QOLLSCOILNA GAILLIMHE
UNIVERSITY oF GALWAY

CT2106

Object Oriented
Programming

Dr. Frank Glavin
Room 404, IT Building
Frank.Glavin@UniversityofGalway.ie

University
ofGalway.ie

School of Computer Science

ldeas Encountered So Far

* An object is responsible for how its data is represented internally.

Constructors are special methods used to bootstrap an object into existence — and generally used to
initialise its state.

* Java has two types of variables
o Primitive types
o Reference types

The Java Garbage Collector runs in the background monitoring which objects are live (referenced). The
remainder of objects in memory are marked for deletion

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

OOP modelling

* A major part of OOP is modelling the problem. The goal is to identify:
o The principle objects in the problem domain
o We model these as a classes
* The responsibility of each of these objects
o What does it do?
 What are the collaborations between objects?
o What other object does it communicate with?

SV
B\ OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

When attempting an OOP solution

* |dentify the main (real) concepts in the problem domain

* Our objective is to produce a simplified class diagram
» classes represent real-world entities
* associations represent collaborations between the entities
» attributes represent the data held about entities
* generalization can be used to simplify the structure of the model (we’ll look at this later)

Ly
& (OLLSCOILNA GAILLIMUE
A p. UNIVERSITY oF GALWAY

Perspective

* This should be a fairly quick process
* You can expect your model to be incomplete on your first iteration

 There may well be important conceptual objects in the domain that
you do not discover until implementation

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

|dentify the Objects/Classes

 Write down a description of what your program is required to do?
* |dentify and list the nouns in each description

* The goal is to identify
o Potential Objects
o Attributes of objects

* Some of these objects may eventually be modelled as software
classes and objects

* This is the beginning of a process of identification, refinement and
(re-)modelling

\LLly
AT OLLSCOILNAGAILLIMHE
. slmals -
ojlv-..lf* UNIVERSITY oF GALWAY
L W

Example: Stage 1: Identify nouns

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart. Customer provides payment and address to process
the sale. The System validates the payment and responds by confirming the order, and provides the order

number that the customer can use to check on the order status. The System will send the customer a copy
of the order details by email

* Nouns = candidate objects

\LLy
PXA OLLSCOILNA GAILLIMUE
a ;' UNIVERSITY oF GALWAY

ldentify nouns

A Java program for handling a customer online transaction

The customer verifies the items in their shopping cart. Customer provides
payment and address to process the sale. The System validates the
payment and responds by confirming the order, and provides the order
number that the customer can use to check on the order status. The
System will send the customer a copy of the order details by email

L,
;\ﬁ@}ﬁ QOLLSCOILNA GAILLIMHE

==l

(\jlﬁlf* UNIVERSITY oF GALWAY i NOU ns = Candldate ObJeCtS

Customer Order

ltem Order Number
Shopping Cart Order Status
Payment Order Details
Address Email

Srarke— System

 |dentify duplicates (e.g sale and order)

* You may find yourself combining/splitting
some of these concepts

.g/w\ OLLSCOILNA GAILLIMHE

i |-| UNIVERSITY oF GALWAY L4 Wthh are prOpertIeS?

ol v.v A
4

————————————————————————————————

Customer Order /
ltem ~Lestes Passer
Shopping Cart ~ClgtorState—
Payment ~CHepbetadmds—
Address Email

——

' Avoid global objects such as System |
@ATR OLLSCOILN GAILLIMHE . These will tend to accumulate too much responsibility !

=| ﬁ =" |
‘lnlf- UNIVERSITYOFGALWAY om s e oo oo e

0 A A
4 LW

A simple class diagram of the conceptual objects

Customer

Shopping Cart

Item

Payment

Order

Address

WLLy,

VAT OLLS
| ﬁ ="

1'..'7‘ UNIVERSITY oF GALWAY

o

vav -
4w

11

Email

Now we want to understand
the relationships between
these objects

12

Stage 2: Identify assocications

Initially associations may be identified by the relationships in the

description oo
' A Java program for handling a customer online transaction '

EThe customer verifies the items in their shopping cart. |

' Customer provides payment and address to process the;
'sale. The System validates the payment and responds by
_confirming the order, and provides the order number that
'the customer can use to check on the order status. The |
System will send the customer a copy of the order details
by email '

SV
B\ OLLSCOILNAGAILLIMHE
N EJ UNIVERSITY oF GALWAY

13

Potential Associations

Customer, Shopping Cart
Shopping Cart, ltem

Customer, Order

Order, Payment, Address, Email

SV
;_T%T:’, QLLSCOILNA GAILLIMHE
. |majF -
gy UNIVERSITY OF GALWAY
LW

Customer

Shopping Cart

Item

Payment

Order

Email

Address

WLLy,
VAT OLLSCOILNAGAILLIMUE
- u|mals -

1}'..'5 UNIVERSITY oF GALWAY

B~

14

May be useful to add a short

note to describe the
relationships

15

Stage 3: Identify Responsibilities

Examine the verbs and verb phrases in each Use Case

' A Java program for handling a customer online transaction

EThe customer verifies the items in their shopping cart. !
' Customer provides payment and address to process the !
'sale. The System validates the payment and responds by
. confirming the order, and provides the order number that
'the customer can use to check on the order status. The
' System will send the customer a copy of the order details
by email

\LLy
PXA OLLSCOILNA GAILLIMUE
a p. UNIVERSITY oF GALWAY

16

Stage 3: Identify Responsibilities

Examine the verbs and verb phrases in each Use Case

' A Java program for handling a customer online transaction

EThe customer verifies the items in their shopping cart. !
' Customer provides payment and address to process the !
'sale. The System validates the payment and responds by
' confirming the order, and provides the order number that
'the customer can use to check on the order status. The
' System will send the customer a copy of the order details
by email

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

Stage 3: Identify Responsibilities

* Examine the verbs and verb phrases in each Use Case

- Verify ltems - Confirm order

- Provide Payment and address - Provide order number

- Process sale - Check order status

- Validate Payment - Send order details by email

However, it may not be obvious from the description where
these responsibilities should reside

SV
B\ OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

17

18

Stage 4: Assigh Responsibilities

Determine which responsibilities belong to which class

Candidate responsibilities Candidate Classes
Verify ltems Customer
Provide Payment and address Shopping Cart
Process sale Payment
Validate Payment Order

Email
Confirm order Address

Provide order number
Check order status
Send order details by email

\LLly
A (OLLSCOILNaAGAILLIMUE
N EJ UNIVERSITY oF GALWAY

19

OO Principles

Consider the following principles when assigning responsibilities
1. An Object is responsible for its own data
An object has responsibility for communicating its state

2. Single Responsibility Principle: Each Class should have a single responsibility
All its services should be aligned with that responsibility

SV
B\ OLLSCOILNAGAILLIMHE
N f(UNIVERSITY oF GALWAY

e Consider the responsibility Check order status
* The real customer initiates this action
* However which object should be responsible for checking the order status?

Customer Shopping Cart Item
Payment Order Email
get status

An object is responsible for
communicating its own state

Address

[L,
N OLLSCOILNAGAILLIMHE
s|ml= -
3'-.-'7 UNIVERSITY OF GALWAY

C vav

Now Attach method to the classes

Customer Shopping Cart Item
Payment Order Email
getStatus
Address
* \Verify Items e Confirm order
* Provide Payment and address ¢ Provide order number
* Process sale s+ Checkorderstatus
* Validate Payment * Send order details by email
VAT OLLSCOILNAGAILLIMUE

- gjmfs -
o Umrmly
C e
4w

UNIVERSITY oF GALWAY

22

Recall OO Principles

1. An Object is responsible for its own data
An object has responsibility for communicating its state

2. Single Responsibility Principle: Each Class should have a
single responsibility

All its services should be aligned with that responsibility

Ll
B OLLSCOILNAGAILLIMHE
N f; UNIVERSITY OF GALWAY

23

Assigning Responsibilities

Customer

Payment

Set payment details
Validate payment

Address

-=||m|= .
o Umrmly
C e

iz

UNIVERSITY oF GALWAY

4 LW

AT OLLSCOILNGAILLIMIE Got addrass details

Shopping Cart Item
Display totals
Order Email
Send email

Process order
Confirm order

Get order number
Get status
Create order confirmation email

Verify items

Provide payment and address
Process sale

Validate payment

Confirm order

Provide order number

Check order status

Send order details email

24

Perspective

Some objects seems to have no/few responsibilities — not a problem
The scenario we presented focused on one aspect of the overall
The diagram doesn’t show which entities initiate actions

A common mistake in OO modelling is to assign too much responsibility to the actor (the user)
Another common mistake is to assign lots of responsibility to a centralised System object

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

25

Working with ‘System’

' A Java program for handling a customer online transaction |

EThe customer verifies the items in their shopping cart. !
' Customer provides payment and address to process the !
'sale. The System validates the payment and responds byi
. confirming the order, and provides the order number that
'the customer can use to check on the order status. The !
' System will send the customer a copy of the order details
by email

SV
XA (OLLSCOILNAGAILLIMHE
A ;' UNIVERSITY oF GALWAY

26

Working with ‘System’

On first inspection it may seem that you need a centralised System object with many responsibilites.
Often this will be a poor design decision

“System validates payment” = “some part of the system validates payment”
Your job is to figure out which part of the System should have this responsibility

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

Avoid ‘God Objects’: Objects that know and do too much

Customer ‘

‘ Payment |

‘ Email

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

27

‘ Shopping Cart Item

‘ System Order

Generate email

Create cart

Get order number
Validate payment

Add item to shopping cart
(etc)

https://en.wikipedia.org/wiki/God object

God object

From Wikipedia, the free encyclopedia

For an object worshiped as a god, see Idol.

This article includes a list of references, related reading or external links, but its sources remain
\ ? unclear because it lacks inline citations. Please help to improve this article by introducing more
— precise citations. (March 2012) (Learn how and when to remove this template message)

In object-oriented programming, a god object is an object that knows too much or does too much. The god object is an example of an anti-pattern.

A common programming technique is to separate a large problem into several smaller problems (a divide and conquer strategy) and create
solutions for each of them. Once the smaller problems are solved, the big problem as a whole has been solved. Therefore a given object for a small
problem need only know about itself. Likewise, there is only one set of problems an object needs to solve: its own problems.

In contrast, a program that employs a god object does not follow this approach. Most of such a program's overall functionality is coded into a single
"all-knowing" object, which maintains most of the information about the entire program, and also provides most of the methods for manipulating this
data. Because this object holds so much data and requires so many methods, its role in the program becomes god-like (all-knowing and all-
encompassing). Instead of program objects communicating among themselves directly, the other objects within the program rely on the single god
object for most of their information and interaction. Since this object is tightly coupled to (referenced by) so much of the other code, maintenance
becomes more difficult than it would be in a more evenly divided programming design. Changes made to the object for the benefit of one routine
can have unintended effects on other unrelated routines.

A god object is the object-oriented analogue of failing to use subroutines in procedural programming languages, or of using far too many global
variables to store state information.

Whereas creating a god object is typically considered bad programming practice, this technique is occasionally used for tight programming
environments (such as microcontrollers), where the performance increase and centralization of control are more important than maintainability and
programming elegance.

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

29

Responsibilities should be distributed

Customer

‘ Payment

Set payment details
Validate payment

Address

.*/w_ OLLSCOILNAGAILLIMHE .
"L I’J UNIVERSITY oF GALWAY Set address details

Shopping Cart Item

Display totals

Order Email

Process order Send email

Confirm order
Get order number
Get status

Create order confirmation email

30

Lecture Summary

A major part of OOP is modelling the problem

* |dentifying the principle objects, their responsibilities and
collaborations between objects

 Key idea is to develop a description of how the program ought to
work

. Extract nouns -> candidate classes/objects
. Examine relationships in text - > object associations
. Examine verbs -> possible methods

. Asssign responsibilities to classes

* Consider the single responsibility principle, and object encapsulation
(in charge of its own state)

* Avoid God objects

QLLSCOILNA GAILLIMUE
UNIVERSITY oF GALWAY

