNIVERSITY 0F GALWAY

Push Po

s: Stack b: Boolean value
Place item n on to top of stack

Remove top item from stack and

return it

Examine the top item on stack without removing it
Returns b = True if stack is empty

Returns b = True if stack is full

(relevant if it has limited storage)

2
m

School of Computer Science

Stack Interface in Java

Note: Built-in Stack class: java.util.Stack
Nonetheless, we will make our own. Why do we bother?
Stack.java:
public interface Stack
{
public void push (Object n);
public Object popl():;
public Object top();
public boolean isEmpty () ;
public boolean isFull ()
}
Other operations: size(); makeEmpty()
Can implement this interface using array, linked list or other storage type

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Stack: Array Implementation (1)

Index 0 1 2 3 4 5 6 7 8 9 10 11
S |18 (14| 1211022 20| 19]6

Consider stack implemented as an array with indexes [0..N-1]

Need to maintain a variable, numltems, which counts the number of items in the stack.
numltems =0 => stack is empty
numltems =N =>stack is full

Also necessary to know the index of the “top” item and the index of the “bottom” item

Two possibilities:

(1) Top of stack is first index of array

(2) Top of stack is last index of array

WLLy,
;@T} OLLSCOILNA GAILLIMHE
. &lils -
o mmly UNIVERSITY OF GALWAY

AN
4w

19 School of Computer Science

Stack: Array Implementation (2)

Index 0 1N-1
S 118114 1211022120196
To

Bottom p

Of these two possibilities, (2) is the more efficient
As both “Push” and “Pop” occur at the top of the stack, it is better to have room at this end.
The index of Top therefore holds the value
numlitems — 1

With possibility (1), items would have to be shuffled up and down the stack.

\LLy
;@Tjﬁ OLLSCOILNA GAILLIMHE
. slmls -

= UNIVERSITY oF GALWAY

O T A
LW

- School of Computer Science

Stack: Array Implementation (3)

Stack operations may be implemented as follows:
(basic implementation: no error checking)

Push(n) top++; s[top] = n; // or: s[++top] = n;
Pop() n =s[top]; s[top] = null; top--; return n;

Top() return s[top];

isEmpty() if (top==-1) return true; else return false;
isFull() if (top==s.length-1) return true; else return false;

\LL 7
NV OLLSCOILNAGAILLIMHE
. Clevils -
n‘|-|i UNIVERSITY OF GALWAY

51 School of Computer Science

Stack: Array Implementation (4)

Fuller implementation:
ArrayStack.java

* Need to make sure before Push that it’s not already
full, and before Pop/Top that it’s not already empty

* Array has limited capacity, so isFull() is required

* Elements stored in Object array, so they need to be
cast to the correct type when popped

Let’s look at the code ...

\LL ’_
VAT OLLSCOILNAGAILLIMHE
> Clwils
<l UNIVERSITY OF GALWAY

© waw
[

22

School of Computer Science

Queue ADT

A Queue is a first-in, first out list. No sort order assumed.

Obijects it stores:

A finite sequence of elements of the same type.
Front item has been in the queue longest;
rear item entered the queue most recently.

Operations:
e: Element
g.enqueue(e)
g.dequeue () > e

g.front()
g.isEmpty() > b
g.isFull() > b

*Tlg]\l QOLLSCOILNA GAILLIMUE
Nlarmly UNIVERSITY oF GALWAY

© waw
4w

23

q: Queue
Place e at rear of g, assumi

b: Boolean value
ng room

Remove front item from q and

return it

Return front element without removing it
Returns true if queue is empty

Returns true if queue is full

8 Cusbmer Armival

Servers

Customers in Queue

8348 ‘I

‘ 8 Customer Exit

School of Computer Science

Queue Interface in Java

24

Queue.java:

public interface Queue

{
public wvoid enqueue (Object n) ;
public Object dequeue() ;
public boolean isEmpty () ;
public boolean isFull();
public Object front();,

}

Other operations: size(); makeEmpty()
Again, can implement this interface using various storage
types

We will use an array: ArrayQueue.java

Let’s examine it

\LL ’_
VAT OLLSCOILNAGAILLIMHE

JARL
- il -
o Uiy,
o Nmmly,
4w

UNIVERSITY oF GALWAY

School of Computer Science

Queue: Array Implementation

With array implementation, items must be “shuffled” towards the front after a dequeue
Note that with the array implementation, once Rear becomes equal to N-1 no further items can be
enqueued (array space limitation)

q | 18|14] 12| 10|22 |20 | 19]6

I I

Front Rear

n = dequeue() ; enqueue (8); n = dequeue(); n = dequeue();

g|10/22/20(19|6 |8

WLLy,
;@T} OLLSCOILNA GAILLIMHE
. &lils -
o iy, UNIVERSITY OF GALWAY

C av
4w

- School of Computer Science

Any Other Way?

Is there a way of implementing a Queue as an array while avoiding shuffles?

What do you think?

School of Computer Science

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2109

OOP: Data Structures
and Algorithms

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

What You’ll Achieve in This Topic

* Discuss the purpose and characteristics of the Linked
List ADT

 Show how to implement linked lists in Java

* Develop and explain code to use linked lists and add
additional functionality to a linked list ADT

* Describe, implement and use extensions to the basic
linked list ADT

* Develop linked list implementations of Stack and

Queue ADTs
e [You should be able to do this yourself]

WLl 7
NV OLLSCOILNAGAILLIMHE

Ll ™

. slimils -
ojL-lEA UNIVERSITY OF GALWAY
L

School of Computer Science

Linked Lists: Description o (head) =~ L

Linear Linked List:
An ADT which stores an arbitrary-length list of data objects as a sequence of nodes
Each node consists of data and a link to another node
Each node, except the last, linked to a successor node

,s/n\ OLLSCOILNA GAILLIMHE .

oY lv.vl'ﬂ' UNIVERSITY OF GALWAY Node Node Node Node Node

School of Computer Science

Linked Lists: Characteristics

* Self-referential structure type
* Every node has a pointer to a node of same type

* Very useful for dynamically growing/ shrinking lists of data

* Drastically reduces effort to add/remove items from middle of list,
when compared to arrays

* Arrays' potential problem of overflow is solved

 Sequential access
* Inefficient to retrieve an element at an arbitrary position, relative to array

WLLy
;%T_‘; OLLSCOILNA GAILLIMHE
- [
Ca Ll UNIVERSITY OF GALWAY
L

.r“
C av
4w

School of Computer Science

Linked Lists: Implementation

Define a Node class:
Members: data (any variables required)
and next (reference to another Node object)

Each node occurrence is linked to a succeeding occurrence by way of the member next
If next is null, there is no item after this in list (termed "tail" node)

Start-point for the list is the "head" node:

can trace from it to any other node ° -

data next

WLLy,
;@T} OLLSCOILNA GAILLIMHE
. slirnls -
Nl UNIVERSITY oF GALWAY

O T A
4w

School of Computer Science

Node for Singly Linked List in Java (1)

public class Node {
// Instance variables:

private Object element; Node.java on blackboard
private Node next;

/** Creates node with null refs to its element and next node. */
public Node() {
this(null, null);

}

/** Creates node with the given element and next node. */
public Node(Object e, Node n) {

element = e;

next = n;

School of Computer Science

Node for Singly Linked List in Java (2)

// Accessor methods:
public Object getElement() {
return element;

g)ublic Node getNext() { This is enough to allow us to
return next; create nodes and link them,
} But for a full-fledged ADT
we require a LinkedList
// Modifier methods: class to manage them.

public void setElement(Object newElem) {
element = newElem;

}

public void setNext(Node newNext) {
next = newNext;

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

School of Computer Science

Exercise
NodeTest.java on blackboard:
Incomplete! Will finish in class.
Create some nodes
Store a string in each
Link them in constructors or with setNext()
Iterate through list
Set a Node reference currentNode to point to Head node

Get element data, cast it to a string & display
Set currentNode to next node

Loop until end node reached (null)

a (head) b c (tail)
A e I » B . » C |NULL

Now build an ADT around these ideas ...

\LLy
;%T:; OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

o School of Computer Science

Linked List ADT

head
Definitions of methods to manage Linked List \
Don’t create nodes manually, just supply element data \
Keeps track of current position in list Object Object Object
Typical methods in a Linked List ADT _—) — , et
long size() Returns size of list
boolean isEmpty() True if list is empty
Object getCurr() Returns element at current pos
boolean gotoHead() Sets curr pos to head; true if worked ,
boolean gotoNext() Moves to next pos; true if worked tail
insertNext(Object el) Creates new node after current
deleteNext() Removes the node after current
insertHead(Object el) Creates a new node at head
deleteHead() Removes the head node

WLLy,
;@T} OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

School of Computer Science

Singly Linked List Class

Stores the head of the list and current position

For efficiency, also keeps track of current size
(could alternatively just count its nodes when needed)

public class|SLinkedList| {

protected Node head; // head node of the list (,)

protected Node curr; // current position in list &
protected long size; // number of nodes in the list

/*(Default constructor that creates an empty list */ g__')/

public SLinkedList() {
curr = head = null;

size = O; .
}
// ... Insert, remove and search methods go here ...

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2109

OOP: Data Structures
and Algorithms

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

What You’ll Achieve in This Topic

* Explain the purpose of algorithm analysis

 Describe O-notation and functions used with it, as well as related
notations

* Analyse the space and time requirements of any algorithm encountered ‘/
in this module —

* Interpret the results of complexity analysis in terms of whether an
algorithm is efficient or not

e Compare algorithms and make rational choices about which is best for
an application

* Explain the concept of Dynamic Programming, show simple applications
of it, and analyse its effects

 Describe P, NP and NP-complete problems and related terminology

WLLy
;%T_‘; OLLSCOILNA GAILLIMHE
. Sliwls -
Narmly UNIVERSITY OF GALWAY

© > A
4w

School of Computer Science

Motivation

 There is more than one way of doing everything
* Which algorithm should | choose for a given job?

e All algorithms take CPU time and memory space

e Often can make tradeoffs: choose algorithm variants that either use
more memory or more CPU

* If memory space requirements are large, program may use disk swap
space rather than RAM: much slower!

* Memory requirements very large: program cannot run

e Often identify the algorithms that don’t require “too much” space,
then choose the one with lowest CPU

* Need to compare algorithms’ time & space requirements
* Purpose of algorithm analysis

\LL 7
NV OLLSCOILNAGAILLIMHE
. Clevils -
5'-'7- UNIVERSITY OF GALWAY

School of Computer Science

Value of Algorithm Optimisation...

\LLy
VAT OLLSCOILNAGAILLIMHE
> Clwils

3'-'7- UNIVERSITY OF GALWAY

O v A
Lw

School of Computer Science

Value of Algorithm Optimisation...

=8 Elon Musk o3l Following
4 4 elonmusk

Tesla P85D 0 to 60mph acceleration will

Improve by ~0.1 sec soon via over-the-air
software update to inverter algorithm
X

S FAVORITES

1898 2,068 8 AZ[PERE

12:33 PM - 29 Jan 2015

*%*L\/(l’ OLLSCOILNA GAILLIMHE More recent Story:
BUH Gnivmrsity o Gaimay https://www.theverge.com/2018/6/2/17413732/t

esla-over-the-air-software-updates-brakes

4w

School of Computer Science

Algorithm Analysis Basics

Why not just run it to measure time & space used?
Sometimes done when theoretical analysis difficult

Want to be able to ...
Evaluate algorithms “on paper”, without having to first implement, debug and test them all
Have a measurement that’s independent of particular computer configuration
Compare algorithms reliably, without being influenced by variations in implementation
Understand how it will perform on large problems
Identify “hot spots” to give our attention to, when developing and optimising programs

WLLy,
;@T} OLLSCOILNA GAILLIMHE
. slirnls -
Nl UNIVERSITY oF GALWAY

O T A
4w

School of Computer Science

Algorithm Analysis Basics (1)

Theoretical Analysis:
Uses a high-level pseudocode description of the algorithm instead of an implementation

Characterises run-time as a function of input size, n
What is n for a sorting algorithm?
This function specifies the order of growth rate of runtime as n increases

Takes into account all possible inputs
Evaluates speed independent of hardware/software

WLLy
;%T_‘; OLLSCOILNA GAILLIMHE
. Sliwls -
Narmly UNIVERSITY OF GALWAY

O T A
4w

School of Computer Science

Algorithm Analysis Basics (2)

Basic approach: derive function for the:
count of the primitive operations

* These are the individual steps performed by program
* Assume each step takes the same time
* Examine any terms that control repetition

Ly
¥\ OLLSCOILNAGAILLIMUE
/ ¥y UNIVERSITY oF GALWAY

School of Computer Science

Counting Primitive Operations (1)

Example:
Algorithm to find largest element of an array
Count max number of operations as fn of array size, n

%\I OLLSCOILNAGAILLIMHE Note: Some textbooks/websites get different
gy UNVERSITYorGALwaY answers for this example. Why?

School of Computer Science

Counting Primitive Operations (2)

* Could consider average, best or worst case
Consider searching for a given value in an array:
what are average, best and worst case no. of ops?
What about finding the largest value in an array?
What about sorting an array?

e Usually analyse worst case
Want algorithms to work well even in bad cases
Average case important too, if different from worst case

e These counts are basis of O Notation

“big-oh notation”
[Greek letter Omicron looks same as Latin letter O]

\LLlys
NV OLLSCOILNAGAILLIMHE

> Cirhls
5'-'7- UNIVERSITY OF GALWAY

School of Computer Science

O Notation

Approach:

Derive expression for count of basic operations (as discussed)
Focus on dominant term, ignore constants
E.g. O(5n% + 1000n — 3) => O(n?)
Since constant factors and lower-order terms are eventually dropped, can disregard them

when counting primitive operations

Example:
Algorithm arrayMax runsin ___ time
Or, “arrayMax has run-time complexity
of order "

\LL 7
NV OLLSCOILNAGAILLIMHE
> Clnls
5'-'7- UNIVERSITY 0F GALWAY

School of Computer Science

O Notation: Details

Used for Asymptotic Analysis of Complexity
Trend in algorithm’s run time as n gets large
Look at Order of Magnitude of no. of actions
Independent of computer/compiler/etc

Note: specifically care about tightest upper bound
An algorithm that is O(n?) is also O(n3), but the former is more useful

\LL 7
VAL OLLSCOILNAGAILLIMHE
;' UNIVERSITY oF GALWAY

12

School of Computer Science

O Notation: Details

The function specified in O notation is the upper bound on the behaviour of the
function (algorithm) being analysed

Can be best-case / average-case / worst-case behaviour
Example: if f(n) is the algorithmic function and
we deduce that f(n) is O(g(n)),

this means thatasn — oo, f(n) < c.g(n) /
Some constant
¢, 8(n)

£ (n)

Function in O()

c, g(n) is bound specified by O notation

c, h(n) ¢, h(n) is bound specified by Q notation

If g(n) = h(n), c; and c, specify
— k bound in © notation

\LL /(1
VAT OLLSCOILNAGAILLIMHE
. slimils -
n‘|-|i UNIVERSITY 0F GALWAY

School of Computer Science

13

O Notation: Example

Example of Big O notation:
Let f(x) = 6x* - 2x3 + 5

Apply the following rules:

e |f f(x) is a sum of several terms, only the one with the
largest growth rate is kept

e |If f(x) is a product of several factors, any constants that
do not depend on x are omitted.

* Thus, we say that f(x) has "big-oh" of (x*).

* We can write f(x) is O(x?#)

WLLy,
;@Tjﬁ OLLSCOILNA GAILLIMHE
- [
Callf UNIVERSITY oF GALWAY

.r“
C av
4w

1 School of Computer Science

Important Functions Used in O Notation

Functions commonly used:

Constant: 0O(1)

Logarithmic O(log n)

Linear O(n)

n-Log-n O(n log n)

Quadratic 0(n?)

Cubic 0(n3)

Exponential 0(2") Will compare graphically ...
Notes:

Convention: logs are base 2 since not otherwise stated
Just because two algorithms have same complexity does not mean they take exact same time;
It means their running times will be proportional.

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o iy, UNIVERSITY OF GALWAY

C av
4w

School of Computer Science

15

Comparisons of Functions (1)

n const. log n n nlogn n’ n’ 2"
8 1 3 8 24 64 512 256
16 1 4 16 64 256 4096 65536
32 1 5 32 160 1024 32768 4294967296
64 1 6 64 384 4096 262144 1.84467E+19
128 1 7 128 896 16384 2097152 3.40282E+38
256 1 8 256 2048 65536 16777216 1.15792E+77
512 1 9 512 4608 262144 1.34E+08 1.3408E+154
http://bigocheatsheet.com/
Data Structure Time Complexity Space Complexity
Average Worst Worst
Access Search Insertion Deletion Access Search Insertion Deletion
Array, lem] [em] [em)] | o] o] [om)] 0(n)
Stack [o(n) o(1)] [o(m)] 0(1). ' [o(m]
Queue [otm)]) [o(m |

Singly-Linked List [e(n) B

Doubly-Linked List o(n)
QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

0(n)
o] o]

0(n)

School of Computer Science

Comparisons of Functions (2)

Order of Number of Operations

5000

4500

4000

3500

3000

1 —4—logn

—&—nlogn

)

—=—=n’3

—&-2"n

v T

0 500 1000 1500 2000 2500

Size of Problem

10000000

9000000

8000000

ions

7000000

6000000

5000000

4000000

3000000

Order of Number of Operat

2000000

1000000

—4—logn

—4&—nlogn

+nn2

=—e= A3

——2\n

L

1000 1500 2000
Size of Problem

2500

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Comparisons of Functions (3)
Big-O Complexity Chart

[EEREER] (oo o+ [coo) I

Operations

OLLSCOILNA GAII
UNIVERSITY oF G

Elements

http://bigocheatsheet.com/

School of Computer Science

Some Intuitions

What kind of operations would have complexity of:
O(n)?

O(n?)?

O(log n)?

Will do examples in class...

\LL 7
NV OLLSCOILNAGAILLIMHE
> Clnls
5'-'7- UNIVERSITY 0F GALWAY

School of Computer Science

Efficiency and O Notation

Constant
* Most efficient possible, but only applicable to simple jobs

Logarithmic, Linear, and nlogn
* If an algorithm is described as “efficient”, this usually means O(n log n) or better

Quadratic and Cubic
* Not very efficient, but polynomial algs. usually considered “tractable”: acceptable for problems of reasonable size

Exponential
* Very inefficient:
problems that (provably) require an algorithm greater than polynomial complexity are “hard”

WLLy,
;@T} OLLSCOILNA GAILLIMHE
” slirls -
o iy, UNIVERSITY OF GALWAY

C av
4w

- School of Computer Science

OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

CT2109

OOP: Data Structures
and Algorithms

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

Review of Recursion (1)

Methods can call others, but can also call themselves
Directly; or indirectly via another method
This creates a form of loop: termed recursion

Like other loops, recursive methods have to be carefully constructed so that they terminate correctly

Why?
Small but significant set of problems can be solved elegantly in this way (e.g. in maths, list processing)
Know the solution to simple base cases
More complex cases are defined in terms of base cases
Example: Fibonacci sequence:
f(0)->0 f(1)>1
f(n) -> f(n-1) + f(n-2), wheren>1

OLLSCOILNA GAILLIMHE See: Fibonacci.java
UNIVERSITY oF GALWAY

51 School of Computer Science

Review of Recursion (2)

Iteration can be used anywhere you can use recursion
Sometimes recursion is more elegant, if it reflects the way the problem is usually thought about
Aim to use most intuitive representation of problems
Complexity analysis can be easier in some cases

Drawbacks of recursion:
Inefficient use of function heap: large amount of deeply nested method calls to be kept track of
together
If done naively, number of calls can explode:
f(20) takes 21,891 calls to method
f(30) takes 2,692,537 calls
Easier to avoid these problems with normal loops
Depending on algorithm, need to take care not to recompute values unnecessarily: see next

WLLy,
;@T} OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

School of Computer Science

Review of Recursion (3)

A recursive method must have:
1. Test to stop or continue the recursion
2. An end case that terminates the recursion
3. Recursive call(s) that continue the recursion
Use recursion if:
Recursive solution is natural and easy to understand
Recursive solution does not result in excessive duplicate computation
Equivalent iterative solution is too complex
If performance is an issue ...
Perhaps use recursion to write the first version
Later re-write using less natural but more efficient iteration

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Avoiding Unnecessary Computations

Fibonacci program:

Could store interim results rather than computing them from scratch every time
Could use an array:

At each index i, store answer for fibonacci(i)

Initialise first 2 values to base cases

Initialise all others to "don't know" values (-1)

When calling method, check to see if we know the answer before computing it
Will this make a difference?

Will do a formal analysis in a few minutes ...

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

25

O T A

Dynamic Programming

Fibonacci with storage is an instance

of Dynamic Programming
Richard Bellman, 1940s
Basic idea:
Solve complex problem by breaking it
into simpler sub-problems
When solution to a sub-problem is found,
store it ("memo-ize") so it can be re-used without recomputing it
Combine the solutions to sub-problems to get the overall solution
Particularly useful when the number of repeating
sub—problems grows exponentially with problem size

A
NV OLLSCOILNAGAILLIMHE

-] ﬁ ="
slogl UNIVERSITY OF GALWAY

4w

School of Computer Science

Dynamic Programming

In general, takes problems that appear exponential, produces polynomial-time

algorithms for them
Will see this in analysis
Trade-off of storage and speed
Widely used in heuristic optimisation problems

Examples of DynProg algorithms:

Finding longest common sub-sequence in two strings
https://www.cs.usfca.edu/~galles/visualization/DPLCS.html
Towers of Hanoi

Knapsack problem

WLLy
;%T_‘; OLLSCOILNA GAILLIMHE
. Sliwls -
Narmly UNIVERSITY OF GALWAY

O T A
4w

26 School of Computer Science

Towers of Hanoi

Walkthrough:
http://www.mathcs.emory.edu/~cheung/Courses/170/Syllabus/13/hanoi.html

QOLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Knapsack Problem [Wikipedia]

Example of a one-dimensional =
(constraint) knapsack problem: which boxes
should be chosen to maximize the amount of
muoney while still keeping the overall weight
under or equal to 15 kg? A multiple
constrained problem could consider both the
weight and volume of the boxes.

(Solution: if any number of each box is
available, then three yellow boxes and three
grey boxes; if only the shown boxes are
available, then all but the green box.)

< Also see: https://www.dyclassroom.com/dynamic-programming/0-1-knapsack-problem
VAT OLLSCOILNAGAILLIMHE
‘5'#%.'? UNIVERSITY 0F GALWAY

4w

School of Computer Science

28

Dynamic Programming

Problem structure requires 3 components:
1. Simple sub-problems: must be able to break overall problem into indexed sub-
problems & sub-sub-problems
2. Sub-problem decomposition: Optimal/correct solution to overall problem must be
composed from sub-problems
3. Sub-problem overlap: so elements can be re-used

\LLy
;%T:; OLLSCOILNA GAILLIMHE
” slirls -
B~ T[INIVERSITY OF GALWAY

- School of Computer Science

Dynamic Programming

Basic Steps in DynProg Approach:
1. Set up the overall problem as one decomposable into overlapping sub-problems that
can be indexed
2. Solve sub-problems as they arise;
store solutions in a table
3. Derive overall solution from the solutions in the table

WLLy,
;@T} OLLSCOILNA GAILLIMHE
. slirnls -
Nl UNIVERSITY oF GALWAY

O T A
4w

30 School of Computer Science

31

© |
. il -
‘lnl’.

O T A

Dynamic Programming — A Note

Don't get confused!
Dynamic Programming != Java Programming Language's property of using dynamic memory
allocation

Meaning of "Dynamic Programming"
Here, a "programme" is an optimised plan
(sequence of steps)
"Dynamic" because the "memo" of past results (table storing them) is updated as
procedure progresses
In contrast to a procedure where you calculate a fixed set of "tables" and then use them
(e.g. log tables)

WLLy
VA OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

4w

School of Computer Science

Example: Fibonacci Sequence

f(0) = 0; f(1) = 1; f(n) = f(n-1) + f(n-2)

l f(n-3) Il f(n-4) Il f(n-4) Il f(n-5) Il f(n-4) Il f(n-5) Il f(n-5) | f(n-6)

In class: compute complexity for both cases,
QTBR OLLSCOILNAGAILLIMUE without and with Dynamic Programming

'ﬁ A
O‘L‘-v'i UNIVERSITY oF GALWAY

..
~4
4w

32

School of Computer Science

Example: Fibonacci Sequence

f(0) =0; f(1) = 1; f(n) = f(n-1) + f(n-2) mn

f(n) 1 20

l f(n-3) Il f(n-4) Il f(n-4) Il f(n-5) Il f(n-4) Il f(n-5) Il f(n-5) Il f(n-6) | 4 23

« If we don't store values, overall complexity determined by
no of evaluations at bottom level

%\' ouscoimGanumie o |f we do store values, 'new' calculations are down left side:
B~ UNIVERSITY OF GALWAY
this is Dynamic Programming approach

School of Computer Science

More Big Greek Letters (1)

O(n log n): "Big Oh" (Omicron)
Upper bound on of asymptotic complexity
In this case: there is a constant €2 s.th. c2 n log n is an upper bound on asymptotic complexity

Q(n log n): "Big Omega"
Specifies lower bound on c,g (n)
asymptotic complexity f(n)
In this case, algorithm has a
lower bound of cI1 nlogn

O(n log n) "Big Theta" 19 (n)
Specifies upper and lower bounds
In this case, there exist 2 constants, ¢; & ¢, s.th.
c,nlogn<f(n)<c,nlogn

] k

Don't confuse upper/lower bounds with best/worst case: all cases have all bounds

\LLy
;%T:; OLLSCOILNA GAILLIMHE
” slirls -
o iy, UNIVERSITY OF GALWAY

C av
4w

24 School of Computer Science

More Big Greek Letters (2)

Of these, O() makes the strongest claims
It specifies that the growth rate is no better and no worse than some level
Requires additional analysis relative to O
There are also some others ...
These are common in Maths but not Comp Sci
Little o: 0o(g(n)) specifies a function g(n) that grows much faster than the one we are analysing
Little omega: w(g(n)) specifies a function g(n) that grows much slower than the one we are analysing

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o iy, UNIVERSITY OF GALWAY

C av
4w

3 School of Computer Science

P, NP, and NP-Complete Problems [1]

P Problems are those for which:
There is a deterministic algorithm that solves it in Polynomial Time
In other words, algorithm’s complexity is O(p(n)) where p(n) is a polynomial function

Note: Problems that can be solved in polynomial time are termed tractable
All worse are termed intractable

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o iy, UNIVERSITY OF GALWAY

C av
4w

36

School of Computer Science

37

P, NP, and NP-Complete Problems [2]

NP Problems are Nondeterministic Polynomial ...

Nondeterministic algorithms have 2 repeating steps:

Generate a potential solution, randomly or systematically
Verify whether it is right
If not, repeat

If the verification step is polynomial, the algorithm and associated problem are NP
E.g. factoring large integers as used in RSA encryption
Subset sum problem: (next slide)

Note that P is a subset of NP:
Using NP approach, generate a guess, then in the verification step ignore it and solve it as usual

L L
J%_ﬁ;\:ﬂ’g OLLSCOIL NAGAILLIMHE
szl -

o

UNIVERSITY oF GALWAY

vav -
4w

School of Computer Science

38

Examples of P and NP Problems

(Trivial) example of a P problem:
Search an array of integers for a certain value

Example of an NP problem: Subset problem
Given a set of integers, does some nonempty subset of them sumto 0
E.g. does a subset of the set {-2, -3, 15, 14, 7, -10} add up to 0?
There is no polynomial algorithm to solve this problem
However, verification of a potential solution is polynomial,
in fact O(n) (just add up the numbers in the potential solution)
Example of an NP problem: Integer Factorisation

L L
J\KJ‘L\:"’& OLLSCOIL NAGAILLIMHE
szl -

o

UNIVERSITY oF GALWAY

A
7w

School of Computer Science

P, NP, and NP-Complete Problems [3]

NP-Complete Problems are those that are "as hard as all others" in NP
Algorithms that are comparable to ("polynomially reducible to") others in NP but not reducible to P
Polynomially reducible: there is some polynomial-time transformation that converts the inputs for Problem X to inputs
for Problem Y

NP-Hard Problems are those that are "as hard or harder than" all in NP
A problem X is NP-Hard if NP-Complete problems are polynomially reducible to it

\LLy
;%T:; OLLSCOILNA GAILLIMHE
” slirls -
o iy, UNIVERSITY OF GALWAY

C av
4w

39 School of Computer Science

NP-Complete Problems

NP-Complete is a complexity class which represents the set of all problems X in NP for which it is possible
to reduce any other NP problem Y to X in polynomial time.

Intuitively this means that we can solve Y quickly if we know how to solve X quickly.

What makes NP-complete problems important is that if a deterministic polynomial time algorithm can be
found to solve one of them, every NP problem is solvable in polynomial time.

WLLy,
;@T} OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

School of Computer Science

NP-Hard Problems

Intuitively, these are the problems that are at least as hard as the NP-complete problems.

Note that NP-hard problems do not have to be in NP, and they do not have to be decision problems.

The precise definition here is that “a problem X is NP-hard, if there is an NP-complete problem Y, such that
Y is reducible to X in polynomial time”

Example:
The halting problem is an NP-hard problem. This is the problem that given a program P and input |, will it halt?

WLLy,
;@T} OLLSCOILNA GAILLIMHE
” slirls -
o ViV UNIVERSITY OF GALWAY

School of Computer Science

The “P versus NP” Problem

Major unsolved problem in computer science
“If the solution to a problem is easy to check for correctness, is the problem easy to solve?”
“whether every problem whose solution can be quickly verified by a computer can also be quickly solved by
a computer”
Quickly means there exists an algorithm to solve the task that runs in polynomial time

P (polynomial) €= solvable in polynomial time
NP (non-deterministic polynomial) € only verifiable in polynomial time

WLLy,
;%T_‘; OLLSCOILNA GAILLIMHE
” slirls -
o iy, UNIVERSITY OF GALWAY

C av
4w

45 School of Computer Science

43

O T A

The “P versus NP” Problem

An answer to the P = NP question will determine whether all problems that can be verified in polynomial
time can also be solved in polynomial time.

If it turned out that P # NP, it would mean that there are problems in NP (such as NP-complete problems)
that are harder to compute than to verify.

We already know that P € NP!

In theoretical computer science the problems considered for P and NP are decision problems
Decision problems don’t provide numeric results, but yes/no answers

\LLlys
NV OLLSCOILNAGAILLIMHE

-] ﬁ =",
slogl UNIVERSITY OF GALWAY

4w

School of Computer Science

P, NP, and NP-Complete Problems

Is P=NP?
Are there deterministic polynomial solutions to all NP problems, that we just have
not found yet?
One of the
current grand
challenges in
Computer
Science
Prizes offered,
etc.

NP-Hard

NP-Hard

NP-Complete

NP

P=NP=
NP-Complete

Complexity

WLLy,
;@%T_‘; OLLSCOILNAGAILLIMHE P # NP
” slirls -
o ViV UNIVERSITY OF GALWAY

Image: Wikimedia Commons

45

Learning Objectives Review

Now that you have completed this topic successfully, you should be able to:

Explain the purpose of algorithm analysis

Describe O-notation and functions used with it, as well as related notations

Analyse the space and time requirements of any algorithm encountered in CT2109

Interpret the results of complexity analysis in terms of whether an algorithm is efficient or not
Compare algorithms and make rational choices about which is best for an application

Explain the concept of Dynamic Programming, show simple applications of it, and analyse its effects
Describe P, NP and NP-complete problems and related terminology

\LLy
OT@LN; OLLSCOILNAGAILLIMHE
X
© o A,
e

UNIVERSITY oF GALWAY

School of Computer Science

46

Further Reading for Revision

Big O Notation
https://www.bigocheatsheet.com/
https://www.freecodecamp.org/news/big-o-notation-why-it-matters-and-why-it-doesnt-1674cfa8a23c/
https://cooervo.github.io/Algorithms-DataStructures-BigONotation/index.html

P, NP, NP-Hard and NP-Complete

https://towardsdatascience.com/the-aged-p-versus-np-problem-91c2bd5dce23
https://bigthink.com/technology-innovation/what-is-p-vs-np

\ /4
NI OLLSCOILNA GAILLIMHE

o [w B
. ulmale -
1'."7.
LW/

UNIVERSITY oF GALWAY

O T A
y »

@

School of Computer Science

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2109

OOP: Data Structures
and Algorithms

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

What You Will Achieve in This Topic

* Analyse the complexity of Sequential and Binary Search
 Describe the general operation and algorithm details of

a variety of sorting algorithms Py Sa—
* Implement and use these algorithms V

 Analyse the algorithmic complexity of the algorithms \/—/

* Discuss the relative merits of different sorting
algorithms and select the most appropriate for a A
specific task

SV
YA (OLLSCOILNAGAILLIMHE
N f; UNIVERSITY oF GALWAY

School of Computer Science

Complexity Analysis of Searching

* Sequential Search:

Loop through items one at a time
What is its complexity?

. Complexity: Suppose you have 128
* Binary Search: itemsrz)cut tZ 64,%%, 16?]8, 4,2, 1.
"Think of a number between 1 and 500" That's 20, 271, 22, 23 ... 27. So
In each iteration, halve the search space log2(128) = 7 (by definition of logs).
What is its complexity? So, list of 128 items takes 7 steps; list
of N items takes log2(N) steps.

Does Binary Search impose any requirements?

\LLly
N OLLSCOILNAGAILLIMHE
> Clitnls
JL-.Ji UNIVERSITY oF GALWAY

4w

School of Computer Science

Overview of Sorting

Many comparison-based algorithms exist:
Babble ort

ubble Sor
Selectjon Sort S 2 3 4
Insertion Sort
Shell Sort
Merge Sort
Quick Sort ‘

All btased on comparlsons & swapping: Sorting Algorithm
temp = alil

21 = ?éerp,

Alternative: address-calculation methods 2 3 4 5
« Specialised but more efficient

Sorting in Java Standard API

SV
B (OLLSCOILNaGAILLIMHE
N f; UNIVERSITY oF GALWAY

School of Computer Science

Naive Sort Naive java

Probably the world’s worst sorting algorithm!
a.k.a. Bogosort

Given an unsorted array:
Shuffle it
Test to see if it’s in the right order
If not, repeat

Complexity:
Will do in class ...
Hint: much worse than exponential complexity!

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Sorting Concept: Keys & Values

Each object to be sorted can be considered to have a key and a value
Key is what we sort by, value just follows

Example:
Student has properties Name, ID, Grade
Sort by ID = ID is key and name & grade are values
When swapping two items, swap everything, not just IDs!
Could alternatively use a different property as key

In simplest case, have keys but no other values
E.g. Array of ints

\LLy
PXA OLLSCOILNA GAILLIMUE
a ;' UNIVERSITY oF GALWAY

School of Computer Science

Java Interface: Comparator

Compares two objects to say which should come first

In Java, any class that implements java.util.Comparator interface
Just one method required to be implemented:

int compare(Object ob1, Object ob2)
Negative= obl<ob2 0= obl==0b2 Positive= obl>0b2

class Sortbyname implements Comparator<Student> {

// Method

// Sorting in ascending order of name
public int compare(Student a, Student b)
{

(0% L,
AT OLLSCOILNA GAILLIMUE return a.name.compareTo(b.name);
? Slivvils
5'-.-'7 UNIVERSITY oF GALWAY }

}

//https://www.geeksforgeeks.org/comparator-interface-java/

School of Computer Science

import java.io.*;
import java.util.*;

Java I nte rfa Ce . CO m pa r‘a b | e clas;tFr’iin; icniitin,:s;tes: Comparable<Pair> {

String lastName;

public Pair(String x, String y)

For a given object, compare it with another to see b his firsthame = x;
which should come first , hsdesane =y
The two objects’ class must implement java.lang.Comparable o .

This has just one method to implement: ?Ubhc string Tostring(

return "(" + firstName + " , " + lastName + ")";

int compareTo(Object other) }
Standard classes such as String implement this

@0Override public int compareTo(Pair a)

{
// if the string are not equal
if (this.firstName.compareTo(a.firstName) != 0) {
return this.firstName.compareTo(a.firstName);
}

else {
// we compare lastName if firstNames are equal
return this.lastName.compareTo(a.lastName);

}
}

//https://www.geeksforgeeks.org/comparable-interface-in-java-
QLLSCOILNA GAILLIMHE with-examples/

UNIVERSITY oF GALWAY

School of Computer Science

Insertion Sort (1)

Consider sorting
a bookshelf ...

If first two books are -

out of order | I
Remove second book S
orted
Slide first book to right
Insert removed book into first slot

Then look at third book, if it is out of order 1. Remove the next unsorted book. .
Remove that book 2. Slide the sorted books to the right one by one until

Slide 2" book to right you find the right spot for the removed book.
Insert removed book into 2" slot 3. Insert the book into its new position.

WLLy,
VAT OLLSCOILNAGAILLIMUE
. slmils -

3'.;'7‘ UNIVERSITY OF GALWAY

C vav

School of Computer Science

Insertion Sort Example

[L 7
N OLLSCOILNAGAILLIMHE
> Sihls
5'-.-'7 UNIVERSITY OF GALWAY

School of Computer Science

Insertion Sort Algorithm in Pseudocode

Array is indexed from 0
=> Start at index 1 when
searching backwards
Also, First=0

FOR ToSort =(1)to N-1 STEP 1
SET Index = ToSort-1; SET ToSortEl = A[ToSort]
WHILE (Index >= First) AND (A[Index] > ToSortEl)
Allndex+1] = A[Index] // shuffle elements to right
Index = Index — 1
END WHILE
A[Index+1] = ToSortEl // insert element to sort in its place
END FOR

L L
AT OLLSCOILNA GAILLIMHE

Nl

. slmifs -
5}'-'5* UNIVERSITY OF GALWAY
L w

11 School of Computer Science

Efficiency of Insertion Sort

Implementation of algorithm:
InsertSort.java

Analysis: will do in class
Best case efficiency is O(n)
Worst case efficiency is O(n?)

If array is closer to sorted order
Insertion sort does less work
Operation is more efficient

This leads to a related algorithm, Shell Sort ...

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Shell Sort (1)

13

More efficient than Selection Sort or Insertion Sort

Compares distant items first and works way down to nearby items
Interval is called the gap
Gap begins at one-half the length of the list and is successively halved until
each item compared with neighbour

Motivation:
Insertion Sort tests elements in adjacent locations: may take several steps to
get to final location
It is more efficient if array is partially sorted
By making larger jumps, array becomes “more sorted” more quickly

Ly
& (OLLSCOILNA GAILLIMUE
¢ ¥ UNIVERSITY oF GALWAY

School of Computer Science

14

-l
..||. .
o Ummly

C vaw
o £

Shell Sort Algorithm in Pseudocode

INPUT: A[O .. N-1]

SET Gap = N/2, Round to nearest odd no [as it's best with odd-size gap]
WHILE Gap >= 1
FOR First=0 to (Gap-1) // insertion sort follows

FOR ToSort = (First+Gap) to N-1 step Gap
This | SET Index = ToSort — Gap; SET ToSortEl = A[ToSort]
515 an WHILE (Index >= First) AND (A[Index] > ToSortEl)
LUl AlIndex+Gap] = A[lndex] // shuffle elements to right
Sort on _
<Ubarravs Index = Index — Gap
4 END WHILE
separated
b A[Index+Gap] = TOSortEl 1 insert element to sort in its place
y gap END FOR
END FOR
SET Gap = floor(Gap/2)
END WHILE

sLL,
VAW OLLSCOILNAGAILLIMHE

UNIVERSITY oF GALWAY

School of Computer Science

Shell Sort in Operation (1)

4 5 6 7 8 9 10 11 12
Original array 016|110 4153196 |1 [17]8 |[12]7
10 ======ceeeecmeeeaceeneeeaae eSS 7
16=nemmeececcsaaanaanaaneaaanans 6
Subarrays o [T IR S 1
separated PR ————— 17
by gap= 15 mems e e s 8
floor(N/2)=6 B 12
T e e s R S] srecesme e iy S 10
fo=mmeemmssescnsssereannonnenn. 16
Subarrays 1 s st s e o i i 11
after sorting i 17
B e i e e S B 15
Jmemesmesesssssssssssemensnea- 12
Array after first 7 6 1 4 8 | 3|9 |16 |11 |17 |15]12] 10
pass 0 1 2 3 4 5 6 7 8 9 10 11 12
OLLSCOILNA GAILLIMUE
UNIVERSITY OF GALWAY

15 School of Computer Science

Shell Sort in Operation (2)

0 1 2 7 8 9 10 11 12
Prev. array 7 e[1]als[3]olw]nunl[1z[is5]12]10
Subarrays for T 4mmmmmmnnnnnes C 1777 10

 T— - ——— | —— 15
ap=gap/2=3
SARTEAR (S - RSB —— | [T ——— 12
Subarrays 4 o t P SEe— 10"';; """"" L3
aftersorting TR R TTTTTTTTT 15mmemmemmneees
R e — 1] oo s 12

Array after 2 4 e] 1|78 3o s[1tfwo]i6]12]17
pass 0 1 2 3 4 5 6 7 8 9 10 11 12

Last pass: gap =gap/2 = 1.
Loop through array, doing a standard Insertion Sort.

Repeat until have a pass where no swaps are made.
QOLLSCOILNA GAILLIMHE

UNIVERSITY oF GALWAY

School of Computer Science

17

Shell Sort: Implement

\~ AL ¥ ,_‘_::.'q'"‘ﬂ ;
34?¥- X g ‘,i; :

‘\‘ﬁ' " See ShellSort.java
(SN based on code from Carrano & Savitch,

'shellSort method

Takes array of Comparable objects
(i.e. objects that implement Comparable interface)
Uses a supporting method insertionSort

¥ We can also use insertionSort() directly if we wish
Expect it to be less efficient than shellSort()

School of Computer Science

Shell Sort: Complexity

Analysis is complicated: will skip it
Worst-case complexity: O(n?)

However, this is because gap is sometimes even

End up with subarrays that include all elements of an array that was already
sorted

E.g. compare first subarrays when gap=6 and gap=3

To avoid this, round gap up to nearest odd number
End up with worst-case complexity O(n!-)
This is done in the implementation on Blackboard

Other gap sequences can improve performance a little more;
beyond the scope of this topic

7
(OLLSCOILNAGAILLIMHE
a ;' UNIVERSITY oF GALWAY

18

School of Computer Science

QuickSort

QuickSort is a divide-and-conquer algorithm

It partitions the array into two sub-arrays that are

partially sorted:
It picks a pivot value, and re-arranged elements so that all elements less than or equal to the pivot value are on the left,
and all greater than it are on the right
Array is now divided into two sub-arrays and pivot value

It then repeats the procedure recursively for each

sub-array, to further sort each of them
When it has reached the level of a sub-array with just 1 element, that sub-array is sorted
All sub-arrays are sorted relative to each other, so the whole array is sorted when all sub-arrays are.

= pivot pivot > pivot

Smaller Larger

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

QuickSort: Simple Example

{10, 80, 30, 90, 40, 5[],
Aimnﬁ\
70 (Last element)
{10, 30, 40, . {gn‘
Partition : 1r:::u1y \
50

{10, 30, {1}
Partiti:}n/ \
e @ O
/ Partition
(10} (ilrmmcl 30

https://www.geeksforgeeks.org/quick-sort/

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Partition around 80

{90}

School of Computer Science

QuickSort Algorithm

©

21

A

QuickSort(Array, Left, Right):
// QuickSorts the subarray from index Left to Right in place
// If sorting full array: Left=0, Right=length-1
If (Left >= Right) Then
return // only one or no value in subarray... so sorted!
Else
1. Partition the elements in the subarray Left..Right, so
that the pivot value is in place (in position Pivotindex)
-- see next slide
2. QuickSort the first subarray Left..Pivotindex-1
3. QuickSort the second subarray Pivotindex+1..Right
End If
Note: this is a recursive algorithm.

sLL,
AT OLLSCOILNAGAILLIMHE

=]
--llﬂll- .
o Ummly

C vaw
o £

UNIVERSITY oF GALWAY

Unsorted Array

Dononnanon

QuickSort: Partitioning the Array (1)

Basic ldea:
Search from both ends, comparing elements

with the pivot value
Find two elements that are out of place:
A big one on the low side of the pivot point
A small one on the high side of the pivot point
Swap these

Keep going until the searches meet in the middle

Note:

Don’t know in advance where pivot index will end up
It's the point where the searches meet in the middle

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

22

QuickSort: Partitioning the Array (2)

23

1. Set PivotValue = value of Array[Right]
(Alternative: mid value of Array[Left],[Middle],[Right])
2. Initialize Up = Left and Down = Right-1

3. Repeat While Up <= Down:

While Up <= Down and Array[Up] <= PivotValue
Increment Up {Scan rightward to find el. larger than pivot}

While Down >= Up and Array[Down] >= PivotValue

Decrement Down {Scan leftward to find el. smaller than pivot}
if Up < Down, exchange Array[Up] and Array[Down]

4. Set Pivotindex = Up
5. Put the PivotValue in place, by exchanging
Array[Right] and Array[Pivotindex]

[L,
TP\ OLLSCOILNA GAILLIMUE
...;' UNIVERSITY oF GALWAY

Unsorted Array

School of Computer Science

QuickSort: Implementation

24

See QuickSort.java
Based on code from Goodrich & Tamassia

Principal method is quickSort()
Uses a secondary method quickSortStep():
this is the recursive one

Also requires a Comparator class
| have one for case-insensitive comparison of strings

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

QuickSort: Complexity (1)

Basis of analysis:
To find a single partition, what is the complexity?
(How many times is each of the n elements visited?)

Sketch out the recursive calls: note that at each call level, no two calls operate on the same
section of list

If the overall depth is d, how does this relate to the number of elements, n?

Result:
. . . {10, y y s y ’
Quick sort is O(n log n) in the average case "’B}”
. Partition aroun
O(nZ) |n the WOFSt Case. o, 30, 40, 70 (Last element) 0 @
What causes worst case? What does sketch look like? aiton aowna_~ /" atiton around 80
{10, 30. {} {} {90}
Partition)
igouq{c!m‘ O
QLLSCOILNA GAILLIMUE {"{ \{;:;3331130

UNIVERSITY oF GALWAY

School of Computer Science

QuickSort: Complexity (2)

* Worst case arises when array is already sorted, and first element is chosen as the pivot
* Quite a common occurrence

* Can be easily avoided
* Pick a pivot at random

* Would get best performance if pivot exactly divides array in 2 (i.e. median value in array)
* Would make worst case equal to average case
* (Can't achieve this without sorting the array first!
* (Can approximate it:
mid value of Array[Left],[Middle],[Right])

Note: ideal pivot being close to median value is nothing to do with it being near central
index of random array!

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Sorting Without Comparisons (1)

It can be proven that a sorting algorithm based on

comparisons and swapping is at best O(n log n)
To improve on this, need completely different approach

Suppose you want to sort items where you know:
Each key is an int in the range 0-20
Each key is different
How could you sort the keys?

18114 12110 9 | 4 |19 |6

17

QLLSCOILNA GAILLIMUE
/W UNIVERSITY oF GALWAY

27

School of Computer Science

Sorting Without Comparisons (2)
A simple approach:
Create a new array: NewArray[0..19]

Make a single pass through the array of items, and put each one in NewArray at the
position given by its key

Make a single pass through NewArray, to copy each item back into the original array,
skipping any blanks

Complexity Analysis:
(Will do in class)

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

- School of Computer Science

29

Radix Sort

* Related to the simple approach just described
 Does not compare objects
* Treats array elements as if they were strings of the same length

* Groups elements by a specified digit or character of the string
* Elements placed into "buckets" which match the digit (or character)

Ly
™A OLLSCOILNAGAILLIMHE
N f; UNIVERSITY OF GALWAY

School of Computer Science

30

Radix Sort: Example

ULy,

Y AN
w/w‘“ =
: .|. .

o\ v
o\ A

(a)

Read
from
buckets

(b)

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

123 | 398 | 210 | 019 | 528 | 003 | 513 | 129 | 220 | 294
Distribute integers into buckets according to the rightmost digit
210220 123003 513 || 294
0 1 2 3 4
398 528 019129
5 6 7 8 9
210 | 220 [123 | 003 | 513 | 294 | 398 | 528 | 019 | 129
Distribute integers into buckets according to the middle digit
003 210513019 | 220 123 528129
0 1 2 3 4
294 398

9

Unsorted array

Buckets

School of Computer Science

Radix Sort: Example cont’d

(c¥ 1 003 | 210 | 513 | 019 | 220 | 123 | 528 | 129 | 294 | 398

Distribute integers into buckets according to the leftmost digit

003 019 123 129 210220294 | | 398

0 1 2 3 4
513 528

5 6 7 8 9

(d) | 003 [019 | 123 | 129 | 210 | 220 | 294 | 398 | 513 | 528

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Radix Sort Algorithm

Algorithm radixSort (a, first, last, maxDigits)

// Sorts array of positive decimal integers a[first..last], ascending.

// maxDigits is the number of digits in the longest integer.
for (i = 0 to maxDigits - 1)
{
Clear bucket[0], bucket[1], ..., bucket[9]
for (index = first to last)
{
digit = digit i of a[index]
Place a[index] at end of bucket[digit]

}
Put contents of bucket[0], bucket[1], ..., bucket [9] into array a

}

Note on buckets
Each bucket must be able to store multiple items
Must retain order in which items were inserted
Could use an array of linked lists

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Radix Sort: Complexity

If array has n integers, inner loop repeats n times

If each integer has max of d digits, outer loop repeats d times
Therefore, Radix Sort is O(n * d)
However, if d is fixed and is much smaller than n, it is just a constant
A 32-bit integer has fewer than 10 digits

Therefore, Radix Sort is O(n)

Linear complexity!
Much better than O(n log n) of other algorithms

Not appropriate for all data, but good when usable
How about sorting text, e.g. surnames?

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

33

School of Computer Science

Summary of Complexity of Sorting Algorithms

Average Case Best Case Worst Case
Radix sort O(n) O(n) O(n)
Merge sort O(n log n) O(n log n) O(n log n)
Quick sort O(n log n) O(n log n) O(nz)
Shell sort O(n') O(n) O(n?) or O(n')
Insertion sort O(nz) O(n) O(nz)
Selection sort O(nz) O(nz) O(n2)

Reminder: even when two algorithms have same complexity, one can be faster
than another: O analysis ignores constants

\LLly
N OLLSCOILNAGAILLIMHE
> Clitnls
cﬁlv-..li UNIVERSITY OF GALWAY

4w

24 School of Computer Science

35

Summary of Complexity of Sorting Algorithms

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Order of Number of Operations

50000

45000 -

40000 -

35000

30000

25000

20000 -

15000

10000

5000

Average-Case Complexity of Sorting Algs.

—4—Radix

~-Merge/Quick

~#—Shell

——Insertion

&
v

1000 1500 2000 2500
Size of Array to be Sorted

3000

3500

4000

School of Computer Science

You [

Uploads

Quick-sort with Hungarian
(Kiikullomenti legényes)

o) al1) a3 aiN

l -

Bubble-sort with Hungaria
("Csango”) folk dance

0000 699E
| —

n

Some Sorting Visualisations

Q Upload

AlgoRythmics Videos Playlists Channels Discussion About

Date added (newest - oldest) ¥ Grid ~

1 4 oSl WS o) N o

- mmses [1el L Slaiashaienli=] |

. __

etgee ~ | wagugpvey

& o oo w417 4:31 |
Merge-sort with Shell-sort with Hungarian Select-sort with Gypsy folk
Transylvanian-saxon (Székely) folk dance dance
Ly) YL 1
s00W00uda
5:16 T ses - T ¥t 404
Insert-sort with Romanian
folk dance
https://www.youtube.com/user/AlgoRythmics School of Computer Science

Email your suggestions of other good visualisations

What You Achieved in This Topic

Describe, implement and analyse the complexity of sequential and binary
search

Describe the general operation and algorithm details of a variety of sorting
algorithms

Implement and use these algorithms

Analyse the algorithmic complexity of the algorithms

Discuss the relative merits of different sorting algorithms and select the
most appropriate for a task.

Final note: see Blackboard for links to visualisations that you might find helpful.
Contact me if you find other good ones!

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2109

OOP: Data Structures
and Algorithms

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

What You’ll Achieve in This Topic

* Define: Node; Arc; Graph; Directed Graph; Directed Acyclic
Graph; and terms commonly used with trees

* Explain what tree structures are and provide examples of
where they can be used */—
* Provide formal definitions of general and binary tree V
 Write interfaces for Tree, BinaryTree and BinaryNode ‘/
* Provide algorithms for traversing a tree in pre-order, —
post-order, level-order and in-order
* Explain how binary trees may be implemented as linked A

structures, including the use of Generics
Additional Reading: Carrano & Savitch, Ch. 24 & 25

SV
YA (OLLSCOILNAGAILLIMHE
N f; UNIVERSITY oF GALWAY

School of Computer Science

Terminology

Nodes & Arcs

Graphs

Directed Graphs

Directed Acyclic Graphs
Trees

Binary Trees & Linked Lists

VVVYVYVYY

In class:
Define all of these
Discuss relationships between them

[L,
AW\ OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

Trees: Overview (1)

Previous data structures place data in linear order
But often need to organise data into groups & subgroups
This is hierarchical classification
Data items appear at various levels within organisation

. . . . President
Example: University’s organisation

Vice President for Vice President for Vice President for
Academic Affairs Business Affairs Student Affairs

Dean of Dean of Dean of

Arts and Sciences Business Engineering
e & @ e & o e & o
Chair of Chair of Chair of
Computer Science Accounting Computer Engineering (From Carrano textbook)
QLLSCOILNA GAILLIMUE

UNIVERSITY oF GALWAY

School of Computer Science

Trees: Overview (2)

In CS, tree is abstract model of hierarchical structure
Consists of nodes with a parent-child relation
Applications:

* Organization charts

* File systems

* Programming environments

Many others ...

(From Goodrich textbook)

Ly
VAT OLLSCOILNAGAILLIMUE
> Lemile ™
o‘lv-..lﬂ UNIVERSITY OF GALWAY

4w

School of Computer Science

Trees: Overview (3)

. myStuff
File system example:

school

o /}

(From Carrano textbook)

v Ly
NI OLLSCOILNAGAILLIMHE
” gJarnls
c,‘y'_-.,'i UNIVERSITY OF GALWAY

School of Computer Science

Tree Terminology (1)

Atreeis:
A set of nodes
Connected by edges
The edges indicate relationships among nodes
Nodes arranged in levels
Indicate the nodes' hierarchy
Top level is a single node called the root
Nodes at a given level are children of nodes of previous level
Node with children is the parent node of them
Nodes with same parent are siblings

The only node with no parent is the root node
All others have one parent each

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Tree Terminology (2)

Node with no children is a leaf node or external node
All other nodes are internal nodes

A node is reached from the root by a path Tree Data Structure
Length of path is the number of edges that compose it e
This is also called depth of the node v

Height of a tree is the number of levels in the tree —0 (<) Level 1
The number of nodes along the longest path Heiht | = . \ ‘ ° o

Edge
g Level 0

of the : . 4
= maximum depth + 1 tee | LA AN

Note we talk of depth of a node but height of the tree
overall

Ancestors of a node: A AN A
Parent, grandparent, great-grandparent, etc

Descendants of a node: child, grandchild, etc

Subtree of a node is a tree that has that node as its root
Node plus all its descendants and all arcs connecting them

Level 2

o Level3

Level 4

o
v
o

https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials/

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Tree Terminology (3)

For this tree, what are ...
The root?
The leaves?
The internal nodes?
The parent of F?
The ancestors of F?
The children of B?
The descendants of B?
The siblings of D?
The height of the tree?
The depth of G?
The subtree of C?

Ly
@ OLLSCOILNAGAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

Binary Trees (1)

Binary tree: a tree with the following properties:

Each internal node has at most two children (exactly two if it’s a “proper” binary tree)

The children of a node are an ordered pair
Call the children of an internal node
Left child and Right child
Alternative definition: binary tree is either:
Just a single node, or
a tree whose root has an ordered pair
of children, each of which is a binary tree
That’s a recursive definition:
will use recursive functions and
data structures
Note: Non-binary trees are termed

General Trees

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Root

left

Tright

School of Computer Science

Binary Trees (2)

Full binary tree (only achievable for some numbers of nodes):

Every internal node has exactly two children (proper binary tree) AND all leaves are at the same level
Complete binary tree (achievable for any number of nodes):

Full to second-last level

AND leaves on last level filled from left to right

(a) Full tree (b) Complete tree (c) Tree that is not full
and not complete

(A) (i)
®) (© (1) (1)
O KO ® O ®
Left children: B, D, F
@ ® ©@

Right children: C,E, G
(Carrano textbook)

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Binary Trees (3)

The height of a complete or full binary tree with

n nodes is log,(n + 1)
Is this an OK approximation of the height of any BT?

Full Tree

Number of
nodes per level

Height Number
of Nodes

4 15=24-1

(Carrano textbook)

5 31=29-1

<Ll
N OLLSCOILNAGAILLIMHE
> Sihls
5'-.-'7 UNIVERSITY OF GALWAY

vav -~
4w

12

School of Computer Science

Example: Arithmetic Expression Tree

Binary tree associated with an arithmetic expression
Internal nodes: operators
Leaves: operands

Example: arithmetic expression tree for the expression (2 x (a—1)) + (3 x b)

OLLSCOILNAGAILLIMHE a 1 (Goodrich textbook)
UNIVERSITY 0F GALWAY

School of Computer Science

Example: Decision Tree

Binary tree associated with a decision process
Internal nodes: questions with yes/no answer
External nodes: decisions

Example: Trouble-shooting TV C Is the picture clear?)

No Yes

CIS the screen blank'D (Is there sound?)
No / yes / \Yes

®
. C Is there sound?) (Check mute button) ®e
No Yes
®
(Check power cord) ..

“/n\ QOLLSCOILNA GAILLIMUE
simn|= -
‘| - UNIVERSITY oF GALWAY

vav -
}wa

(Carrano textbook)

1 School of Computer Science

Binary Tree: Linked Structure Representation

A node is represented by an object storing:
Element
Left child node
Right child node
Parent node
[“optional”: not always done]

The Binary Tree
just stores a root node

> «—ro | &

? }
A }
E
\Lly
AT OLLSCOILNAGAILLIMHE C E
'5';%.'7; UNIVERSITY oF GALWAY

4w

15 School of Computer Science

Binary Tree Implementation [1]

Taken with permission from Carrano & Savitch
Uses generics: see next slides
Define with a generic name, e.g. ‘T’, to represent a datatype,
which is replaced later by an actual type, eg String or Double
Interfaces (see next slides)
Treelnterface.java: tree interface
BinaryTreelnterface.java: extends Treelnterface
BinaryNodelnterface: For storing data, left node, right node

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

16

All on Blackboard

School of Computer Science

Binary Tree Implementation [2]

Classes Implementing Interfaces
BinaryTree.java: implements BinaryTreelnterface
BinaryNode.java: implements BinaryNodelnterface

Test class (will look at this first)
BinaryTreeDemo: class with main(),
demonstrating how to use the code

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

17

All on Blackboard

School of Computer Science

Time for a short diversion from our discussion of
trees to learn what Generics are in OOP
languages such as Java

O@T QOLLSCOILNA GAILLIMUE
NEE UNIVERSITY oF GALWAY

o v‘v Y
4

About Generics (1)

The < > operators relate to concept of Generics:

19

Used to specify a specific type parameter for

a generic collection class

Avoids having to cast objects in add, set, remove
Big advantage: type checking at compile time
Other OOP languages have similar concept,

e.g. templates in C++

Without generics, compile-time type checking is impossible,
since we don’t have a type specification for the list.

sLL,
VAT OLLSCOILNAGAILLIMUE

L
. Ill. .
o Ummly
C e

UNIVERSITY oF GALWAY

4w

———

School of Computer Science

About Generics (2): Example

ArrayList: Part of Java Collections Framework
Standard library of pre-built data structures
Underlying storage is an array; ArrayList class looks after resizing it as required
Can be used with or without Generics notation

ArrayList code without generics:
ArraylList words = new Arraylist(); // Holds Objects
words.add ("hello") ;
String a = (String)words.get(0) ; // note cast

Arraylist parameterised to specifically hold Strings:
ArrayList<String> words = new ArrayList<String>();
words.add ("hello") ;

String a = words.get(0) ; // no cast needed

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

About Generics (3)

Creating a Generic Collection:
Example: code from List & Iterator interface definitions:

public interface List<E> {
void add(E x);
Iterator<E> iterator () ;

}

public interface Iterator<E> ({
E next();
boolean hasNext() ;

}

Here, E is a generic placeholder for a datatype
List references in code will substitute a valid
class name for E, e.g.
List<String> words = new ArrayList<String>();

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

[L 7
N OLLSCOILNAGAILLIMHE
> Sihls
5'-.-'7 UNIVERSITY OF GALWAY

vav -
4w

22

Back to Tree Structures!

School of Computer Science

Tree Interface

23

In this design, most of the work is done at the node level: see BinaryNode

interface (to follow)
Uses generics to specify node type: T is a Node class

public interface Treelnterface < T > {
public T getRootData();
public int getHeight();
public int getNumberOfNodes();
public boolean isEmpty();
public void clear();

Ly
@ OLLSCOILNAGAILLIMUE
A ;' UNIVERSITY oF GALWAY

Treelnterface.java

School of Computer Science

BinaryTree Interface: extends Treelnterface

Just one extra method, setTree()
Supply data for the root node,
References to the left and right subtrees
Subtrees are themselves binary trees

public void setTree(T rootData,
BinaryTreelnterface<T> leftTree,
BinaryTreelnterface<T> rightTree);

BinaryTreelnterface.java

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

24

25

BinaryNode Interface

// get and set data stored at this node

public T getData();

public void setData(T newData);

// get and set left [right] child of the node

public BinaryNodelnterface<T> getlLeftChild();

public void setLeftChild(BinaryNodelnterface<T> leftChild);
// test whether node has left [right] child, or is leaf

public boolean hasLeftChild();

public boolean hasRightChild();

public boolean isLeaf();

// get height / no. of nodes in the subtree rooted at this node.

public int getHeight();

public int getNumberOfNodes();

// copy the subtree rooted at this node.
public BinaryNodelnterface<T> copy();

L L
AT OLLSCOILNA GAILLIMHE

LA
uliln|w -
‘l--l',
C vaw
o iz

UNIVERSITY oF GALWAY

L W

BinaryNodelnterface.java

School of Computer Science

Traversing a Tree

Goal: visit all nodes

Visiting a node = Processing the data within a node

This is the action performed on each node during traversal of a tree

Note: a traversal can pass through a node without visiting it at that moment
For a binary tree

Visit the root

Visit all nodes in the root's left subtree

Visit all nodes in the root's right subtree

Depending on which order you perform these visits, you get different traversals

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

26 School of Computer Science

Pre-Order Traversal

For pre-order traversal:
visit root before the subtrees

Algorithm preOrder(v)
visit(v)
1 for each child w of v
preOrder (w)
N 11
VAT OLLSCOILNAGAILLIMUE

[Al

IIII .
‘|“|'<

P Z S

C vav

UNIVERSITY oF GALWAY

School of Computer Science

Post-Order Traversal

For post-order traversal:

visit root after visiting the subtrees
This is the classic depth-first traversal algorithm,
though Pre-Order and In-Order are also depth-first

11 |
Algorithm postOrder(v)

for each child w of v
postOrder (w)
visit(v)

[L 7
N OLLSCOILNAGAILLIMHE
> Sihls
5'-.-'7 UNIVERSITY OF GALWAY

School of Computer Science

In-Order Traversal

For in-order traversal:

visit root between visiting the subtrees
This is defined only by binary trees
Undefined for general trees

Wbl
N OLLSCOILNAGAILLIMHE

Algorithm inOrder(v)
if hasLeftChild (v)
inOrder (getLeftChild(v))
visit(v)
if hasRightChild(v)
inOrder (getRightChild
()

> Lithle
5'-.-'7 UNIVERSITY OF GALWAY

School of Computer Science

Another Way of Visualising Traversals

In-Order, Pre-Order and Post-Order algorithms all move through tree in

essentially the same way

Start at the top, go down left side and around whole tree
You pass by nodes multiple times, unless they have no children

As you pass by a node, whether or not you visit it is determined by Order
Pre-Order: visit node before its children
Post-Order: visit node only after visiting all of its children
In-Order: visit node after left child and before right child

Note: this is just a way of thinking about traversals
Not a substitute for the formal algorithms

Ly
™A OLLSCOILNAGAILLIMHE
N f; UNIVERSITY OF GALWAY

30 School of Computer Science

Breadth-First Traversal

Also known as Level-Order Traversal:

begin at the root, visit nodes one level at a time
How do we do this?
Will discuss it in class

[L,
N OLLSCOILNAGAILLIMHE
s|ml= -
3'-.-'7 UNIVERSITY OF GALWAY

C vav

School of Computer Science

Example: Print Arithmetic Expression

Specialization of in-order traversal
print operand or operator when visiting node
print “(“ before traversing left subtree
print “)“ after traversing right subtree

a 1

(2x(@a—-1))+(3xDb))
QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Algorithm printExpression(v)
if hasLeftChild(v)
print(“(")

printExpression (getLeftChild(v))

print(v.getData())
if hasRight (v)

printExpression(getRightChild(v))

p}‘int (II)II)

School of Computer Science

Example: Evaluate Arithmetic Expression

Specialization of post-order traversal
recursive method returning the value of a subtree
when visiting an internal node, combine the values of the subtrees

WLLy,
VAT OLLSCOILNAGAILLIMUE
|l -

s L@y UNIVERSITY OF GALWAY

vav
LW

..
o\
!

»

33

School of Computer Science

Tree Traversals Summary [Wikipedia]

Preorder. F,B,A,D,C,E,G,I,H. ® | Inorder A B CDEFGHIL &

flfc '
N i Level-order-F, B, G, A D, I,C.E,

OLLSCOILNA GAILLIMUE e e - LA
Post-order 4, C, E,D,B . H,I, G F. & H.

UNIVERSITY oF GALWAY

School of Computer Science

34

Complexity of Tree Operations

For tree with n nodes, d depth
If full/complete binary tree, d = log(n)

Storage requirement: O(n)
Constant “overhead” per node for storing links

Running times:
get/set Data; get/set Left/Right Child:
isRoot; isLeaf; hasLeft/RightChild, etc.
Traversals (including searching for a given value)
getNumberOfNodes ? (Do in class)
getHeight ? (Do in class)
Could store variables to make the last two

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

0(1)
0(1)
O(n)

0(1)

School of Computer Science

What You Achieved in This Topic

Define: Node; Arc; Graph; Directed Graph; Directed Acyclic Graph; and terms
commonly used with trees

Explain what tree structures are and provide examples of where they can be
used

Provide formal definitions of general and binary tree

Write interfaces for Tree, BinaryTree and BinaryNode

Provide algorithms for traversing a tree in pre-order,

post-order, level-order and in-order

Explain how binary trees may be implemented as linked structures, including
the use of Generics.

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2109

OOP: Data Structures
and Algorithms

Dr. Frank Glavin
Room 404, CS Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

What You’ll Achieve in This Topic

* Explain the structure and use of Binary Search Trees, including
algorithms to process them

* Analyse complexity of Search Tree algorithms V

* Discuss the distinctions between balanced and unbalanced Search v
Trees, and how balance is achieved Y -

 Describe and use AVL Trees, including algorithms to operate on them /

e List and discuss other forms of Search Tree s

* Understand how to implement these data structures in Java and
demonstrate how to use them

Additional Reading: Carrano & Savitch, Ch. 26

Ly
™A OLLSCOILNAGAILLIMHE
N f; UNIVERSITY OF GALWAY

School of Computer Science

Binary Search Trees

Search Tree:
Organises its data so that search is efficient

Binary Search Tree:
A binary tree
Nodes contain Comparable objects
A node's data is greater than the data in left subtree
A node's data is less than the data in right subtree
(no duplicates allowed usually)

An in-order traversal of BST will visit all nodes in ascending order

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Example: BST of Names

Brittany

AN AN

(Bret) (C Doug) (sim) ((Whitney)

(Diagrams taken from Carrano textbook: reproduced with permission)

[
(3

Ly
VAT OLLSCOILNAGAILLIMUE
- s[mals -
slzol UNIVERSITY oF GALWAY

O v A

4w

School of Computer Science

BSTs Are Not Uniquely Structured

Depends on what node is chosen as root
and order in which all other nodes are added

(a)

(b)

\LLly
N OLLSCOILNAGAILLIMHE
> Clitnls
cﬁlv-..li UNIVERSITY OF GALWAY

4w

School of Computer Science

BST Searching Algorithm

Algorithm getEntry(rootNode, object)
// Searches a BST (specified by its root node) for a given object.
// Returns the node containing the object, or null if not found.
if (rootNode is empty)
return null;
else if (object == rootNode.Data)
return rootNode;
else if (object < rootNode.Data)
return getEntry (rootNode.leftChild, object) ; // recursive
else

return getEntry(rootNode.rightChild, object); // recursive

ULy,
NAE OLLSCOILNAGAILLIMHE
> il
‘}L—-..'fm UNIVERSITY oF GALWAY

School of Computer Science

BST Searching Algorithm

Complexity analysis:
Will do in class ...

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Search Tree Interface

public interface SearchTreelnterface <T> extends Treelnterface <T> {
// Searches for a specific entry in the tree: returns true if found.
public boolean contains (T entry);
//Retrieves a specific entry in the tree: returns object ref or null
public T getEntry (T entry);
// Adds a new entry to the tree.
// If it matches an object in the tree already, replaces the old object
// and returns the old object. Otherwise returns null.

public T add (T newEntry); g——)

// Removes a specific entry from the tree. S S

public T remove (T entry); < =
-

WLLy,
VAT OLLSCOILNAGAILLIMUE
UNIVERSITY oF GALWAY

L=
..||. .
o Umrmly
0 vaw A
< g b

School of Computer Science

Reminder from last topic: Tree Interface

In this design, most of the work is done at the node level: see BinaryNode interface
Uses generics to specify node type: T is a Node class

public interface Treelnterface < T > {
public T getRootData();
public int getHeight();
public int getNumberOfNodes();
public boolean isEmpty();
public void clear();

[L,
VAT OLLSCOILNAGAILLIMUE
- s[mals -

slzol UNIVERSITY oF GALWAY

ool A
Ik’

School of Computer Science

Note on BST Implementation

Source code: BinarySearchTreeR.java
Taken from Carrano textbook (with permission)
lllustrations on following slides also taken from there
Uses the BinaryTree implementation
R: Uses Recursive versions of algorithms
Neater than equivalent iterative algorithms
Iterative versions may be more efficient

You should aim to be able to read, understand and use the

BST implementation provided
Not necessarily re-write them from scratch

More important to be able to describe algorithms.

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

BinarySearchTree: Add Entry

Recursively step through tree
Same as when searching for an entry

If a matching entry is found
Replace it

If no match found, will end at node with no child on

the relevant side
Add the new node as the child on that side

\LLy
AT OLLSCOILNAGAILLIMHE
. slimils -
"-'5 UNIVERSITY oF GALWAY
L W

(2.~ LN
4

11

School of Computer Science

12

BinarySearchTree: Add Entry

Binary search tree
before and after
adding name ‘Chad’

Ly
@ OLLSCOILNAGAILLIMUE
A ;' UNIVERSITY oF GALWAY

(b)

School of Computer Science

BinarySearchTree: Add Entry

(a)

Recursively adding Chad to smaller subtrees of BST ...

[L,
N OLLSCOILNAGAILLIMHE
s|ml= -
3'-.-'7 UNIVERSITY OF GALWAY

C vav

School of Computer Science

BinarySearchTree: Add Entry

(©

(Brett)l,"t(Dougj‘-‘C Jim) (Whitne)D

@

(Brett) CDoug) (Jim) (WhitneD

FITR OLLsCOILNAGAILLIMUE No match found, so end at a node without a left (in this case) child.
8. UniversiTYorGaLway Set this node’s left child to be the new node.

C vav
4w

School of Computer Science

15

BinarySearchTree: Add Entry (Replace)

* If object being added matches an object in tree already
Replace the old object with the new one
Return the old object

Before ...

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

(" Whitney | 444556666)

whitney?2

(:?Vhﬁney 111223333:)

wh1itney

myTree

School of Computer Science

BinarySearchTree: Add Entry (Replace)

* If object being added matches an object in tree already
Replace the old object with the new one
Return the old object

... After

Returned from add

(" Whitney | 111223333)
whitney (‘Whitney | 444556666)
whitney?2

myTree

Ly
& (OLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

16

School of Computer Science

BinarySearchTree: Remove Entry

The remove method must receive an entry to be matched in the tree
If found, it is removed
Otherwise, the method returns null

A slightly complex procedure ...

Three cases
1. The node has no children, it is a leaf (simplest case)
2. The node has one child
3. The node has two children

Ly
MA OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

17 School of Computer Science

18

Remove Entry: Leaf

Node to
delete

[L 7
N OLLSCOILNAGAILLIMHE
> Sihls
ﬁl-.-lf UNIVERSITY OF GALWAY

C vav
4w

(a)

s S

S, /
(o °
Node P / Node P
1. Node is a leaf:

Just delete node, set parent’s pointer to null.

School of Computer Science

Remove Entry: One Child

(2)

Node P

Node to

delete

Node N

E Node C 3{
|

Node P

Node N

E Node C i

Node P

Node N

& Node C i

Node P

Node N Zq
E Node C i

Y

Node P

(b)

Node C

Node P

5 Node C 3{

2. Node has one child:
Delete N; set P’s pointer to N’s child.

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

19 School of Computer Science

20

Remove Entry: Two Children

(a) / (b) /
PR FLR
SE SR

?Node CR ?Node CR ?Node C, / Node CR
Won’t actually delete Node N,

3. Node has two children:
but will replace its entry with value of its inorder predecessor node.

W OLLSCOILNAGAILLIMKE Then delete the inorder predecessor node.

A ;' UNIVERSITY oF GALWAY

This retains the BST ordering of nodes. School of Computer Science

Remove Entry: Two Children

Before ... ’/ /

(p| e Node N
L h
Node N

o | D ’Q‘g
SD

Entries <e Entries > e Node R

Node N has entry e and two subtrees.
Inorder sequence: a, e, b
Node with entry a is rightmost node (R) in left subtree.

v Ly
TP\ OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

Remove Entry: Two Children

Algorithm to Remove Entry With Two Children:

* |nitially, Node N to be removed has entry e / pro
» Find rightmost node, R, in N’s left subtree
» Replace N’s entry with entry of R ? 4 2
* Delete Node R Node N

Note: o)
Node R may have no child or a left child; Entries <a Entries > e >a

Can’t have a right child (is rightmost node).

<D
B\ OLLSCOILNAGAILLIMHE
N f; UNIVERSITY OF GALWAY

School of Computer Science

23

Remove Entry: Two Children: Examples

(@)

(Brett) (Lance) (Pat) Whitney

S N ! N\
(Cchad) (Maria) (Reba) (zak)
~N

@rittan}D (Doug)

(pan) (Dirk)

(b)

(Brett) (Lance) (Pat) (Whitnega

b S Y
(Brittany) (Maria)

Reba Zak

(_pan) (Dirk)

(a) Before removing Chad: inorder predecessor is Brittany
(b) Before removing Sean: inorder predecessor is Reba

Ly
@ OLLSCOILNAGAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

24

Remove Entry: Two Children: Examples

(c) (d)

(Dan) CDirk)

(Tance) ((Pat) (Whitney) (Bret) (Tance) ((Pat) (Whitney)
(;tan@ (Qaria) é (Qtan@ (kﬂa D Zak
(Cpan) (irk)

(c) Before removing Kathy: inorder predecessor is Doug
(d) After removing Kathy

Ly
@ OLLSCOILNAGAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

Remove Entry: Root

This is the final case to consider
Root may have no, one or two children

Root has no children:

Delete it: tree becomes empty
Root has one child:

Delete it: child becomes the root

Special case of removing node with one child
Root has two children:

Follow the standard procedure for node with two children
Root’s entry will be changed, but a different node deleted

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

26

Efficiency of Operations

Operations add, remove, getEntry require a search that begins at the root

Maximum number of comparisons is directly proportional to the height, h of the tree
These operations are O(h)

Thus, we like to create binary search trees that have the minimum height possible

This leads to the idea of AVL Trees (coming up)

7
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

Importance of Balance

Balanced Tree:
Subtrees of each node differ in height by no more than 1
Balanced BST has minimum height for a given number of nodes
Therefore, operations on it are as efficient as possible

(a)
Balanced BSTs:
Complete —_—
Not Complete

(b@ m
Z f”, QOLLSCOILNA GAILLIMHE

UNIVERSITY oF GALWAY

School of Computer Science

Balance & Efficiency

What is efficiency of searching Balanced & Unbalanced BSTs of size n nodes?
Will do in class ...

(Brett) C Doug) (Jim) (Whimcy)

Balanced Worst-case Unbalanced

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

AVL Trees

An AVL tree is a form of binary search tree
Originally proposed by Adelson-Velskii & Landis

Whenever it becomes unbalanced
Rearranges its nodes to get a balanced binary search tree

Balance of a binary search tree upset when
Add a node
Remove a node

During these operations, the AVL tree must rearrange nodes to maintain balance
These are termed rotations

Note: the unbalanced node is the LOWEST one with a difference of 2 in height
between its left & right children

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

- School of Computer Science

30

AVL Tree: Example

Starting with empty tree, insert:
60, 50, 20, 80, 90

Insertion of 20 requires a right rotation around 60 to re-balance,
making its left child into its parent.

(a) ()

(b)
(60)
(59 (50)
(20

Unbalanced Balanced

continues ...

31

AVL Tree: Example

Starting with empty tree, insert:
60, 50, 20, 80, 90

Insertion of 90 requires a left rotation around 60 to re-balance,
making its right child into its parent.

Balanced Unbalanced Balanced

School of Computer Science

Rotations: An Important Point

If any of the nodes have subtrees, they get reassigned in such a way as to keep every node with 2 children and to
ensure that the in-order traversal is oreserved.

(b)

Unbalanced C D Balanced

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Rebalancing an AVL Tree

The general rules ...

An addition [or deletion] can cause a temporary imbalance

Let N be the unbalanced node closest to the new leaf
Right rotation required if:

Addition occurs in left subtree of N’s left child
Left rotation required if:

Addition occurs in right subtree of N’s right child
Right-Left rotation required if:

Addition occurs in left subtree of N’s right child
Left-Right rotation required if:

Addition occurs in right subtree of N’s left child

We will look at these cases ...

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

34

AVL Tree: Single Rotations

(a) Before addition (b) After addition (c) After right rotation
N A N Y C S
C C O N
h h
h+1
I '3 v
Tl T2 T2 Y Tl TZ T3
T

Before and after an addition to a left subtree of left child:
requires a right rotation to maintain its balance.

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

35

AVL Tree: Single Rotations

(a) Before addition (b) After addition

N A N N

C &

h
h+1
T, / T,

T, T, 13 v

T,

(c) After left rotation

C

A

Before and after an addition to right subtree of right child:

requires a left rotation to maintain balance.

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

36

Oﬁ
‘ll

AVL Tree: Single Rotations: Example

(b) i

Unbalanced Balanced

Before and after a right rotation restores balance
A/n\ OLLSCOILNA GAILLIMHE tO an AVL tree

UNIVERSITY oF GALWAY

° v.v—s

School of Computer Science

AVL Tree: Code for Right Rotation

BinaryNodelnterface<T> rotateRight(BinaryNodelnterface<T> nodeN)
{
BinaryNodelnterface<T> nodeC = nodeN.getLeftChild();
nodeN.setLeftChild(nodeC.getRightChild());
nodeC.setRightChild(nodeN);
return nodeC;

QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

School of Computer Science

38

A
AT
Slggl

\ 4,

|7

P e 114

AN
s
\

AVL Tree: Code for Left Rotation

BinaryNodelnterface<T> rotatelLeft(BinaryNodelnterface<T> nodeN)

{
BinaryNodelnterface<T> nodeC = nodeN.getRightChild();
nodeN.setRightChild(nodeC.getLeftChild());
nodeC.setLeftChild(nodeN);
return nodeC;

}

L L,

Nl’: QLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

School of Computer Science

Double Rotations

An imbalance at node N of an AVL Tree can be corrected by a double rotation if
The addition occurred in the left subtree of N's right child (right-left rotation) or ...
The addition occurred in the right subtree of N's left child (left-right rotation)

A double rotation is accomplished by performing two single rotations
A rotation about N's child [which will change the child]
A rotation about N itself

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

39 School of Computer Science

Double Rotations: Motivation

A single rotation can correct
imbalances that look like this:

But not this: <:|
=

The first rotation about the child does this:

And the second one works as illustrated at the top

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

= o

>y,

School of Computer Science

41

AVL Tree: Double Rotations

(a) After adding 70 (b) After right rotation (c) After left rotation

Example:

Adding 70 to the tree (a) destroys its balance.
Unbalanced node is 50. To restore the balance, perform:
(b) a right rotation around right child; followed by

(c) a left rotation around 50.

S L,
B OLLSCOILNAGAILLIMHE

N f; UNIVERSITY OF GALWAY

School of Computer Science

42

AVL Tree: Double Rotations

Example:

Adding 70 to the tree (a) destroys its balance.
Unbalanced node is 50. To restore the balance, perform:
(b) a right rotation around right child; followed by
UniversiTyorGatway — (C) @ left rotation around 50.

QLLSCOILNA GAILLIMHE

School of Computer Science

43

AVL Tree: Double Rotations

(a) After adding 70 (b) After right rotation (c) After left rotation

Example:
Adding 70 to the tree (a) destroys its balance.
Unbalanced node is 50. To restore the balance, perform:
(b) a right rotation around right child; followed by

\LLA"; OLLSCOILNA GAILLIMHE (C) a left rotation around 50.

N f; UNIVERSITY OF GALWAY

School of Computer Science

AVL Tree: Double Rotations

(a) Before addition (b) After addition
N A N A
C C
G h G
h+1
T]_ Y T1
TZ TS T4 T2 T4 Y
1

Before and after an addition to an AVL subtree that

requires both a right rotation and a left rotation to
=\ OLLSCOILNAGAILLIMUHE
2§ unvesivorcaway. — Maintain its balance (see next slide also)

School of Computer Science

45

AVL Tree: Double Rotations

(c) After right rotation (d) After left rotation
N A

G G A

D NP \NQc

h+1
h
r, 1,

Y T2 Y

I; T, T I; T,

Before and after an addition to an AVL subtree that
PR ousconmcanumas F€QUires both a right rotation and a left rotation to

> UNVERSITYOrGAY maintain its balance (from previous slide)
School of Computer Science

AVL Tree: Algorithm for Right-Left Rotation

Algorithm rotateRightLeft (nodeN)

// Corrects an imbalance at a given node

// nodeN due to an addition

// in the left subtree of nodeNs right child.

nodeC = right child of nodeN

Set nodeNs right child to the node returned
by rotateRight (nodecC)

return rotatelLeft (nodelN)

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

47

Oﬁ
‘ll

AVL Tree: Left-Right Rotations Example

(a) After adding 55, 10, and 40 (b) After adding 35

(60
Imbalance at
@ @ this node

Previous AVL Tree after:
(a) three additions that maintain its balance;

A/n\ OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

° v.v—s

(b) after an addition that destroys the balance (continues ...)

School of Computer Science

48

AVL Tree: Left-Right Rotations Example

(c) After left rotation about 40 (d) After right rotation about 40

(c) after a left rotation around child [20—40]
(d) after a right rotation around unbalanced node [50—-40]

D‘/w\ OLLSCOILNA GAILLIMHE

]
o :vgv -

UNIVERSITY oF GALWAY

School of Computer Science

AVL Tree: Left-Right Rotations

(a) Before addition (b) After addition
N F N 3
€ (&
G G
h B+ 1
Before and after an = | T
e 4 _Y_ 4
addition to an AVL T, T, T, T, T, v
subtree that requires T,
a lett and then rlght (c) After left rotation (d) After right rotation

rotation to maintain

its balance. N , ﬁ Y
G C Ve N

cOMN 5

QLLSCOILNA GAILLIMUE T T T
UNIVERSITY OF GALWAY 1 -)

School of Computer Science

AVL Tree: Algorithm for Left-Right Rotation

50

WL

\ 7

v AN
o (ERe\ =

-l
..||..
o Ummly
C va
4w

Algorithm rotateLeftRight (nodeN)

// Corrects an imbalance at a given

//node nodeN due to an addition

// in the right subtree of nodeNs left child.

nodeC = left child of nodeN

Set nodeNs left child to the node returned
by rotatelLeft (nodeC)

return rotateRight (nodeN)

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

51

AVL Tree Compared to BST
(a) @

The result of adding
60, 50, 20, 80, 90, 70, 55, 10, 40, 35 to initially empty
(a) AVL Tree; (b) Binary Search Tree.

UNIVERSITY oF GALWAY

L w

Both maintain BST structure, but AVL Tree keeps lower depth.

A\
5_\@1%12 OLLSCOILNA GAILLIMUE
- <l -

O T A

School of Computer Science

Other Tree Structures

k-node:

a
A node that has k children and can store k-1 data items: / \
E.g. 2-node: 2 children, 1 data item (standard BT node)

q

E.g. 3-node: 3 children, 2 data items

2-3 Tree:)] >
Balanced search tree with 2-nodes and 3-nodes
Specific rules for splitting 3-nodes when extra data added 13

2-4 Tree:
Balanced search tree with 2-nodes, 3-nodes, 4-nodes 8 17
Easier to maintain balance than AVL Tree

Red-Black Tree 1 11 15 25

A binary tree that is logically equivalent to 2-4 Tree
Ease of maintaining balance but efficiency of binary nodes

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

- School of Computer Science

What You Achieved in This Topic

* Explain the structure and use of Binary Search Trees, including
algorithms to process them

* Analyse complexity of Search Tree algorithms

* Discuss the distinctions between balanced and unbalanced Search
Trees, and how balance is achieved

* Describe and use AVL Trees, including algorithms to operate on them

* List and discuss other forms of Search Tree

* Understand how to implement these data structures in Java and
demonstrate how to use them

SV
MA OLLSCOILNAGAILLIMHE
N EJ UNIVERSITY oF GALWAY

3 School of Computer Science

QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2109

OOP: Data Structures
and Algorithms

Dr. Frank Glavin
Room 404, CS Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

What You’ll Achieve in This Topic

* Explain the concepts of lossy and lossless compression
* Describe an algorithm for run-length encoding

. V —

 Describe the Huffman encoding algorithm, including the y

algorithms and data structures used in it V
 Demonstrate the application of run-length encoding and ‘/

Huffman encoding to compressing data such as text

Ll
VAT OLLSCOILNAGAILLIMHE

O Loy) ™

. slmls -
ojl-lf* UNIVERSITY oF GALWAY
L W

School of Computer Science

Data Compression & Terminology

Important part of data storage & transmission
Bitstream:
» Datais stored/transmitted in binary from
e Stream of bits may be a file or a message
Lossy compression:
* Data size is reduced, but some information is lost
* |s this ever reasonable?
 Example?

Lossless compression:

* No datais lost SO KB 20 KB

* Compression is reversible to recover original bitstream
e Example?

<Ll
N OLLSCOILNA GAILLIMHE
> Clitnls
o‘lv-..li UNIVERSITY OF GALWAY

4w

School of Computer Science

Data Compression

Simple example:
"aaaaaabbbbbbfff" is a string

"6a6b3f" is a simple compressed representation:
Notes:

This is a simple form of run-length encoding
Introduces new symbols to describe original sequence
Original sequence had 15 chars, new one has 6 chars
Can be reversed to recover original string

What about these sequences?
"abbaafbafbbaafb"
"aabbfaabbfaabbf"

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

[R A] il e T [T A R P S]

&

rurclangth encaeding

&

s Jel

b

T-1=]

School of Computer Science

Can Every Bitstream Be Compressed?

Assuming lossless compression,
is it always possible to make a bitstream smaller?

What do you think?

SV
;@x@ QOLLSCOIL NA GAILLIMHE
-
UNIVERSITY oF GALWAY

. sjmal# -
oV ---lr‘n

c School of Computer Science

Can Every Bitstream Be Compressed?

Assuming lossless compression (i.e. reversible),

is it always possible to make a bitstream smaller?
No!

Proof by contradiction:

Assume such an algorithm exists . ‘ I JO0 101000
After applying algorithm, reapply it to resulting stream 10100007101001710171007 1
Continue until length is 1: impossible to reverse 0100100000010170
Proof by counting: 10070070070700
Assume bitstream of length N 1007100710707070707700

There are 2N different such bitstreams

There are only 2N-1 bitstreams of length shorter than N
=> will be at least one collision

=> Cannot be a reversible mapping between these

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

6 School of Computer Science

Can Every Bitstream Be Compressed?

To be compressible, bitstream must have structure/ regularities that can be summarized
Amenable to compression:

Natural text data

Contains frequent words that may appear often

Some letters appear with high frequency, but all letters have same length encoding

XML is routinely compressed

Binary image data

Blocks of single colours:

long runsof 1, 0

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Can Every Bitstream Be Compressed?

Not amenable to compression
Random data
Data that is already compressed
Try this at home (optional!)
Write program to output a random binary stream, GZIP it
Does the file size reduce much or at all?
What about if you output a random text stream?
Compressibility relates to entropy
Amount of disorder in a data stream
High entropy: low compressibility
Note on GZIP

Combines LZ77 (a dictionary encoder) & Huffman coding

Ly
VAT OLLSCOILNAGAILLIMUE
> Lemile ™
r‘;lv-..lfh UNIVERSITY OF GALWAY

Run-Length Encoding (1)

A simple compression method

Example bitstream:
0000000000001111111100000000011111111211212
120s+81s+90s+111s

Method
Encode this as the numbers of alternating 0s and 1s
Always begin with the number of 0s (which might be none)
Assume we use 4 bits to encode each number

Result:
1100poooh001h011
12=1100, 8=1000, 9=1001, 11=1011
Compression Ratio = 16/40 = 40%

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

Run-Length Encoding (2)

Algorithm issues
How many bits should be used to store the counts?
What do we do if a run is too long?
What about runs that are shorter than the corresponding encoding?

Standard choices
Use 8 bits (runs are between 0 and 255 in length)
If a run is longer than 255, insert a run of length O
(300 1s is encoded as 255 1s + 0 0s + 45 1s
Encode short runs, even if this lengthens the output

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

10

School of Computer Science

Run-Length Encoding (3)

Popular for bitmaps

If a bitmap's resolution is doubled:
bitstream increases x4
RLE compressed version typically increases x2

Works in a single pass:
No need to look ahead when compressing or decompressing

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Example of Image compression using RLE

W1B1W3B1W1

B3wW1B3

B7

W1B5Wi1

W2a2B3w2

W3B1W3

School of Computer Science

12

Run-Length Encoding: Limitations

If bitstream has large numbers of short runs
RLE encoded version can be longer than the original!
Worst case: 10101010
How would this be encoded?

Natural text contains few repeated letters
Traditional binary representation is 7-bit or 8-bit ASCII
This tends to contain short runs also:
8-bit run encoding is definitely too long;
4-bit run encoding does not do much for it either

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

13

ASCII Binary Representation (Excerpt)

45
49
50
51
52
53
54
35
56
a7
58
59
60
61
62

63
64
65
66

W s N pa = O

A =

(= =T = 1 RUCE VI

00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010

67
68
69
70
71
72
FE
74
75
76
77
78
79
80
81
82

83
84
83

C 4w @O WO Z IR = =T O MmO O

01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101

80
87
88
89
90
91
92
93
94
93
96
97
98
99
100
101
102
103
104

;..._.,..--*.—.N-r::'-(Eﬂi

T m = M O 0 O m

01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
OLI00L00
01100101
01100110
01100111
01101000

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

—_—

L e - =R T R RN - Hy T = T =

01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

8-Bit ASCII Encoding

Consider the text “Mississippi”

, M 01001101
8-bit ASCII: " 01101001
01001101011010010111001101110011011010010111 01110011
00110111001101101001011100000111000001101001 . 01110011

Every character encoded with 8 bits 5
38 bits i 01101001
. : s 01110011

RLE will not compress it well

s 01110011
How can we do better? i 01101001
Do we need all 8 bits? p 01110000
Yes, in general case if we use all ASCIl characters p 01110000
Do all characters need a full 8 bits to encode them? i 01lolool

28-1 possibilities if we used all segs of length 1-7

Ly
& (OLLSCOILNA GAILLIMUE
A ;' UNIVERSITY oF GALWAY

School of Computer Science

14

Huffman Encoding (1)

Main idea: variable-length codes
Use short-length codes for more frequently occurring characters

These should be prefix-free
If we used a simple encoding such as A=0, B=1,
C=10, ..., would not know if 10 encoded "BA" or "C"
We want codes to be uniquely decodable without needing any delimiters or prefixes

(Fixed-length codes like 8-bit ASCII are also prefix-free)

Ly
& (OLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

15 School of Computer Science

Huffman Encoding (2)

To come up with a prefix-free variable encoding,
we construct a Huffman Tree:
This is a binary tree that will give us the final encoding
See next slides
Using the tree, read off variable-length codes for each character
Encode this message using the tree
Note: we need to store the encoding as well as the message being encoded

Reduces compression ratio a lot for short messages
Can use an agreed encoding, e.g. for English text

With an agreed encoding, computation time of constructing the tree is also avoided

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Huffman Encoding — Example (1)

* WOLE
1. Create a set of trees, each consisting of Y'Y W
one leaf; each leaf represents a symbol i, &
2. Remove the two trees with the lowest . ..
probability, merge them into a single tree, ©@®Q Q@
sum up their probabilities and return the OICIOIC)
new tree into the pool a e
3. Repeat step 2 until a single tree is left over T o Y
4. Generate code words as seen before ”’L\‘Tf“a f’E._.3-'/*E‘~
L A A A
N
@) J U‘

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

. a 15 7 6 L, 51
Huffman Encoding — Example (2) DEEO®®E
15 Tl 6.1 11
: &) f::’ &) @
In the example on the right the following code is generated: @ @
151 1;,' 1},'
D8 O
Symbol | Code OO
A O d 15&{}. j:s, _}h
B 100 Q 9,
C 101 & @ () (®
D 110 0
E 111 @& Q0
R
D O
\‘LLA"@ QOLLSCOILNA GAILLIMUE é @ li_[fz“ 5

N f; UNIVERSITY oF GALWAY

18 School of Computer Science

19

Algorithm to Construct Huffman Tree
Using a Priority Queue

1. Count frequencies of all letters

2. Putthem as nodes in a Priority Queue, with lowest count having highest priority

A queue where items are inserted according to priority, not at the end; dequeued as normal from
front

In case of a tie, put more recently enqueued item after older items
3. While there are at least 2 nodes on the queue:
Dequeue the 2 nodes at the front
Make a new node with them as its 2 children

Value of new node = sum of children's counts
Enqueue this new node

\LLly
PXA OLLSCOILNA GAILLIMUE
¢ ¥ UNIVERSITY oF GALWAY

School of Computer Science

Let's Do It ...

M:1 p:2i:4s:4

Each node, apart from the root, represents a bit in the Huffman code:
each left child is a 0 and each right child isa 1

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

21

One Possible Result

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

School of Computer Science

Resultant Encoding

With this, "Mississippi"
encodes to:
100110011001110110111
Just 21 bits
Excluding the code,
Compression Ratio = 23.9%
Space Savings=1—-CR =76.1%
Can you decode this unambiguously?

For decoding, can use the code
directly, or use the tree:

Start at root

O:left, 1:right, until a leaf is reached

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

< ©

11
101
100

- LA L f—

i

= T3 3

100

101
101
11

School of Computer Science

Aside: Relationship to Machine Learning

Compression relates to Machine Learning:

Goal is to find descriptions (hypotheses) that partially/fully describe a larger set of data
Usually the hypotheses are expressed differently than in zip algorithms

E.g. rules; equations; graphs

Almost always lossy: focus on main features of data, not every possible detail

Find hypotheses to fit data through heuristic search

Standard ZIP algorithms have been used as similarity metrics for large documents

Ly
& (OLLSCOILNA GAILLIMUE
¢ ¥ UNIVERSITY oF GALWAY

53 School of Computer Science

What You Achieved in This Topic

* Explain the concepts of lossy and lossless compression

* Describe an algorithm for run-length encoding

* Describe the Huffman encoding algorithm, including the algorithms
and data structures used in it

 Demonstrate the application of run-length encoding and Huffman
encoding to compressing data such as text

SV
VAT OLLSCOILNAGAILLIMHE

O Loy) ™

. slmals -
ojl-lf* UNIVERSITY oF GALWAY
L W

” School of Computer Science

