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MA284 : Discrete Mathematics
Week 1: Intro to Discrete Mathematics; The Additive and

Multiplicative Principles
delivered by Kevin Jennings (Kevin.Jennings@UniversityOfGalway.ie)

with thanks to Dr Niall Madden who prepared the material and notes
Any mistakes or typos are Kevin’s ... any bad jokes have multiple parents ...

7 & 9 September, 2022
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Part 1: All about MA284 Who am I? Who are you? (4/48)

Lecturer: Dr Kevin Jennings (he/him),
School of Mathematical and Statistical Science, University of Galway.
Room ADB-G008, Árus de Brún
Email: Kevin.Jennings@UniversityOfGalway.ie,
The best way to contact me is by email (or possibly using the chat feature on
Blackboard).

https://commons.wikimedia.org/wiki/File:%C3%81ras_de_Br%C3%BAn.jpg

mailto:Kevin.Jennings@UniversityOfGalway.ie
https://commons.wikimedia.org/wiki/File:%C3%81ras_de_Br%C3%BAn.jpg


Part 1: All about MA284 Who am I? Who are you? (5/48)

This module is taken by about 224 (and counting) students in
2nd Science: Mathematics, Mathematical Science, Physics, E&O,
Computer Science, Financial Mathematics and Economics, ...;
Arts: 2nd Mathematics, 2nd Music(!), 3rd Mathematics/Computer
Science & Education, Data Science...;
2nd Computer Science & IT (2BCT1);
Visiting student(s).

Given your very varied backgrounds, you will need to stay focused, and become
practised at communicating your own insights and challenges...



Part 1: All about MA284 What is MA284? (6/48)

This is Discrete Mathematics: a mathematics module introduces the concepts
of

enumerative combinatorics: how to count,
graph theory (i.e., the theory of graphs).

Don’t worry: most of the rest of the definitions in this module will be more
helpful than that!



Part 1: All about MA284 What/when/where (7/48)

Lectures: Wednesdays, 13.00–13.50 Anderson Theatre
Fridays, 11.00–11.50 Fottrell Lecture Theatre.

Tutorials: They will start in Week 3. More details in a moment.
Blackboard: You will find lots of resources on Blackboard

Announcements;
These slides;
Grades;
Link to the textbook,
Access to assignments.

Work load: 5 ECTS (60 is the typical total for a full-time programme)
24 lectures, all in Semester 1
Roughly 120 hours of student effort time.

http://NUIGalway.BlackBoard.com


Part 1: All about MA284 What/when/where (8/48)

Lecture materials: Slides for the week’s classes will be available for download in
advance of the Wednesday lecture. Please let me know if you
spot typos or if the slides are inaccessible in any way (eg to
screen-readers).
The slides contain the main definitions, ideas, and examples.
Examples that are worked out in class will be posted later in
the week.
Each set of slides finishes with a list of exercises, which are of a
similar style and standard as those on the final exam.

Images: Particularly in the second half of this module, there will be lots
of pictures of graphs. These are mostly generated using
Graphviz http://www.graphviz.org/ and/or NetworkX
https://networkx.github.io/
I’ll make Dr Madden’s source code available. But if I forget,
please ask!

http://www.graphviz.org/
https://networkx.github.io/


Part 1: All about MA284 What/when/where (9/48)

SUMS: The School of Maths provides a free drop-in centre called
SUMS: Support for Undergraduate Maths Students.

SUMS opens from 2pm to 5pm, Monday to Friday, from
Monday of Week 3. For more information, see
http://www.maths.nuigalway.ie/sums/

Devices: The use of portable electronic devices during class is
encouraged . For example, you might want to use it to check
Wikipedia, or access the textbook.
Be aware that these can be distracting to other students.
Please be considerate.

Other stuff: Last year this lecture fell on Soc’s Day! Why not (re)join the
Mathematics Society?
https://www.facebook.com/MathsSocNUIG
Also, consider joining our Student Chapter of SIAM:
http://www.maths.nuigalway.ie/SIAM-Galway/

http://www.maths.nuigalway.ie/sums/
https://www.facebook.com/MathsSocNUIG
http://www.maths.nuigalway.ie/SIAM-Galway/


Part 1: All about MA284 Assessment (10/48)

MA284 will be assessed as follows.

Continuous assessment: There will be five online assignments, together worth
40% of the final grade.
Multiple attempts can be made, and scoring (right/wrong) is
provided immediately. These will help you test yourself, and
give you time to seek support at tutorials.

WeBWorK: The Online Assignments uses “WeBWorK”, the same system
as the interactive exercises in the text-book (more about that
in a minute). You access the assignments through Blackboard.

Final assessment: There will be a 2 hour exam at the end of the semester,
worth 60%.



Part 1: All about MA284 Tutorials (11/48)

Tutorials will start in Week 3 (week beginning 19 September). You should
attend one tutorial per week.
The tentative arrangements for this year below.

Mon Tue Wed Thu Fri
9 – 10
10 – 11
11 – 12 MRA 201 (Lecture)
12 – 1 CA117
1 – 2 (Lecture)
2 – 3 AC215
3 – 4 AC213 ADB1020
4 – 5 AMB-G008

Please email Kevin now if none of these times work for you, with your course
details.



Part 1: All about MA284 Textbook (12/48)

The main recommended text is
Oscar Levin, Discrete Mathematics: an open
introduction, 3rd Edition. This is a free, open
source textbook, available from
http: // discretetext. oscarlevin. com , in
both printable and tablet/ereader-friendly
versions. It is published under Creative Commons
(CC BY-SA 4.0)

Other recommended texts include:

Normal L Biggs, Discrete Mathematics, Oxford Science Publications.
There are about 10 copies in the library at 510 BIG.
Kenneth Rosen, Discrete Mathematics and Its Applications, McGraw-Hill.
Located at 511 ROS.

Other books and resources will be mentioned through the semester.

http://discretetext.oscarlevin.com
http://discretetext.oscarlevin.com
http://discretetext.oscarlevin.com
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


Part 1: All about MA284 Textbook (13/48)

Some related, fun, reading.

Really Big Numbers, by Richard Schwartz, published by the
American Mathematical Society.
It is aimed a children, but is quite sophisticated. So you
can learn some Discrete Mathematics while doing bed-time
reading! It is in the library at 513 SCH
Watch at
https://www.youtube.com/watch?v=cEOY9UAsCFM

Four Colors Suffice: How the Map Problem Was Solved.
Robin Wilson.
In the library at 511.5 WIL
This is the story of the solution of one of most famous
mathematical problems, that defied solution for nearly 150
years. It is also a treatise on what “proof” really means.

Do you have any other suggestions?

http://www.ams.org/publications/authors/books/postpub/mbk-84
https://search.library.nuigalway.ie/primo-explore/fulldisplay?docid=353GAL_ALMA_DS2143410870003626&context=L&vid=353GAL_VUJ&search_scope=PRIMO_CENTRAL&tab=local&lang=en_US
https://www.youtube.com/watch?v=cEOY9UAsCFM
http://aleph20prod.nuigalway.ie/F/?func=direct&doc_number=000301393


Part 1: All about MA284 Mathematical Preliminaries (14/48)

There are very few prerequisites for this module. I will expect that

you can reason logically;
understand the concept of a proof, and know several proof techniques,
such as induction.
know what a matrix is, and how to multiply a matrix by a vector, and a
matrix by a matrix.
you are comfortable with the concept of sets, and the notation used to
describe and manipulate them.
you are comfortable with the concept of functions, and the notation used
to describe and manipulate them.

Exercise
Read Sections 0.3 (Sets) and 0.4 (Functions) in Chapter 0 of Discrete
Mathematics: an open introduction

http://discretetext.oscarlevin.com
http://discretetext.oscarlevin.com
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END OF PART 1
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Part 2: What is Discrete Mathematics? (17/48)

If calculus is “continuous mathematics”, then “discrete mathematics” is
everything else! However, it is usually taken to include the following

1 Logic
2 Sets and set-theory;
3 Mathematics of Algorithms;
4 Recursion and induction;
5 Counting;
6 Discrete probability;
7 Graphs, trees and networks;
8 Boolean algebra;
9 Modelling computing (Turing machines and Finite State Machines).

But we will just focus on counting (combinatorics) and graphs.



Part 2: What is Discrete Mathematics? (18/48)

1. Combinatorics.
How to count,
The additive and multiplicative principles.
The Binomial coefficients and some identities.
The Principle of Inclusion-Exclusion.
Permutations and Combinations.
Non-negative equations and inequalities.
Derangements and distributions.

“abacus at Fancyburg Park” by davsans is licensed under CC

BY-NC-SA 2.0



Part 2: What is Discrete Mathematics? (19/48)

2. Graph Theory.
Euler and the Koenigsberg Bridges Problem.
Eulerian and Hamiltonian graphs.
Tree graphs and bipartite graphs.
Planarity of Graphs.
Euler’s formula for a connected planar graph.
Planarity and the Platonic solids.
Colouring of Graphs.



Part 2: What is Discrete Mathematics? Combinatorics (20/48)

Combinatorics has an ancient history. The earliest known is in a 3,500 year old
Egyptian manuscript. It posed a question like “In 7 houses are 7 cats, each
with 7 mice, who each have 7 heads of wheat, which each have 7 grains. How
many houses, cats, mice, heads of wheat and grains are there?

Description: The so-called “Rhind Mathematical Papyrus” : detail (British Museum, EA10057)
Source: http://www.archaeowiki.org/Image:Rhind_Mathematical_Papyrus.jpg

Slightly more recently, in the 6th century the Indian physician Sushruta
determined that there are 26 − 1 = 63 different combinations of the tastes
sweet, pungent, astringent, sour, salt, and bitter.

http://www.archaeowiki.org/Image:Rhind_Mathematical_Papyrus.jpg


Part 2: What is Discrete Mathematics? Combinatorics (21/48)

We’ll solve problems like the two above, and also:

1. What are your chances of winning the Irish Lottery (“Lotto”). That is, what
is the probability of correctly selecting 6 numbers from 47?

2. If 500,000 people play the Lotto per week. What is the chance of a roll-over
(i.e., nobody winning)?

3. For last night’s men’s European soccer match between Glasgow Celtic and
Real Madrid, a 23-man squad was named for Celtic.
How many different ways were there of selecting the 11 starting players for
the match?
How many ways could one select (up to 5) of these players to be substituted
during the game?

4. My password has 10 characters. Each character is an upper- or lower-case
letter, or a digit. How long would it take you to crack my account?



Part 2: What is Discrete Mathematics? Graph Theory (22/48)

1. Which of these graphs are the same (and what does that mean)?
2. Is it possible to draw all the graph on the left so that none of its edges

intersect?
3. What is the smallest number of colours needed to colour every vertices so

that no two adjacent vertices have the same colour?
4. Is there a “route” through the graph that visits every vertex once and only

once?



Part 2: What is Discrete Mathematics? Graph Theory (23/48)

5. How may regular polyhedra (platonic solids) are there?

6. Are all the graphs of saturated hydrocarbon isomers trees?
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Part 2: What is Discrete Mathematics? Why take 284??? (24/48)

The most important reason for taking this module is that Discrete
mathematics is one of the most appealing, elegant, and applicable areas
of mathematics.

Appealing: The problems that we will consider are, I believe, easily
motivated, but not trivial.

Elegant: The solutions to these problems involve some clever reasoning,
but never tedious calculations.

Applicable: In spite of its classical origins, graph theory is one of the
hottest topics in both pure and applied mathematics, with
applications to network science, computer science, linguistics,
chemistry, physics, biology, social science, and music.
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END OF PART 2
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Part 3: Counting (27/48)

Combinatorics is the mathematics of counting . It is an ancient field of study,
though its “modern” history began with the systematic study of gambling in
the 17th century.
The simplest method of counting is simple enumeration = “Point and count”.

1. How many students in this class have a last name that begins with A?

2. How many anagrams are there of the letters NUI?

Usually we don’t want to make a list of all possibilities:
3. How many car licence plates are there of the form XXX-yyy, where X is a

letter and y is a digit?
Answer: There are 17,576,000, but we don’t want to list them all.



Part 3: Counting (28/48)

The first techniques that we will study for solving counting problems are called

The Additive and Multiplicative Principles

For more information see Chapter 1 (Counting) of Oscar Levin’s Discrete
Mathematics: an open introduction.

http://discretetext.oscarlevin.com
http://discretetext.oscarlevin.com


Part 3: Counting Some examples (29/48)

1. There are 5 starters and 6 main-courses on a restaurant’s menu. How many
choices do you have if
(a) You would like one dish: a starter or a main-course?
(b) You would like two dishes: a starter and a main-course?

2. A standard deck of cards has 26 red cards, and 12 face/court cards.
(a) How many ways can you select a card that is red and face card?
(b) How many ways can you select a card that is red or face card?

Think about these questions as we go through the next sections.
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Part 4: The Additive Principle (32/48)

Example
The University of Galway Animal Shelter has 4 cats and 6 dogs in need of a
home. You would like a new pet (but just one!). How many choices do you
have?



Part 4: The Additive Principle (33/48)

The Additive Principle
If event A can occur m ways, and event B can occur n (disjoint) ways, then
event “A or B” can occur in m + n ways.

Example
1 Can we use the additive principle to determine how many two letter

“words” begin with either A or B?

2 Can we use the additive principle to determine how many two letter
“words” contain either A or B?



Part 4: The Additive Principle (34/48)

The Additive Principle
If event A can occur m ways, and event B can occur n (disjoint) ways, then
event “A or B” can occur in m + n ways.

Example
The University of Galway Animal Shelter has 4 cats, 6 dogs, and 7 donkeys in
need of a home. How many choices do you have for a new pet?



Part 4: The Additive Principle (35/48)

The Additive Principle
If event A can occur m ways, and event B can occur n disjoint ways, then
event “A or B” can occur in m + n ways.

Example
A deck of cards has 26 red cards and 12 “face”-cards.

1. How many ways can you pick a red card?
2. How many ways can you pick a face-card?
3. How many ways can you pick a card that is red or is a face-card?

This last example is important because it emphasises the importance of the
sets being disjoint.



Part 4: The Additive Principle (36/48)
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Part 5: The Multiplicative Principle (38/48)

Example
Your favourite ice-cream shop has 8 flavours of ice-cream.
You can also choose between a cone, a waffle, and a cup.
How many choices to you have?



Part 5: The Multiplicative Principle (39/48)

The Multiplicative Principle
If event A can occur m ways, and each possibility allows for B to occur in n
(disjoint) ways, then event “A and B” can occur in m × n ways.

Example
The University of Galway Animal Shelter has 4 cats and 6 dogs in need of a
home. How many choices do you have if you would like a cat and a dog as
pets?

Example
The University of Galway Animal Shelter also has 7 donkeys. How many
choices to you have if you want a cat, a dog and a donkey?



Part 5: The Multiplicative Principle (40/48)

MA284
Week 1: Intro to Discrete Mathematics; The Additive and

Multiplicative Principles

END OF PART 5



Part 6: Counting with Sets (41/48)

MA284
Week 1: Intro to Discrete Mathematics; The Additive and

Multiplicative Principles

Start of ...

PART 6: Counting with sets



Part 6: Counting with Sets (42/48)

A set is a collection of things. The items in a set are called elements.
Examples:

The set of natural numbers from 1 to 10 is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

The set of upper-case letters is {A, B, . . . , Y , Z}

The set of students registered for Discrete Mathematics has 224 elements.

A set is unordered .



Part 6: Counting with Sets (43/48)

You should be familiar with the following basic elements of set notation:

{·} ∈ /∈ ⊆ ∪ ∩ ∅ | · | \

Example
Let A = {1, 2, 3}, B = {1, 3, 5}, and C = {2, 4}.

2 ∈ A, 4 /∈ A
{1, 3} ⊆ A
A ∪ B = {1, 2, 3, 5}
A ∩ B = {1, 3}, B ∩ C = ∅,
|A| = 3, |B ∩ C | = 0,
A\B = {2} A\C = {1, 3}

Also, for any set X , X ⊆ X ∅ ⊆ X .



Part 6: Counting with Sets Spoiler (44/48)

Let’s return to the restaurant problem again, changed slightly...
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Part 7: Exercises (47/48)

Here are a set of exercises to help you work through the material presented
during this week’s classes.
All but the last are taken either directly from the textbook, or with minor edits.
You do not have to submit your solutions to be graded.

0 Read Chapter 0 of Levin’s Discrete Mathematics: an open introduction
from http://discretetext.oscarlevin.com.
Do Exercises 1–9 in Chapter 0 (these are interactive, with hints and
solutions).

1 Your wardrobe consists of 5 shirts, 3 pairs of pants, 17 bow ties, and one
fez (hat). How many different outfits can you make?

2 For your job interview at the University of Galway Animal Shelter, you
must wear a tie. You own 3 regular (boring) ties and 5 (cool) bow ties.
How many choices do you have for your neck-wear?

http://discretetext.oscarlevin.com


Part 7: Exercises (48/48)

3 You realise that the interview is actually for ClownSoc, so you should
probably wear both a regular tie and a bow tie. How many choices do you
have now?

4 Your DVD collection consists of 9 comedies and 7 horror movies. Give an
example of a question for which the answer is:
(a) 16.
(b) 63.

5 If |A| = 10 and |B| = 15, what is the largest possible value for |A ∩ B|?
What is the smallest? What are the possible values for |A ∪ B|?

6 If |A| = 8 and |B| = 5, what is |A ∪ B|+ |A ∩ B|?
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MA284 : Discrete Mathematics
Week 2: Counting with sets and the PIE
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(2/38)Tutorials

Tutorials will start next week (week beginning Monday, 19 September).
You should attend one tutorial per week.
The proposed tutorial times are

Mon Tue Wed Thu Fri
9 – 10

10 – 11
11 – 12 MRA 201 (Lecture)
12 – 1 CA117
1 – 2 (Lecture)
2 – 3 AC215
3 – 4 AC213 ADB1020
4 – 5 AMB-G008

Please email Kevin now if none of these times work for you, with your course
details.
SUMS also opens next week. Dr Kirsten Pfeiffer will be here next week to give
more information.



(3/38)Assignments

We will use WeBWorK for all assignments in this module. You can access them
by logging on to Blackboard, clicking on Assignments, and then the relevant
link.

At present (14 Sep) , there is just a Demo Assignment there. Please try it out,
and report any problems. There are 10 questions, and you may attempt each
one up to 10 times.
This problem set does not contribute to your CA score for MA284.

The first proper assignment will open on Friday.



(4/38)This week...

In this week’s classes, we are going to
build on the Additive and Multiplicative
Principles from Lecture 2.
After reminding ourselves of the basic
ideas, we will present them in the
formal setting of set theory .

We will then move on to the Principle
of Inclusion/Exclusion (PIE).
The presentation will closely follow
Chapter 1 of Levin’s Discrete
Mathematics: an open introduction.

1 Part 1: Week 1 Review
Additive Principle
Multiplicative Principle

2 Part 2: Counting with Sets
Additive Principle again
The Cartesian Product
Multiplicative Principle again

3 Part 3: The Principle of Inclusion
and Exclusion (PIE)

4 Part 4: Subsets & Power Sets
Method 1: Spot the pattern
Method 2: Multiplicative Prin

5 Exercises

http://discretetext.oscarlevin.com
http://discretetext.oscarlevin.com
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Part 1: Week 1 Review Additive Principle (6/38)

The Additive Principle
If Event A can occur m ways, and Event B can occur n (disjoint) ways, then
Event “A or B” can occur in m + n ways.

Example
There are (now) 235 students in registered for Discrete Mathematics, of which
60 are in Financial Maths & Economics (FM), 55 are in Arts, and the
remaining 120 are in various Sciences (including Computer Science).

1. In how many ways can we choose a Class Rep who is from Arts or FM?
2. How many ways can be chosen a Class Rep who is from Arts, FM, or

Science?



Part 1: Week 1 Review Multiplicative Principle (7/38)

The Multiplicative Principle
If Event A can occur m ways, and each possibility allows for B to in n (disjoint)
ways, then Event “A and B” can occur in m × n ways.

Example
There are (still) 235 students in registered for Discrete Mathematics, of which
60 are in Financial Maths & Economics (FM), 55 are in Arts, and the
remaining 120 are in various Sciences (including Computer Science).

1. In how many ways can we choose two Class Reps, one each from Arts and
FM?

2. How many ways can we choose three Class Reps, one each from Arts, FM,
and Science?



Part 1: Week 1 Review Multiplicative Principle (8/38)
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Week 2: Counting with sets and the PIE

END OF PART 1
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Part 2: Counting with Sets (10/38)

Example (Students in Discrete Mathematics (again))
Let D be the set of students in Discrete Mathematics. So |D| = 235.
Let F be the set of Discrete Maths students who are in Financial Maths. So
|F | = 60.

Similarly, let S and A be the sets of Discrete Mathematics students who are in
Science and Arts respectively. So |S| = 120, and |A| = 55.

What do we mean by...

A ∪ F ?

A ∩ F ?



Part 2: Counting with Sets Additive Principle again (11/38)

Additive Principle in terms of “events”
If Event A can occur m ways, and Event B can occur n (disjoint/ independent)
ways, then event “A or B” can occur in m + n ways.

But an “event” can be expressed as just selecting an element of a set.
For example, the event “Choose a Class Rep from Arts” is the same as
“Choose an element of the set A”. Similarly:

Event A can occur m ways, is the same as saying |A| = m;
Event B can occur n ways, is the same as saying |B| = n;
Events A and B are disjoint/independent means |A ∩ B| = 0 (or,
equivalently A ∩ B = ∅).

Additive Principle for Sets
Given two sets A and B with |A| = m, |B| = n and |A ∩ B| = 0. Then

|A ∪ B| = m + n.



Part 2: Counting with Sets Additive Principle again (12/38)

Additive Principle for Sets
Given two sets A and B with |A ∩ B| = 0. Then

|A ∪ B| = |A|+ |B|.

Example:



Part 2: Counting with Sets The Cartesian Product (13/38)

The Cartesian Product of sets A and B is

A× B = {(x , y) : x ∈ A and y ∈ B}.

This is the set of pairs where the first term in each pair comes from A, and the
second comes from B.

Example
Let A = {1, 2, 3}, B = {1, 3, 5}, and C = {2, 4}.
Write down A× B and A× C .



Part 2: Counting with Sets The Cartesian Product (14/38)

If |A| = m and |B| = n, then |A× B| = m · n.
Why?



Part 2: Counting with Sets Multiplicative Principle again (15/38)

What has the Cartesian Product got to do with the Multiplicative Principle?
Consider the following example... Suppose we go to our favourite ice-cream
shop where they stock

three flavours: Vanilla, Strawberry and Mint.
two types of cone: plain Cones and Waffle cones.

How many ways can I place an order (for 1 cone and 1 scoop?).



Part 2: Counting with Sets Multiplicative Principle again (16/38)

Previously we learned about

The Multiplicative Principle (for events)
If event A can occur m ways, and each possibility allows for B to in n (disjoint)
ways, then event “A and B” can occur in m × n ways.

We can now express this in terms of sets:

Multiplicative Principle for Sets
Given two sets A and B,

|A× B| = |A| · |B|.

This extends to three or more sets in the obvious way:



Part 2: Counting with Sets Multiplicative Principle again (17/38)
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END OF PART 2
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Part 3: The Principle of Inclusion and Exclusion (PIE) (19/38)

Good news!
Remember from last week that the NUIG Animal Shelter had 4 cats and 6 dogs
in need of a home. Well, they have all been adopted and, (unsurprisingly, given
their kind and generous nature) by Discrete Mathematics students. They went
to 9 different homes, because one person adopted both a cat and a dog.

C D



Part 3: The Principle of Inclusion and Exclusion (PIE) (20/38)

Since we admire those people that adopted an animal so much, we want one of
them as our Class Rep. That is we will choose our Class Rep from one of the
sets C and D where |C | = 4 and |D| = 6.
If we were to apply the Additive Principle näıvly, we would think that we have
|C |+ |D| = 10 choices for our Rep. But of course, we only have |C ∪ D| = 9
choices.
So, to correctly calculate the cardinality of a pair of sets (with non-zero
intersection) we need the Principle of Inclusion and Exclusion.



Part 3: The Principle of Inclusion and Exclusion (PIE) (21/38)

The Principle of Inclusion and Exclusion (for the union of 2 sets)
For any finite sets A and B,

|A ∪ B| = |A|+ |B| − |A ∩ B|.

This extends to larger numbers of sets. For example,

The Principle of Inclusion and Exclusion, for the union of 3 sets
For any finite sets A, B, and C

|A ∪ B ∪ C | = |A|+ |B|+ |C | − |A ∩ B| − |A ∩ C | − |B ∩ C |+ |A ∩ B ∩ C |.



Part 3: The Principle of Inclusion and Exclusion (PIE) (22/38)

Example (PIE for 2 sets)
A group of 20 second year maths students are registering for modules. 12 take
Discrete Mathematics and, of those, 4 take both Discrete Maths and
Differential Forms. If all 20 do at least one of these subjects, how many just
take Differential Forms?



Part 3: The Principle of Inclusion and Exclusion (PIE) (23/38)

Example (See Example 1.1.8 of textbook)
An examination in three subjects, Algebra, Biology, and Chemistry, was taken
by 41 students. The following table shows how many students failed in each
single subject and in their various combinations.

Subject: A B C A&B A&C B&C A&B&C
Failed: 12 5 8 2 6 3 1

How many students failed at least one subject?

A B

C



Part 3: The Principle of Inclusion and Exclusion (PIE) (24/38)

This example shows how to extend the PIE to three sets:

|A ∪ B ∪ C | = |A|+ |B|+ |C |
− |A ∩ B| − |A ∩ C | − |B ∩ C |

+ |A ∩ B ∩ C | .

A B

C



Part 3: The Principle of Inclusion and Exclusion (PIE) (25/38)

MA284
Week 2: Counting with sets and the PIE

END OF PART 3
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PART 4: Subsets & Power Sets
Start here Friday, 16 September



Part 4: Subsets & Power Sets (27/38)

Recall last week it was mentioned that one of the earliest recorded problems in
combinatorics is from the Sushruta Samhita an ancient Sanskrit text on
medicine and surgery.

Palm leaves of the Sushruta Samhita or Sahottara-Tantra from Nepal. Source:
https: // en. wikipedia. org/ wiki/ Sushruta_ Samhita

https://en.wikipedia.org/wiki/Sushruta_Samhita


Part 4: Subsets & Power Sets (28/38)

The combinatorics problem from the Sushruta Samhita is to determine the
number of different possible combinations of the tastes

(1) sweet (2) pungent (3) astringent (4) sour
(5) salt and (6) bitter.

This is equivalent to the problem of counting the number of non-empty subsets
there are of a set with 6 elements.



Part 4: Subsets & Power Sets (29/38)

The question we will investigate is:
How many subsets are there of A1 = {1}?

How many subsets are there of A2 = {1, 2}?

How many subsets are there of A3 = {1, 2, 3}?

How many subsets are there of A4 = {1, 2, 3, 4}?
...

How many subsets are there of Ak = {1, 2, 3, . . . , k}?

Here is another way of expressing this:

Power set
The POWER SET of A, denoted by P(A), is the set of all subsets of A,
including the empty set.
What is |P(A)|?

We’ll answer this question in two different ways, which is a classic approach to
problems in combinatorics.

https://en.wikipedia.org/wiki/Power_set


Part 4: Subsets & Power Sets Method 1: Spot the pattern (30/38)

First we’ll list all the subsets of A1, A2 and A3, and try to guess the answer.
Then we will try to explain it.



Part 4: Subsets & Power Sets Method 2: Multiplicative Prin (31/38)

Here is another approach. Consider P(A2) = P({1, 2}).
When constructing a subset, we can proceed as follows:

Event A: choose to include the element 1 or not. This can happen in 2
ways.
Event B: choose to include the element 2 or not. This can happen in 2
ways.

Now apply the multiplicative principle.



Part 4: Subsets & Power Sets Method 2: Multiplicative Prin (32/38)

Example
How many subsets are there of A5 = {1, 2, 3, 4, 5}?



Part 4: Subsets & Power Sets Method 2: Multiplicative Prin (33/38)

Here is a slightly harder problem
How many subsets are there of A5 = {1, 2, 3, 4, 5} that contain exactly 3
elements?

We will look at three different ways of answering this question:
1. By “brute-force”: simply listing all the possibilities.
2. By counting all sets that do not have three elements.
3. Next week, by using binomial coefficients.



Part 4: Subsets & Power Sets Method 2: Multiplicative Prin (34/38)

Method 2
How many subsets are there of A5 = {1, 2, 3, 4, 5} that contain exactly 3
elements?

Here is an easy way of answering this question.
How many subsets of A5 have no elements?

How many subsets of A5 have 5 elements?

How many subsets of A5 have 1 element?

How many subsets of A5 have 4 elements?

Now use that the number of subsets of A5 with 3 elements, is the same as
the number with 2 elements.



Part 4: Subsets & Power Sets Method 2: Multiplicative Prin (35/38)



Exercises (36/38)

Here are a set of exercises to help you work through the material presented during Week 2.
Except where indicated, all these exercises are taken from Section 1.1 of textbook (Levin’s Discrete
Mathematics - an open introduction).

1 We usually write numbers in decimal form (i.e., base 10), meaning numbers are composed
using 10 different “digits” {0, 1, . . . , 9}. Sometimes, though, it is useful to write numbers in
hexadecimal (base 16), which has 16 distinct digits that can be used to form numbers:
{0, 1, . . . , 9, A, B, C, D, E, F}. So for example, a 3 digit hexadecimal number might be
2B8.

a. How many 2-digit hexadecimals are there in which the first digit is E or F?
Explain your answer in terms of the additive principle (using either events or
sets).

b. Explain why your answer to the previous part is correct in terms of the
multiplicative principle (using either events or sets). Why do both the additive
and multiplicative principles give you the same answer?

c. How many 3-digit hexadecimals start with a letter (A-F) and end with a
numeral (0-9)? Explain.

d. How many 3-digit hexadecimals start with a letter (A-F) or end with a
numeral (0-9) (or both)? Explain.

2 A group of students were asked about their TV watching habits. Of those surveyed,

28 students watch The Good Place,
19 watch Stranger Things, and
24 watch Orange is the New Black.



Exercises (37/38)

Additionally, 16 watch The Good Place and Stranger Things,
14 watch The Good Place and Orange is the New Black,
and 10 watch Stranger Things and Orange is the New Black.
There are 8 students who watch all three shows.

How many students surveyed watched at least one of the shows?

3 (MA284, Final Exam, 2018/2019) In a survey, 36 students were asked if they liked Discrete
Mathematics, Statistics and Differential Forms. 16 said they liked Discrete Maths, 20 liked
Statistics, 26 admitted to liking Differential Forms, and 1 did not like any.
Additionally, 9 students said they liked both Discrete Maths and Statistics, 13 liked Statistics
and Differential Forms, and 11 liked Discrete Maths and Differential Forms. How many
students like all three subjects?

4 In a recent survey, 30 students reported whether they liked their potatoes Mashed,
French-fried, or Baked. 15 liked them mashed, 20 liked French fries, and 9 liked twice baked
potatoes. Additionally, 12 students liked both mashed and fried potatoes, 5 liked French
fries and baked potatoes, 6 liked mashed and baked, and 3 liked all three styles. How many
students do not like potatoes? Explain why your answer is correct.

5 (MA284, Semester 1 Exam, 2016/2017) For how many n ∈ {1, 2, . . . , 500} is n a multiple
of one or more of 5, 6, or 7?

6 Let A, B, and C be sets.

a. Find |(A ∪ C) \ B| provided |A| = 50, |B| = 45, |C | = 40, |A ∩ B| = 20,
|A ∩ C | = 15, |B ∩ C | = 23, and |A ∩ B ∩ C | = 12.



Exercises (38/38)

b. Describe a set in terms of A, B, and C with cardinality 26.

7 (MA284, Semester 1 Exam, 2017/2018) The sets A and B are such that |A| = 17 and
|B| = 9.
What is the largest possible value of |A ∪ B|?
What is the smallest possible value of |A ∪ B|?
What is the largest possible value of |A ∩ B|?
What is the smallest possible value of |A ∩ B|?
What is the value of |A ∪ B| + |A ∩ B|?
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MA284 : Discrete Mathematics
Week 3: Binomial Coefficients

Dr Kevin Jennings

21 & 23 September 2022
1 Part 1: Bit strings and lattice paths

An “Investigate” activity
Bit strings
Lattice Paths

2 Part 2: Binomial coefficients
Calculating binomial coefs

3 Part 3: Pascal’s triangle
4 Part 4: Permutations

Examples
The binomial coefficient formula

5 Exercises
These slides are based on §1.2 of Oscar Levin’s Discrete Mathematics: an open introduction. They
are licensed under CC BY-SA 4.0

http://discretetext.oscarlevin.com
http://creativecommons.org/licenses/by-sa/4.0/


(2/35)Tutorials

Tutorials started this week! (week beginning 19 September).

You should attend one tutorial per week.

Mon Tue Wed Thu Fri
9 – 10

10 – 11
11 – 12 MRA 201 (Lecture)
12 – 1 CA117
1 – 2 (Lecture)
2 – 3 AC215
3 – 4 AC213 ADB1020
4 – 5 AMB-G008

Last chance to email Kevin now if none of these times work for you, with your
course details.



(3/35)Assignment 1

ASSIGNMENT 1 is now open!

To access the assignment, go to the 2223-MA284 Blackboard page, select
Assignments ... Assignment 1.

There are 10 questions.
You may attempt each one up to 10 times.
This assignment contributes approximately 8% to your final grade for Discrete
Mathematics.

Deadline: 5pm, Monday 3 October 2022.
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Part 1: Bit strings and lattice paths An “Investigate” activity (5/35)

A rook can move only in straight lines (not diagonally). Fill in each square of
the chess board below with the number of different shortest paths the rook in
the upper left corner can take to get to the square, moving one space at a time.
For example, there are six paths from the rook to the square c6: DDRR,
DRDR, DRRD, RDDR, RDRD, and RRDD. (R = right, D = down).

8 rZ0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z 6 Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h



Part 1: Bit strings and lattice paths Bit strings (6/35)

A bit is a “binary digits” (i.e., 0 or 1).
A bit string is a string (list) of bits, e.g. 1001, 0, 111111, 10101010.

The length of the string is the number of bits.
A n-bit string has length n.
The set of all n-bit strings (for given n) is denoted Bn.

Examples:



Part 1: Bit strings and lattice paths Bit strings (7/35)

The weight of the string is the number of 1’s.
The set of all n-bit strings of weight k is denoted Bn

k .

Examples:



Part 1: Bit strings and lattice paths Bit strings (8/35)

Bit strings
The set of all n-bit strings (for given n) is denoted Bn.
The set of all n-bit strings of weight k is denoted Bn

k .

Some counting questions:

1. How many bit strings are there of length 5? That is, what is |B5|?
2. Of these, how many have weight 3? That is, what is |B5

3|?



Part 1: Bit strings and lattice paths Lattice Paths (9/35)

The (integer) lattice is the set of all points in the Cartesian plane for which
both the x and y coordinates are integers.

A lattice path is a shortest possible path connecting two points on the lattice,
moving only horizontally and vertically.

Example: three possible lattice paths from the points (0, 0) to (3, 2) are:

(0,0)

(3,2)

(0,0)

(3,2)

(0,0)

(3,2)

Question: How many lattice paths are there from (0, 0) to (3, 2)?



Part 1: Bit strings and lattice paths Lattice Paths (10/35)

Useful observation 1
The number of lattice paths from (0, 0) to (3, 2) is the same as |B5

3 |.
Why?

Useful observation 2
The number of lattice paths from (0, 0) to (3, 2) is the same as the number
from (0, 0) to (2, 2), plus the number from (0, 0) to (3, 1).

(0,0)

(3,2)

B

A



Part 1: Bit strings and lattice paths Lattice Paths (11/35)

MA284
Week 3: Binomial Coefficients

END OF PART 1
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Part 2: Binomial coefficients (13/35)

Version 1
What is the coefficient of (say) x 3y 2 in (x + y)5?

(x + y)0 = 1

(x + y)1 = x + y

(x + y)2 = x 2 + 2xy + y 2

(x + y)3 = x 3 + 3x 2y + 3xy 2 + y 3

(x + y)4 = x 4 + 4x 3y + 6x 2y 2 + 4xy 3 + y 4

(x + y)5 = x 5 + 5x 4y + 10x 3y 2 + 10x 2y 3 + 5xy 4 + y 5

So, by doing a lot of multiplication, we have worked out that the coefficient of
x 3y 2 is 10 (which is rather familiar....)

But, not surprisingly there this a more systematic way of answering this
problem.



Part 2: Binomial coefficients (14/35)

Version 2
What is the coefficient of (say) x 3y 2 in (x + y)5?

(x + y)5 = (x + y)(x + y)(x + y)(x + y)(x + y).

We can work out the coefficient of x 3y 2 in the expansion of (x + y)5 by
counting the number of ways we can choose three x ’s and two y ’s in

(x + y)(x + y)(x + y)(x + y)(x + y).



Part 2: Binomial coefficients (15/35)

These numbers that occurred in all our examples are called binomial

coefficients, and are denoted
(

n
k

)
Binomial Coefficients
For each integer n ≥ 0, and integer k such that 0 ≤ k ≤ n, there is a number(

n
k

)
read as “n choose k”

1.
(n

k

)
= |Bn

k |, the number of n-bit strings of weight k.
2.

(n
k

)
is the number of subsets of a set of size n, each with cardinality k.

3.
(n

k

)
is the number of lattice paths of length n containing k steps to the right.

4.
(n

k

)
is the coefficient of x k yn−k in the expansion of (x + y)n.

5.
(n

k

)
is the number of ways to select k objects from a total of n objects.



Part 2: Binomial coefficients Calculating binomial coefs (16/35)

If we were to skip ahead we would learn that there is a formula for(
n
k

)
(that is, “n choose k”)

that is expressed in terms of factorials.

Recall that the factorial of a natural number, n is

n! = n × (n − 1)× (n − 2)× (n − 3)× ...× 2× 1.

Examples:



Part 2: Binomial coefficients Calculating binomial coefs (17/35)

We will eventually learn that (
n
k

)
= n!

k!(n − k)!

Examples



Part 2: Binomial coefficients Calculating binomial coefs (18/35)

However, the formula
(n

k

)
= n!

k!(n−k)! is not very useful in practice.

Example
Suppose there were 200 students in this Discrete Mathematics class, and we
want to arrange a tutorial group of 25 students. How many ways could we do
this?

Answer: 4.5217× 1031. But this is not easy to compute...
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Part 3: Pascal’s triangle (21/35)

Earlier, we learned that if the set of all n-bit strings with weight k is written
Bn

k , then
|Bn

k | = |Bn−1
k−1|+ |B

n−1
k |.

Similarly, we get find that...

Pascal’s Identity: a recurrence relation for
(n

k
)

(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)

Why:



Part 3: Pascal’s triangle (22/35)

Pascal’s Identity (
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)

This is often presented as Pascal’s Triangle

(
0
0

)
(

1
0

) (
1
1

)
(

2
0

) (
2
1

) (
2
2

)
(

3
0

) (
3
1

) (
3
2

) (
3
3

)
(

4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)



Part 3: Pascal’s triangle (22/35)

Pascal’s Identity (
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)



Part 3: Pascal’s triangle (23/35)

Source: http://www.flickr.com/photos/35652310@

N00/4139577452/.

Example
The University of Galway Animal Shelter has 4
cats.

(a) How many choices do we have for a single
cat to adopt?

(b) How many choices do we have if we want
to adopt two cats?

(c) How many choices do we have if we want
to adopt three cats?

(d) How many choices do we have if we want
to adopt four cats?

http://www.flickr.com/photos/35652310@N00/4139577452/
http://www.flickr.com/photos/35652310@N00/4139577452/
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Part 4: Permutations (26/35)

A permutation is an arrangement of objects. Changing the order of the objects
gives a different permutation.

Example: List all permutations of the letters A, R and T?

Important: order matters - “ART” 6= “TAR” 6= “RAT”.



Part 4: Permutations (27/35)

A permutation is an arrangement of objects. Changing the order of the objects
gives a different permutation.

We can also count the number of permutations of the letters A, R and T,
without listing them:



Part 4: Permutations (28/35)

More generally, recall that n! (read “n factorial”) is

n! = n × (n − 1)× (n − 2)× · · · × 2× 1

E.g.,

1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720.

10! = 3, 628, 800, 20! = 2, 432, 902, 008, 176, 640, 000 ≈ 2.43× 1018.

Number of permutations
There are

n! = n × (n − 1)× (n − 2)× · · · × 2× 1

(i.e., n factorial) permutations of n (distinct) objects.



Part 4: Permutations Examples (29/35)

To emphasis the order matters in permutations, consider the following
example.

Example
In last year’s paralympics, 8 athletes contested the Men’s Va’a 200m Singles’s
final. How many different finishing orderings were possible?

(Sam Barnes/Sportsfile)
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Permutations of k objects from n
The number of permutations of k objects out of n, P(n, k), is

P(n, k) = n × (n − 1)× · · · × (n − k + 1) = n!
(n − k)!



Part 4: Permutations Examples (31/35)

Example (P(8, 3))
In last year’s (delayed) paralympics, 8 athletes contested the Men’s Va’a 200m
Singles’s final. In how many different ways could the gold, silver, and bronze
medals be awarded?
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Choosing the “back three” on a rugby team...
Ireland Squad for the Women’s Rugby World Cup Qualifiers had 5 players
who (we’ll say) could all play on the Left Wing (11), Right Wing (14) or
Full-Back (15):

Amee-Leigh Murphy-Crowe • Eimear Considine • Lauren Delany
Beibhinn Parsons • Lucy Mulhall

1. How many choices do we have for picking the starting back three, without
assigning them numbers?

Beibhinn Parsons scoring against Italy last year

2. How many choices for picking a starting 11, 14 and 15 (i.e., numbers are
assigned)?
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Still choosing the back three...
Our rugby squad has 5 backs that can play at 11, 14, or 15.

There are
(

5
3

)
ways we can pick 3 of them for our starting team, without

allocating numbers.

Once we have picked these three, there are 3! = 6 ways we can assign them the
11, 14 and 15 jerseys. That is

P(5, 3) =
(

5
3

)
3!.

However, we know P(5, 3), so this gives a formula for
(

5
3

)
.



Part 4: Permutations The binomial coefficient formula (34/35)

(1) We know there are P(n, k) permutations of k objects out of n.
(2) We know that

P(n, k) = n!
(n − k)!

(3) Another way of making a permutation of k objects out of n is to
(a) Choose k from n without order. There are

(n
k
)

ways of doing this.
(b) Then count all the ways of ordering these k objects. There are k! ways of

doing this.
(c) By the Multiplicative Principle,

P(n, k) =
(n

k
)

k!

(4) So now we know that n!
(n − k)! =

(
n
k

)
k!

(5) This gives the formula
(

n
k

)
= n!

(n − k)!k!
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Q1. Let S = {1, 2, 3, 4, 5, 6}

(a) How many subsets are there total?
(b) How many subsets have {2, 3, 5} as a subset?
(c) How many subsets contain at least one odd number?
(d) How many subsets contain exactly one even number?
(e) How many subsets are there of cardinality 4?
(f) How many subsets of cardinality 4 have {2, 3, 5} as a subset?
(g) How many subsets of cardinality 4 contain at least one odd number?
(h) How many subsets of cardinality 4 contain exactly one even number?

Q2. How many subsets of {0, 1, . . . , 9} have cardinality 6 or more? (Hint: Break the question
into five cases).

Q3. How many shortest lattice paths start at (3,3) and end at (10,10)?
How many shortest lattice paths start at (3,3), end at (10,10), and pass through (5,7)?

Q4. Suppose you are ordering a large pizza from D.P. Dough. You want 3 distinct toppings,
chosen from their list of 11 vegetarian toppings.

(a) How many choices do you have for your pizza?
(b) How many choices do you have for your pizza if you refuse to have pineapple

as one of your toppings?
(c) How many choices do you have for your pizza if you insist on having

pineapple as one of your toppings?
(d) How do the three questions above relate to each other?
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MA284 : Discrete Mathematics
Week 4: Algebraic and Combinatorial Proofs

Dr Kevin Jennings

28 September and & 30 September, 2022
1 Part 1: A short summary

Binomial coefficients
2 Part 2: Pascal’s Triangle (again)
3 Part 3: Algebraic and Combinatorial Proofs
4 Part 4: How combinatorial proofs work

Which is better?
5 Exercises
These slides are based on §1.3 and §1.4 of Oscar Levin’s Discrete
Mathematics: an open introduction.
They are licensed under CC BY-SA 4.0

http://discretetext.oscarlevin.com
http://discretetext.oscarlevin.com
http://creativecommons.org/licenses/by-sa/4.0/


(2/29)Tutorials

Tutorials started last week. You should attend one of the sessions listed below.

Mon Tue Wed Thu Fri
9 – 10
10 – 11
11 – 12 MRA 201 (Lecture)
12 – 1 CA117
1 – 2 (Lecture)
2 – 3 AC215
3 – 4 AC213 ADB1020
4 – 5 AMB-G008



(3/29)Assignment 1

ASSIGNMENT 1 is open (and ASSIGNMENT 2 opens soon!)

To access the assignment, go to the 2122-MA284 Blackboard page, select
Assignments ... Assignment 1.

There are 10 questions in Asst1 (and 15 in Asst2).
You may attempt each question up to 10 times.
This assignment contributes approximately 8% to your final grade for Discrete
Mathematics.

Deadline: 5pm, Monday 3 October 2022.
Deadline (Asst 2): 5pm, Friday 14 October 2022.
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Part 1: A short summary Binomial coefficients (5/29)

Binomial Coefficients
For each integer n ≥ 0, and integer k such that 0 ≤ k ≤ n, there is a number(

n
k

)
read as “n choose k”

1.
(n

k

)
= |Bn

k |, the number of n-bit strings of weight k.
2.
(n

k

)
is the number of subsets of a set of size n each with cardinality k.

3.
(n

k

)
is the number of lattice paths of length n containing k steps to the right.

4.
(n

k

)
is the coefficient of x kyn−k in the expansion of (x + y)n.

5.
(n

k

)
is the number of ways to select k objects from a total of n objects.

There is a formula: (
n
k

)
= n!

k!(n − k)!

We can also calculate binomial coefficients using Pascal’s identity.



Part 1: A short summary Binomial coefficients (6/29)

Pascal’s Identity: a recurrence relation for
(n

k
)

(
n
k

)
=
(

n − 1
k − 1

)
+
(

n − 1
k

)



Part 1: A short summary Binomial coefficients (7/29)

A permutation is an arrangement of objects. Changing the order of the objects
gives a different permutation.

Number of permutations
There are

n! = n × (n − 1)× (n − 2)× · · · × 2× 1

(i.e., n factorial) permutations of n (distinct) objects.

Permutations of k objects from n
The number of permutations of k objects out of n, P(n, k), is

P(n, k) = n × (n − 1)× · · · × (n − k + 1) = n!
(n − k)!



Part 1: A short summary Binomial coefficients (8/29)

MA284
Week 4: Algebraic and Combinatorial Proofs

END OF PART 1



Part 2: Pascal’s Triangle (again) (9/29)

MA284
Week 4: Algebraic and Combinatorial Proofs
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PART 2: Pascal’s Triangle (again)



Part 2: Pascal’s Triangle (again) (10/29)

At the end of Week 3, we “proved” that(
n
k

)
= n!

(n − k)!k!

We did this by counting P(n, k) in two different ways.

This is a classic example of a Combinatorial Proof , where we establish a
formula by counting something in 2 different ways.

For much of this week, we will study this style of proof. See also Section 1.4 of
the text-book.

But first, we will form some conjectures, using Pascal’s Triangle.



Part 2: Pascal’s Triangle (again) (11/29)

Binomial coefficients have many
important properties.
Looking at their arrangement in
Pascal’s Triangle, we can spot some:

(i) For all n,
(

n
0

)
=
(

n
n

)
= 1

(ii)
n∑

i=0

(
n
i

)
= 2n

(iii)
(

n
k

)
=
(

n − 1
k − 1

)
+
(

n − 1
k

)
.

(iv)
(

n
k

)
=
(

n
n − k

)



Part 2: Pascal’s Triangle (again) (12/29)

MA284
Week 4: Algebraic and Combinatorial Proofs

END OF PART 2



Part 3: Algebraic and Combinatorial Proofs (13/29)
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Part 3: Algebraic and Combinatorial Proofs (14/29)

Proofs
Proofs of identities involving Binomial coefficients can be classified as

Algebraic: if they rely mainly on the formula for binomial coefficients.
Combinatorial: if they involve counting a set in two different ways.

For our first example, we will give two proofs of the following fact:(
n
k

)
=
(

n
n − k

)
.



Part 3: Algebraic and Combinatorial Proofs (15/29)

Algebraic proof of Pascal’s triangle recurrence relation(
n
k

)
=
(

n − 1
k − 1

)
+
(

n − 1
k

)



Part 3: Algebraic and Combinatorial Proofs (16/29)

Combinatorial Proofs
Proofs of identities involving binomial coefficients can be classified as either

Algebraic: if they rely mainly on the formula for binomial coefficients; or
Combinatorial: if they involve counting a set in two different ways.



Part 3: Algebraic and Combinatorial Proofs (17/29)

Example
Give two proofs of the fact that(

n
0

)
+
(

n
1

)
+
(

n
2

)
+ · · ·+

(
n
n

)
= 2n

First, we check:



Part 3: Algebraic and Combinatorial Proofs (18/29)

Algebraic proof of the fact that(
n
0

)
+
(

n
1

)
+
(

n
2

)
+ · · ·+

(
n
n

)
= 2n



Part 3: Algebraic and Combinatorial Proofs (19/29)

Combinatorial proof of the fact that(
n
0

)
+
(

n
1

)
+
(

n
2

)
+ · · ·+

(
n
n

)
= 2n



Part 3: Algebraic and Combinatorial Proofs (20/29)

MA284
Week 4: Algebraic and Combinatorial Proofs

END OF PART 3



Part 4: How combinatorial proofs work (21/29)
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Part 4: How combinatorial proofs work Which is better? (22/29)

Which are better: algebraic or combinatorial proofs?

When we first study discrete mathematics, algebraic proofs make seem easiest:
they reply only on using some standard formulae, and don’t require any deeper
insight. Also, they are more “familiar”.

However,
Often algebraic proofs are quite tricky;
Usually, algebraic proofs give no insight as to why a fact is true.

Example (MA284 - Semester 1 exam, 2016/2017)
Give a combinatorial proof of the following fact(

n
0

)2

+
(

n
1

)2

+
(

n
2

)2

+ · · ·+
(

n
n

)2

=
(

2n
n

)
.



Part 4: How combinatorial proofs work Which is better? (23/29)

We wish to show that
(

n
0

)2

+
(

n
1

)2

+
(

n
2

)2

+ · · ·+
(

n
n

)2

=
(

2n
n

)
.



Part 4: How combinatorial proofs work Which is better? (24/29)

What is a “combinatorial proof” really?

1. These proofs involve finding two different ways to answer the same
counting question.

2. Then we explain why the answer to the problem posed one way is A
3. Next we explain why the answer to the problem posed the other way is B.
4. Since A and B are answers to the same question, we have shown it must

be that A = B.



Part 4: How combinatorial proofs work Which is better? (25/29)

Example
Using a combinatorial argument, or otherwise, prove that

k
(

n
k

)
= n
(

n − 1
k − 1

)
.

Proof 1:



Part 4: How combinatorial proofs work Which is better? (26/29)

Example
Using a combinatorial argument, or otherwise, prove that

k
(

n
k

)
= n
(

n − 1
k − 1

)
.

Proof 2:



Part 4: How combinatorial proofs work Which is better? (27/29)

MA284
Week 4: Algebraic and Combinatorial Proofs

END OF PART 4



Exercises (28/29)

Unless indicated otherwise, these questions identical to, or variants on, Sections 1.4,
1.5 and 1.6 of Levin’s Discrete Mathematics. Solutions are also available from that
book.

Q1. Put the following numbers in increasing order.
(a) The number of subsets of the set {a, b, c, d , e, g , h, i}.
(b)
(10

5
)

(c)
(12

3
)

.
(d)
(12

3
)

.
(e) 5!
(f) P(7, 4)
(g) P(8, 5)

Q2. Compute
(7

3
)

using Pascal’s Identity. Check you got the right answer by also
doing this using the factorial formula.

Q3. Write out all permutations of the letters A, B, C, and D that use all four letters.
Verify you get 24.
Now write out all permutations of the 4 letters A, B, C, and C (i.e., C is
repeated). How many do you get?

Q4. Give a combinatorial proof for the identity 1 + 2 + 3 + · · ·+ n =
(n+1

2
)

.

http://discretetext.oscarlevin.com


Exercises (29/29)

Q5. Give an algebraic proof, using induction, for the identity
1 + 2 + 3 + · · ·+ n =

(n+1
2
)

.

Q6. Give a combinatorial proof of the fact that
(x+y

2
)
−
(x

2
)
−
(y

2
)

= xy

Q7. Give a combinatorial proof of the identity
(n

2
)(n−2

k−2
)

=
(n

k

)(k
2
)

.

Q8. Consider the bit strings in B6
2 (bit strings of length 6 and weight 2).

(a) How many of those bit strings start with 01?
(b) How many of those bit strings start with 001?
(c) Are there any other strings we have not counted yet? Which ones, and how

many are there?
(d) How many bit strings are there total in B6

2?
(e) What binomial identity have you just given a combinatorial proof for?

Q9. Establish the identity below using a combinatorial proof.(2
2
)(n

2
)

+
(3

2
)(n − 1

2
)

+
(4

2
)(n − 2

2
)

+ · · ·+
(n

2
)(2

2
)

=
(n + 3

5
)

.

Q10. (MA284 – Semester 1 exam, 2017/2018) combinatorial argument, or otherwise,
prove the following statement.(n

5
)

=
(2

2
)(n − 3

2
)

+
(3

2
)(n − 4

2
)

+
(4

2
)(n − 2

2
)

+ · · ·+
(n − 3

2
)(2

2
)

.
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MA284 : Discrete Mathematics
Week 5: Stars and Bars

Dr Kevin Jennings
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1 Part 1: Stars and Bars

An “Investigate” activity
7 apples for 4 people
Multisets

2 Part 2: Problems with NNI solutions
Summary
NNIPs

3 Part 3: Inequalities
... with lower bounds
... with upper bounds

4 Part 4: Advanced Counting Using PIE
5 Exercises

These slides are based on §1.5 of Oscar Levin’s Discrete Mathematics: an open introduction, and
are licensed under CC BY-SA 4.0

http://discretetext.oscarlevin.com
http://creativecommons.org/licenses/by-sa/4.0/


(2/36)Assignments

ASSIGNMENT 1 should have been closed
ASSIGNMENT 2 is due Oct 18 (extended from Oct 14)

ASSIGNMENT 3 will open soon



Part 1: Stars and Bars (3/36)

MA284
Week 5: Stars and Bars

Start of ...

PART 1: Stars and Bars



Part 1: Stars and Bars An “Investigate” activity (4/36)

Think about the following question during this lecture...
Suppose you have some number of identical Rubik’s cubes to distribute to your
friends. Find the number of different ways you can distribute the cubes...

1. if you have 3 cubes to give to 2 people.
2. if you have 4 cubes to give to 2 people.
3. if you have 5 cubes to give to 2 people.
4. if you have 3 cubes to give to 3 people.
5. if you have 4 cubes to give to 3 people.
6. if you have 5 cubes to give to 3 people.

Make a conjecture about how many different ways you could distribute 7 cubes to 4
people. Explain.
What if each person were required to get at least one cube? How would your answers
change?



Part 1: Stars and Bars 7 apples for 4 people (5/36)

Every day you give some apples to your lecturers.
Today you have 7 apples.

How many ways can you give them to 4 lecturers you have today?



Part 1: Stars and Bars 7 apples for 4 people (6/36)

Every day you give some apples to your lecturers. Today you have 7
apples. How many ways can you give them to the 4 lecturers you have

today?

One can represent any solution by filling out 10 boxes with 7 stars and 3 bars.
Examples:



Part 1: Stars and Bars 7 apples for 4 people (7/36)

Every day you give some apples to your lecturers. Today you have 7
apples. How many ways can you give them to the 4 lecturers you have

today?

Every solution can be represented by 10 boxes, each with a star or a bar.
There are 7 stars and 3 bars in total.
We can choose any 3 of the 10 boxes in which to place the bars, and then
put the stars in the rest.

So we have
(

10
3

)
choices for where to put the bars.



Part 1: Stars and Bars Multisets (8/36)

Definition (Multiset)
A multiset is a set of objects, where each object can appear more than once.
As with an ordinary set, order does not matter.

Examples:



Part 1: Stars and Bars Multisets (9/36)

How many multisets of size 4 can you form using numbers {1, 2, 3, 4, 5}?



Part 1: Stars and Bars Multisets (10/36)

How many multisets of size n can you form using the numbers
{1, 2, 3, . . . , k}?



Part 1: Stars and Bars Multisets (11/36)

Example
1. In how many ways can one distribute ten e1 coins to four students?
2. In how many ways can one distribute ten e1 coins to four students so

that each student receives at least e1?



Part 1: Stars and Bars Multisets (12/36)

MA284
Week 5: Stars and Bars

END OF PART 1



Part 2: Problems with NNI solutions (13/36)

MA284
Week 5: Stars and Bars

Start of ...

PART 2: Problems with NNI solutions



Part 2: Problems with NNI solutions Summary (14/36)

In Part 1, we had the following question
How many ways can you share n apples among your k lecturers?

This is the same as finding the number of ways we can arrange n apples
(stars), divided into k groups, separated by k − 1 bars.
Any way can be written with n + k − 1 symbols (n stars and k − 1 bars):
we just have to choose where to put the k − 1 bars. This can be done in(

n + k − 1
k − 1

)
=

(
n + k − 1

n

)
= (n + k − 1)!

n!(k − 1)! ways.

Each solution can be thought of as a multiset: a set of objects, where
each object can appear more than once.
And each can be framed as a solution to the non-negative integer
problem:

x1 + x2 + · · ·+ xk = n.



Part 2: Problems with NNI solutions NNIPs (15/36)

All the examples we have looked at so far this week are examples of a broader
class of non-negative integer (NNI) problems. When we calculate the
number of ways of giving 7 apples to 4 lecturers, we are computing the number
of solutions to

x1 + x2 + x3 + x4 = 7.



Part 2: Problems with NNI solutions NNIPs (16/36)

A non-negative integer (NNI) problem
How many non-negative integer solutions are there to the problem

x1 + x2 + · · ·+ xk = n?

This is the same as...
How many ways are there to distribute n identical objects among k individuals.

The answer is
(

n + k − 1
k − 1

)
= (n + k − 1)!

n!(k − 1)!



Part 2: Problems with NNI solutions NNIPs (17/36)

MA284
Week 5: Stars and Bars

END OF PART 2



Part 3: Inequalities (18/36)
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Part 3: Inequalities (19/36)

Example (Part 1: Equality)
What are the non-negative integer solutions to

x1 + x2 + x3 = 3?

Here n = 3 and k = 3. So we know there are
(

5
2

)
= 10 solutions.

They are:



Part 3: Inequalities (20/36)

Example (Part 2: Inequality)
How many non-negative integer solutions are there to

x1 + x2 ≤ 3,

and what are they?



Part 3: Inequalities (21/36)

Example (Part 3: Strict inequality)
How many non-negative integer solutions are there to

x1 + x2 < 4,

and what are they?



Part 3: Inequalities (22/36)

In fact, each of the following 3 equations have the same non-negative integer
solutions (and, so, same number of solutions):

(1) x1 + x2 + x3 + · · ·+ xk + xk+1 = n.

(2) x1 + x2 + x3 + · · ·+ xk ≤ n,

and
(3) x1 + x2 + x3 + · · ·+ xk < n + 1,

WHY?



Part 3: Inequalities (23/36)

Example
(i) How many non-negative integer solutions are there of the equation

x1 + x2 + x3 = 8

(ii) How many non-negative integer solutions are there of the inequality

x1 + x2 + x3 ≤ 8



Part 3: Inequalities ... with lower bounds (24/36)

Example
How many non-negative integer solutions are there of the equation

x1 + x2 + x3 = 8

if
1. x1 ≥ 3;
2. x1 ≥ 3 and x2 ≥ 3;
3. Each xi ≥ 3



Part 3: Inequalities ... with upper bounds (25/36)

These problems are a little more complicated than the ones we just did.

Example (Upper bounds example 1)
How many non-negative integer solutions are there of the equation

x1 + x2 + x3 = 8

if:
1. Each xi ≤ 2.



Part 3: Inequalities ... with upper bounds (26/36)

Example (Upper bounds example 2)
How many non-negative integer solutions are there of the equation

x1 + x2 + x3 = 8

if:
2. Each xi ≤ 3.



Part 3: Inequalities ... with upper bounds (27/36)

Example (Upper bounds example 2)
How many non-negative integer solutions are there of the equation

x1 + x2 + x3 = 8

if:
3. Each xi ≤ 4.



Part 3: Inequalities ... with upper bounds (28/36)

MA284
Week 5: Stars and Bars

END OF PART 3
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Part 4: Advanced Counting Using PIE (30/36)

Recall that

|X | denotes the number of elements in the set X .
X ∪ Y (the union of X and Y ) is the set of all elements that belong to
either X or Y .
A ∩ B (the intersection of X and Y ) is the set of all elements that belong
to both X and Y .

The Principle of Inclusion/Exclusion (PIE) for two sets, A and B, is

|A ∪ B| = |A|+ |B| − |A ∩ B|.



Part 4: Advanced Counting Using PIE (31/36)

For three sets, A, B and C , the PIE is

|A∪B ∪ C | = |A|+ |B|+ |C | − |A∩B| − |A∩ C | − |B ∩ C |+ |A∩B ∩ C |.



Part 4: Advanced Counting Using PIE (32/36)

The PIE works for larger numbers of sets too, although it gets a little messy to
write down. For 4 sets, we can think of it as

|A ∪ B ∪ C ∪ D| = (the sum of the sizes of each single set)
− (the sum of the sizes of each intersection of 2 sets)
+ (the sum of the sizes of each intersection of 3 sets)

− (the sum of the sizes of intersection of all 4 sets)

Example (Example 1.6.2 of text-book)
How many ways can we distribute 10 slices of pie(!) to 4 kids so that no kid
gets more than 2 slices?



Part 4: Advanced Counting Using PIE (33/36)

Not all such problems have easy solution solutions.

Example
How many non-negative integer solutions are there to

x1 + x2 + x3 + x4 + x5 = 13 if...

1. There are no restrictions (other than each xi being an nni).
2. 0 ≤ xi ≤ 3 for each i .



Part 4: Advanced Counting Using PIE (34/36)

... continued... 2. How many non-negative integer solutions are there to

x1 + x2 + x3 + x4 + x5 = 13 if...0 ≤ xi ≤ 3 for each i .



Exercises (35/36)

Unless indicated otherwise, these questions identical to, or variants on, problems in
Section 1.5 of Levin’s Discrete Mathematics. Solutions are also available from that
book.

Q1. A multiset is a collection of objects, just like a set, but can contain an object
more than once (the order of the elements still doesn’t matter). For example,
{1, 1, 2, 5, 5, 7} is a multiset of size 6.

(a) How many sets of size 5 can be made using the 10 digits: 0, 1, . . . 9?
(b) How many multisets of size 5 can be made using the 10 digits: 0, 1, . . . 9?

Q2. Each of the counting problems below can be solved with stars and bars. For each,
say what outcome the diagram ∗ ∗ ∗| ∗ || ∗ ∗| represents, if there are the correct
number of stars and bars for the problem. Otherwise, say why the diagram does
not represent any outcome, and what a correct diagram would look like.

(a) How many ways are there to select a handful of 6 jellybeans from a jar that
contains 5 different flavors?

(b) How many ways can you distribute 5 identical lollipops to 6 kids?
(c) How many solutions are there to the equation x1 + x2 + x3 + x4 = 6.

http://discretetext.oscarlevin.com


Exercises (36/36)

Q3. (a) How many 6-letter words can you make using some or all of the 5 letters
MATHS, allowing repetition of letters?”

(b) How many 6-letter words can you make using some or all of the 5 letters
MATHS, allowing repetition, if the letters must be in alphabetical order?”

Q4. (MA284, Semester 1 Exam, 2017/2018) How many integer solutions are there to
the equation x + y + z = 8 for which
(a) x , y , and z are all positive?
(b) x , y , and z are all non-negative?
(c) x , y , and z are all greater than −3.

Q5. (MA284, Semester 1 Exam, 2017/2018)
(a) How many non-negative integer solutions are there to the inequality

x1 + x2 + x3 + x4 + x5 < 11,

if there are no restrictions?
(b) How many solutions are there to the above problem if x2 ≥ 3?
(c) How many solutions are there if each xi ≤ 4?



(1/36)

MA204/MA284 : Discrete Mathematics
Week 6: Advanced PIE, Derangements, and Counting Functions

Dr Kevin Jennings

12 and 14 October, 2022

1 Advanced Counting Using PIE
2 Part 2: Derangements

Le probléme de rencontres
General formula

3 Part 3: Counting with repetitions
Multinomial coefficients

4 Part 4: Counting Functions
5 Exercises

See also §1.6 of Levin’s Discrete Mathematics: an open introduction. Some slides are
based on ones by Dr Angela Carnevale (and Dr Niall Madden of course).

http://discretetext.oscarlevin.com


(2/36)Assignments are back!

Assignment 2 is now open, with a deadline of 5pm next Tuesday: 18
October . Like Assignment 1, you must access it through Blackboard.

Assignment 3 opens very soon A practice exercise sheet pdf is already
available.



Advanced Counting Using PIE (3/36)
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PIE



Advanced Counting Using PIE (4/36)

Recall that

|X | denotes the number of elements in the set X .
X ∪ Y (the union of X and Y ) is the set of all elements that belong to
either X or Y .
X ∩ Y (the intersection of X and Y ) is the set of all elements that belong
to both X and Y .



Advanced Counting Using PIE (5/36)

The Principle of Inclusion/Exclusion (PIE) for two sets, A and B, is

|A ∪ B| = |A|+ |B| − |A ∩ B|.

The Principle of Inclusion/Exclusion (PIE) for three sets, A, B and C , is

|A ∪ B ∪ C | = |A|+ |B|+ |C | − |A ∩ B| − |A ∩ C | − |B ∩ C |+ |A ∩ B ∩ C |.



Advanced Counting Using PIE (6/36)

The PIE works for larger numbers of sets too, although it gets a little messy to
write down. For 4 sets, we can think of it as

|A ∪ B ∪ C ∪ D| = (the sum of the sizes of each single set)
− (the sum of the sizes of each intersection of 2 sets)
+ (the sum of the sizes of each intersection of 3 sets)

− (the sum of the sizes of intersection of all 4 sets)

Example (Example 1.6.2 of text-book)
How many ways can we distribute 10 slices of pie(!) to 4 kids so that no kid
gets more than 2 slices?



Advanced Counting Using PIE (7/36)

But it is instructive, if a little tedious, to use the PIE to answer this. (See
http://discrete.openmathbooks.org/dmoi3/sec_advPIE.html for a more
detailed solution):

(
13
3

)
−

(
4
1

)(
10
3

)
+

(
4
2

)(
7
3

)
−

(
4
3

)(
4
3

)
+

(
4
4

)(
1
3

)
= 286−480+210−16 = 0

http://discrete.openmathbooks.org/dmoi3/sec_advPIE.html


Advanced Counting Using PIE (8/36)

Not all such problems have easy solution solutions.

Example
How many non-negative integer solutions are there to

x1 + x2 + x3 + x4 + x5 = 13 if...

1. There are no restrictions (other than each xi being an nni).
2. 0 ≤ xi ≤ 3 for each i .



Advanced Counting Using PIE (9/36)

... continued... 2. How many non-negative integer solutions are there to

x1 + x2 + x3 + x4 + x5 = 13 if...0 ≤ xi ≤ 3 for each i .



Advanced Counting Using PIE (10/36)

MA284
Week 6: Advanced PIE, Derangements, and Counting Functions

END OF PART 1
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Part 2: Derangements (12/36)

For Assignment 2 of AM842 (Indiscreet Mathematics), students work together
in groups of 4. The group is given a score, which they divide up, according to
the amount of work each did, to get their individual scores.
Aoife, Brian, Conor and Dana worked together, and got a score of 10. They
decided it should be divided as:

Aoife: 1 Brian: 2 Conor: 3 Dana: 4.

They informed their lecturer of this, and he tried to enter these on Blackboard.
But he is not very good with computers, and got ALL the scores wrong!
How many ways could this happen?



Part 2: Derangements (13/36)

Recall: PERMUTATION
A permutation of a collection of objects is a re-ordering of it.
There are n! permutations of a set with n elements.

DEGRANGEMENTS
A derangement is a permutation where no item is left in its original place.

Example:



Part 2: Derangements Le probléme de rencontres (14/36)

The study of derangements dates back to at least 1708. The old French card
game called Rencontres was a game of chance for two players, A and B:

The players begin with a shuffled, full deck of 52 cards each.
Each would take turns placing random cards on the table.
If any of the cards matched, player A would win.
If none of the cards matched, player B would win.

In 1708, Pierre de Montort (1678–1719) posed the problem: what is the
probability that there would be no matches?

If we let D52 be the number of derangements of 52 cards then the solution is
D52/52!.



Part 2: Derangements General formula (15/36)

Let Dn be the number of derangements of n objects. First we will work out
formulae for D1, D2, D3, and D4.



Part 2: Derangements General formula (16/36)

In general, the formula for Dn, the number of derangements of n objects is

Dn = n!
(

1− 1
1! + 1

2! −
1
3! + · · ·+ (−1)n 1

n!
)
.



Part 2: Derangements General formula (17/36)

MA284
Week 6: Advanced PIE, Derangements, and Counting Functions

END OF PART 2
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Week 6: Advanced PIE, Derangements, and Counting Functions

Start of ...

PART 3: Counting with repetitions



Part 3: Counting with repetitions (19/36)

Suppose we have a set of n objects which are all distinguishable.

(a) How many k-permutations are there (with no repetition)?

(b) How many k-combinations are there (with no repetition)?

But what happens when some of the elements of the set are indistinguishable?



Part 3: Counting with repetitions (20/36)

How many “words” can we make from the following sets of letters?

(i) {M,A,Y,O}

(ii) {C,L,A,R,E}

(iii) {G,A,L,W,A,Y}

(iv) {R,O,S,C,O,M,M,O,N}



Part 3: Counting with repetitions (21/36)

Let’s consider the last example carefully: how many “words” can we make from
letters in the set {C,M,M,N,O,O,O,R,S}?

If somehow the three O’s were all distinguishable, and the two M’s were
distinguishable, the answer would be 9!.

But, since we can’t distinguish identical letters,

Let’s choose which of the 9 positions we place the three O’s. This can be
done in

(9
3
)

ways.
Now let’s choose which of the remaining 6 positions we place the two M’s.
This can be done in

(6
2
)

ways.
Now let’s choose where to place the remaining 4 letters. This can be done
in 4! ways.

By the Multiplicative Principle, the answer is(
9
3

)(
6
2

)
4! = 9!

3!6!
6!

2!4! 4! = 9!
3!2!



Part 3: Counting with repetitions Multinomial coefficients (22/36)

Multinomial coefficient
The number of different permutations of n objects, where there are n1

indistinguishable objects of Type 1, n2 indistinguishable objects of Type 2, . . . ,
and nk indistinguishable objects of Type k, is

n!
(n1!)(n2!) · · · (nk !)



Part 3: Counting with repetitions Multinomial coefficients (23/36)

Example (MA284 Semester 1 Examination, 2014/2015)
(i) Find the number of different arrangements of the letters in the place

name WOLLONGONG.
(ii) How many of these arrangements start with the three O’s;
(iii) How many contain the two G’s consecutively;
(iv) How many do not contain the two G’s consecutively?



Part 3: Counting with repetitions Multinomial coefficients (24/36)

MA284
Week 6: Advanced PIE, Derangements, and Counting Functions

END OF PART 3



Part 4: Counting Functions (25/36)

MA284
Week 6: Advanced PIE, Derangements, and Counting Functions

Start of ...

PART 4: Counting Functions



Part 4: Counting Functions (26/36)

Recall the f : A→ B is a function that maps every element of the set A onto
some element of set B. (We call A the “domain”, and B the “codomain”.)
Each element of A gets mapped to exactly one element of B.

If f (a) = b where a ∈ A and b ∈ B, we say that “the image of a is b”.
Or, equivalently, “b is the image of a”.

Examples:



Part 4: Counting Functions (27/36)

When every element of B is the image of some element of A, we say that the
function is surjective (also called “onto”).

Examples:

When no two elements of A have the same image in B, we say that the
function is injective (also called “one-to-one”).

Examples:



Part 4: Counting Functions (28/36)

Bijection
The function f : A→ B is a bijection if it is both surjective and injective.
Then f defines a one-to-one correspondence between A and B.



Part 4: Counting Functions (29/36)

Counting functions
Let A and B be finite sets. How many functions f : A→ B are there?

We can use the Multiplicative Principle to deduce:

There are in total |B||A| functions from A to B.



Part 4: Counting Functions (30/36)

Counting Bijective Functions (Example 1.3.2 of the textbook)
How many functions f : {1, 2, 3, 4, 5, 6, 7, 8} → {1, 2, 3, 4, 5, 6, 7, 8} are
bijective?

Remember what it means for a function to be bijective: each element in the
codomain must be the image of exactly one element of the domain. We
could write one of these bijections as

What we are really doing is just rearranging the elements of the codomain, so
we are defining a permutation of 8 elements.

The answer to our question is therefore 8!.

More in general, there are n! bijections of the set {1, 2 . . . , n} onto itself.



Part 4: Counting Functions (31/36)

Counting Injective Functions (Example 1.3.2 of the textbook)
How many functions f : {1, 2, 3} → {1, 2, 3, 4, 5, 6, 7, 8} are injective?

We need to pick an element from the codomain to be the image of 1. There
are 8 choices. Then we need to pick one of the remaining 7 elements to be the
image of 2. Finally, one of the remaining 6 elements must be the image of 3.
So the total number of functions is

P(8, 3) = 8 · 7 · 6.

Similarly, we can see a k-permutation of {1, 2, 3, . . . , n} as an injective function
from {1, 2, . . . , k} to {1, 2, 3, . . . , n}. In general, the number of such injections
is P(n, k).



Part 4: Counting Functions (32/36)

Finally, derangements can be interpreted as bijections from a set onto itself
and without fixed points.

Counting functions without fixed points (see also Section 1.6 of
the textbook)
How many bijective functions f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} are there such
that f (x) 6= x for all x ∈ {1, 2, 3, 4, 5}?

Using our formula

D5 = 5!
(

1− 1
1! + 1

2! −
1
3! + 1

4! −
1
5!

)
= 120

(1
2 −

1
6 + 1

24 −
1

120

)
= 44.



Part 4: Counting Functions (33/36)

MA284
Week 6: Advanced PIE, Derangements, and Counting Functions

END OF PART 4



Exercises (34/36)

Most of these questions are based on exercises in Section 1.6 of Levin’s Discrete
Mathematics. Solutions are also available from that book.

Q1. (a) How many 6-letter words can you make using some or all of the 5 letters
MATHS, allowing repetition of letters?”

(b) How many 6-letter words can you make using some or all of the 5 letters
MATHS, allowing repetition, if the letters must be in alphabetical order?”

Q2. (MA284, Semester 1 Exam, 2017/2018) How many integer solutions are there to
the equation x + y + z = 8 for which
(a) x , y , and z are all positive?
(b) x , y , and z are all non-negative?
(c) x , y , and z are all greater than −3.

Q3. (MA284, Semester 1 Exam, 2017/2018)
(a) How many non-negative integer solutions are there to the inequality

x1 + x2 + x3 + x4 + x5 < 11,

if there are no restrictions?
(b) How many solutions are there to the above problem if x2 ≥ 3?

http://discretetext.oscarlevin.com
http://discretetext.oscarlevin.com


Exercises (35/36)

(c) How many solutions are there if each xi ≤ 4?

Q4. The Grinch sneaks into a room with 6 Christmas presents to 6 different people.
He proceeds to switch the name-labels on the presents. How many ways could he
do this if:
(a) No present is allowed to end up with its original label? Explain what each

term in your answer represents.
(b) Exactly 2 presents keep their original labels? Explain.
(c) Exactly 5 presents keep their original labels? Explain.

Q5. (MA284 Semester 1 Exam, 2018/2019) Let Dn be the number of derangements
of n objects. Show that

Dn = (n − 1)(Dn−1 + Dn−2).

Q6. (MA284 Semester 1 Exam, 2018/2019) Five students’ phones were confiscated
on their way into an exam. How many ways can their phones be returned to
them so that no one gets their own phone back? How many ways can their
phones be returned to them so exactly two people get their own phones back?



Exercises (36/36)

Q7. (MA284 Semester 1 Exam, 2015/2016) Give a formula for the number distinct
permutations (arrangements) of all the letters in the word BALLYGOBACKWARDS.
How many of these begin with an “L”?
How many have all the vowels together?
How many have all the letters in alphabetical order?

Q8. Consider functions f : {1, 2, 3, 4} → {a, b, c, d , e, f }. How many functions have
the property that f (1) 6= a or f (2) 6= b, or both?

Q9. Consider sets A and B with |A| = 10 and |B| = 5. How many functions
f : A→ B are surjective? [Hint: the answer is
510 − 5× 410 + 10× 310 − 10× 210 − 5. But why?]



(1/40)

MA284 : Discrete Mathematics
Week 7: Introduction to Graph Theory

Dr Kevin Jennings

19 and 21 October, 2022

1 Part 1: Counting Functions
Bijections
Counting

2 Part 2: Graph theory - motivation
Example
Water-Power-Gas graph

3 Part 3: Graph Theory - Basics
Order
Isomorphic Graphs
Labels
Simple graphs; Multigraphs

4 Part 4: Walks, paths, cycles and circuits

See also §1.6, §4.0 and §4.1 of Levin’s Discrete Mathematics: an open introduction. Some slides
are based on ones by Angela Carnevale, all other good stuff due to Niall Madden, mistakes Kevin’s.

http://discretetext.oscarlevin.com


(2/40)Assignments...

Assignment 1 is closed. Your grade is available on Blackboard.
Assignment 2 is open until Thursday afternoon. You need to access it
through Blackboard.
Assignment 3 is now open, with a deadline of 5pm, Thursday: 4
November



(3/40)

Example (MA284 Semester 1 Examination, 2014/2015)
(i) Find the number of different arrangements of the letters in the place

name WOLLONGONG.
(ii) How many of these arrangements start with the three O’s;
(iii) How many contain the two G’s consecutively;
(iv) How many do not contain the two G’s consecutively?



Part 1: Counting Functions (4/40)

MA284
Week 7: Introduction to Graph Theory

Start of ...

PART 1: Counting Functions

(This is actually left over from last week, and not really related to the main
topic of the week: Graph Theory)



Part 1: Counting Functions Bijections (5/40)

Recall the f : A→ B is a function that maps every element of the set A onto
some element of set B. (We call A the “domain”, and B the “codomain”.)
Each element of A gets mapped to exactly one element of B.

If f (a) = b where a ∈ A and b ∈ B, we say that “the image of a is b”.
Or, equivalently, “b is the image of a”.

Examples:



Part 1: Counting Functions Bijections (6/40)

When every element of B is the image of some element of A, we say that the
function is SURJECTIVE (also called “onto”).

Examples:



Part 1: Counting Functions Bijections (7/40)

When no two elements of A have the same image in B, we say that the
function is INJECTIVE (also called “one-to-one”).

Examples:



Part 1: Counting Functions Bijections (8/40)

Bijection
The function f : A→ B is a BIJECTION if it is both surjective and injective.
Then f defines a one-to-one correspondence between A and B.



Part 1: Counting Functions Counting (9/40)

Counting functions
Let A and B be finite sets. How many functions f : A→ B are there?

We can use the Multiplicative Principle to deduce:

There are in total |B||A| functions from A to B.



Part 1: Counting Functions Counting (10/40)

Counting Bijective Functions (Example 1.3.2 of the textbook)
How many functions f : {1, 2, 3, 4, 5, 6, 7, 8} → {1, 2, 3, 4, 5, 6, 7, 8} are
bijective?

Remember what it means for a function to be bijective: each element in the
codomain must be the image of exactly one element of the domain. We
could write one of these bijections as

What we are really doing is just rearranging the elements of the codomain, so
we are defining a permutation of 8 elements.

The answer to our question is therefore 8!.

More generally, there are n! bijections of the set {1, 2 . . . , n} onto itself.



Part 1: Counting Functions Counting (11/40)

Counting Injective Functions (Example 1.3.2 of the textbook)
How many functions f : {1, 2, 3} → {1, 2, 3, 4, 5, 6, 7, 8} are injective?

We need to pick an element from the codomain to be the image of 1. There
are 8 choices. Then we need to pick one of the remaining 7 elements to be the
image of 2. Finally, one of the remaining 6 elements must be the image of 3.
So the total number of functions is

P(8, 3) = 8 · 7 · 6.

Similarly, we can see a k-permutation of {1, 2, 3, . . . , n} as an injective function
from {1, 2, . . . , k} to {1, 2, 3, . . . , n}. In general, the number of such injections
is P(n, k).



Part 1: Counting Functions Counting (12/40)

Finally, derangements can be interpreted as bijections from a set onto itself
and without fixed points.

Counting functions without fixed points (see also Section 1.6 of
the textbook)
How many bijective functions f : {1, 2, 3, 4, 5} → {1, 2, 3, 4, 5} are there such
that f (x) 6= x for all x ∈ {1, 2, 3, 4, 5}?

Using our formula

D5 = 5!
(

1− 1
1! + 1

2! −
1
3! + 1

4! −
1
5!

)
= 120

(1
2 −

1
6 + 1

24 −
1

120

)
= 44.



Part 1: Counting Functions Counting (13/40)

MA284
Week 7: Introduction to Graph Theory

END OF PART 1



Part 2: Graph theory - motivation (14/40)

MA284
Week 7: Introduction to Graph Theory

Start of ...

PART 2: Graph Theory

An introduction...



Part 2: Graph theory - motivation (15/40)

Graph Theory is a branch of mathematics that is several hundred years old.
Many of its discoveries were motivated by practical problems, such as
determining the smallest number of colours needed to colour a map.

However, it remains one of the most important and exciting areas of modern
mathematics, as a bed-rock of data sciences and network theory.



Part 2: Graph theory - motivation (16/40)

Graph Theory is unusual in that its beginnings can be traced to a precise date.

Königsberg in Prussia (now Kaliningrad, Russia) had seven bridges. Is it
possible to walk through the town in such a way that you cross each bridge
once and only once?

https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg


Part 2: Graph theory - motivation (16/40)

Graph Theory is unusual in that its beginnings can be traced to a precise date.

Königsberg in Prussia (now Kaliningrad, Russia) had seven bridges. Is it
possible to walk through the town in such a way that you cross each bridge
once and only once?

https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg


Part 2: Graph theory - motivation (16/40)

Graph Theory is unusual in that its beginnings can be traced to a precise date.

Königsberg in Prussia (now Kaliningrad, Russia) had seven bridges. Is it
possible to walk through the town in such a way that you cross each bridge
once and only once?

https://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg


Part 2: Graph theory - motivation (17/40)

Is it possible to walk through the town in such a way that you cross each bridge
once and only once?



Part 2: Graph theory - motivation (18/40)

Here is another way of stating the same problem. Consider the following
picture, which shows 4 dots connected by some lines.

Is it possible to trace over each line once and only once (without lifting up your
pencil)? You must start and end on one of the dots.



Part 2: Graph theory - motivation (19/40)

Graph
A GRAPH is a collection of

“vertices” (or “nodes”), which are the “dots” in the above diagram.
“edges” joining pair of vertices.

If the graph is called G (say), we often define it in terms of its edge set, E , and
vertex set, V , as

G = (V , E).



Part 2: Graph theory - motivation (20/40)

a

d e f

b c

If two vertices are connected by an edge, we say they are adjacent.



Part 2: Graph theory - motivation (21/40)

Graphs are used to represent collections of objects where there is a special
relationship between certain pairs of objects.

For example, in the Königsberg problem, the land-masses are vertices, and the
edges are bridges.



Part 2: Graph theory - motivation Example (22/40)

(Example 4.0.1 of the text-book)
Aoife, Brian, Conor, David and Edel are students in an Indiscrete Mathematics
module.

Aoife and Conor worked together on their assignment.
Brian and David also worked together on their assignment.
Edel helped everyone with their assignments.

Represent this situation with a graph.



Part 2: Graph theory - motivation Water-Power-Gas graph (23/40)

The Three Utilities Problem; also Eg 4.0.2 in text-book
We must make Water, Power and Gas connections to three houses.
Is it possible to do this without the conduits crossing?

https://en.wikipedia.org/wiki/Three_utilities_problem


Part 2: Graph theory - motivation Water-Power-Gas graph (24/40)

MA284
Week 7: Introduction to Graph Theory

END OF PART 2



Part 3: Graph Theory - Basics (25/40)

MA284
Week 7: Introduction to Graph Theory

Start of ...

PART 3: Graph Theory - The Basics

Key terms and notation



Part 3: Graph Theory - Basics Order (26/40)

Definition (ORDER)
The order a graph G = (V , E) is the size of its vertex set, |V |.

Let G = (V , E), with

V = {a, b, c, d}, E =
{
{a, b}, {a, c}, {b, c}, {b, d}, {c, d}

}
What is the order of G? Sketch G .



Part 3: Graph Theory - Basics Isomorphic Graphs (27/40)

Two graphs are EQUAL if the have exactly the same Edge and Vertex sets.
That is it is not important how we draw them, how where we position the
vertices, the length of the edges, etc.

Example (Section 4.1 of text-book)
Show that the two graphs given below are equal

a

b c

d

a

b

c

d



Part 3: Graph Theory - Basics Isomorphic Graphs (28/40)

Isomorphism
An ISOMORPHISM between two graphs, G1 = (V1, E1) and G2 = (V2, E2), is a
bijection f : V1 → V2 between the vertices in the graph such that, if {a, b} is
an edge in G1, then {f (a), f (b)} is an edge in G2.
Two graphs are ISOMORPHIC if there is an isomorphism between them. In
that case, we write G1 ∼= G2.



Part 3: Graph Theory - Basics Isomorphic Graphs (29/40)

Example (Example 4.1.1 of text-book)
Show that the graphs

G1 = {V1, E1}, where V1 = {a, b, c} and E1 = {{a, b}, {a, c}, {b, c}};

G2 = {V2, E2} where V2 = {u, v , w}, and E2 = {{u, v}, {u, w}, {v , w}}

are not equal but are isomorphic.



Part 3: Graph Theory - Basics Isomorphic Graphs (30/40)

Example (Example 4.1.3 from text-book)
Decide whether the graphs G1 = {V1, E1} and G2 = {V2, E2} are equal or
isomorphic, where
V1 = {a, b, c, d}, E1 = {{a, b}, {a, c}, {a, d}, {c, d}} and
V2 = {a, b, c, d}, E2 = {{a, b}, {a, c}, {b, c}, {c, d}}



Part 3: Graph Theory - Basics Labels (31/40)

When we give a graph without labeling the vertices, we are really talking about
all graphs that are isomorphic to the one we have just drawn. For example,
when we draw the following graph, we mean it to represent all those graphs
that are isomorphic to the Water-Power-Gas graph.



Part 3: Graph Theory - Basics Simple graphs; Multigraphs (32/40)

Other than the Königsberg Bridges example, all the graphs we have looked at
so far

1. have no loops (i.e., no edge from a vertex to itself).
2. have no repeated edges (i.e., there is at most one edge between each pair

of vertices).

Such graphs are called SIMPLE graphs. But because they are the most
common, unless we say otherwise, when we say “graph” we mean “simple
graph”.



Part 3: Graph Theory - Basics Simple graphs; Multigraphs (33/40)

If a graph does have repeated edges, like in the Königsberg example, we call it
a MULTIGRAPH. Then the list of edges is not a set, since some elements are
repeated: it is a multiset (see Week 5).



Part 3: Graph Theory - Basics Simple graphs; Multigraphs (34/40)

MA284
Week 7: Introduction to Graph Theory

END OF PART 3



Part 4: Walks, paths, cycles and circuits (35/40)

MA284
Week 7: Introduction to Graph Theory

Start of ...

PART 4: Walks, paths, cycles and circuits



Part 4: Walks, paths, cycles and circuits (36/40)

Definition (WALK, TRAIL, PATH)
A WALK is sequence of vertices such that consecutive vertices are adjacent.
A TRAIL is walk in which no edge is repeated.
A PATH is a trail in which no vertex is repeated, except possibly the first and
last.

Example:



Part 4: Walks, paths, cycles and circuits (37/40)

We can also describe a path by the edge sequence. This can be useful, since
the LENGTH of the path is the number of edges in the sequence.

And, since there can be more than one, the SHORTEST PATH is particularly
important.

Example:



Part 4: Walks, paths, cycles and circuits (38/40)

Cycles and Circuits

There are two special types of path that we will study later in detail:

Cycle: A path that begins and ends at that same vertex, but no other
vertex is repeated;

Circuit: A path that begins and ends at that same vertex, and no edge
is repeated;



Exercises (39/40)

These questions are based on exercises in Sections 1.6 and 4.1 of Levin’s Discrete Mathematics.
Solutions are also available from that book.

Q1. Consider functions f : {1, 2, 3, 4} → {a, b, c, d, e, f }. How many functions have the
property that f (1) 6= a or f (2) 6= b, or both?

Q2. Consider sets A and B with |A| = 10 and |B| = 5. How many functions f : A→ B are
surjective? [Hint: the answer is 510 − 5× 410 + 10× 310 − 10× 210 − 5. But why?]

Q3. (Exercise 4.1.1 from text-book) If 10 people each shake hands with each other, how many
handshakes took place? What does this question have to do with graph theory?

Q4. (Exercise 4.0.2 of text-book and MA284 Semester 1 Exam, 2015/2016) Among a group of
five people, is it possible for everyone to be friends with exactly two of the other people in the
group?
Is it possible for everyone to be friends with exactly three of the other people in the group?
Explain your answers carefully.

http://discretetext.oscarlevin.com


Exercises (40/40)

Q5. Are the two graphs below equal? Are they isomorphic? If they are isomorphic, give the
isomorphism. If not, explain.
Graph 1: V = {a, b, c, d, e}, E = {{a, b}, {a, c}, {a, e}, {b, d}, {b, e}, {c, e}}.

Graph 2: d

a

c

be

Q6. (MA284, Semester 1 Exam, 2016/2017) For each of the following pairs of graphs,
G1 = (V1, E1) and G2 = (V2, E2), determine if they are isomorphic. If they are, give an
isomorphism between them. If not, explain why.

(a) V1 = {a, b, c, d}, E1 =
{

{a, b}, {a, c}, {a, d}, {c, d}
}

and
V2 = {w , x , y , z}, E2 =

{
{y , x}, {x , z}, {z, w}, {z, y}

}
.

(b) V1 = {a, b, c}, E1 =
{

{a, b}, {b, c}, {a, c}
}

and
V2 = {w , x , y , z}, E2 =

{
{w , z}, {z, y}, {w , x}

}
.

(c) V1 = {a, b, c, d , e}, E1 =
{

{a, c}, {a, e}, {b, c}, {b, d}, {e, c}, {d , e}
}

and
V2 = {v , w , x , y , z}, E2 =

{
{v , x}, {x , y}, {y , z}, {z, v}, {z, x}, {x , w}

}
.



(1/45)

MA284 : Discrete Mathematics
Week 8: Definitions, and Planar Graphs

Dr Kevin Jennings

26 and 28 October, 2022
1 Part 1: Definitions

Review
[from Wk7: Walks, paths, cycles and
circuits]
Connected graphs
Vertex degree

2 Part 2: Types of Graphs
Complete graphs
Bipartite graphs
Subgraphs
Named graphs

3 Part 3: Planar graphs
Faces, edges and vertices

4 Part 4: Euler’s formula
5 Part 5: Non-planar graphs

K5
K3,3
Every other non-planar graph

6 Exercises

See also Sections 4.1 and 4.3 of Levin’s
Discrete Mathematics.
Some slides are based on ones by Dr Angela Carnevale, most are by
Dr Niall Madden, errors are Kevin’s.

http://discretetext.oscarlevin.com


Part 1: Definitions (2/45)

MA284
Week 8: Definitions, and Planar Graphs

Start of ...

PART 1: Definitions

An “information dump” on terminology we’ll use over the next number of
weeks.



Part 1: Definitions Review (3/45)

A GRAPH is a collection of
“vertices” (or “nodes”), which are the “dots” in the above diagram.
“edges” joining pair of vertices.

A graph is defined in terms of its edge set and vertex set. That, the graph
G with vertex set V and edge set E is written as G = (V , E).
The ORDER of a graph is the number of vertices it has. That is, the
order of G = (V , E) is |V |.
If two vertices are connected by an edge, we say they are adjacent.
Two graphs are EQUAL if the have exactly the same Edge and Vertex sets.
An ISOMORPHISM between two graphs, G1 = (V1, E1) and
G2 = (V2, E2), is a bijection f : V1 → V2 between the vertices in the graph
such that, if {a, b} is an edge in G1, then {f (a), f (b)} is an edge in G2.
Two graphs are ISOMORPHIC if there is an isomorphism between them.
In that case, we write G1 ∼= G2.
A WALK is sequence of vertices such that consecutive vertices are
adjacent.
A trail is a walk in which no edge is repeated is called a trail.
A path is a trail in which no vertex is repeated, except possibly the first
and last.



Part 1: Definitions [from Wk7: Walks, paths, cycles and circuits] (4/45)

Definition (WALK, TRAIL, PATH)
A WALK is sequence of vertices such that consecutive vertices are adjacent.
A TRAIL is walk in which no edge is repeated.
A PATH is a trail in which no vertex is repeated, except possibly the first and
last.

Example:



Part 1: Definitions [from Wk7: Walks, paths, cycles and circuits] (5/45)

We can also describe a path by the edge sequence. This can be useful, since
the LENGTH of the path is the number of edges in the sequence.

And, since there can be more than one, the SHORTEST PATH is particularly
important.

Example:



Part 1: Definitions [from Wk7: Walks, paths, cycles and circuits] (6/45)

Cycles and Circuits

There are two special types of path that we will study later in detail:

Cycle: A path that begins and ends at that same vertex, but no other
vertex is repeated;

Circuit: A path that begins and ends at that same vertex, and no edge
is repeated;



Part 1: Definitions Connected graphs (7/45)

A graph is CONNECTED if there is a path between every pair of vertices.

Example:



Part 1: Definitions Vertex degree (8/45)

The DEGREE of a vertex is the number of edges emanating from it. If v is a
vertex, we denote its degree as d(v).



Part 1: Definitions Vertex degree (9/45)

If we know the degree of every vertex in the graph then we know the number of
edges. This is :

Lemma (Handshaking Lemma)
In any graph, the sum of the degrees of vertices in the graph is always twice
the number of edges: ∑

v∈V

d(v) = 2|E |.



Part 1: Definitions Vertex degree (10/45)

Example (Application of the Handshaking Lemma)
Among a group of five people,

(i) is it possible for everyone to be friends with exactly two of the other
people in the group?

(ii) is it possible for everyone to be friends with exactly three of the other
people in the group?



Part 1: Definitions Vertex degree (11/45)

MA284
Week 8: Definitions, and Planar Graphs

END OF PART 1



Part 2: Types of Graphs (12/45)

MA284
Week 8: Definitions, and Planar Graphs

Start of ...

PART 2: Types of Graphs

Some very important examples of graphs that have special properties



Part 2: Types of Graphs Complete graphs (13/45)

A graph is COMPLETE if every pair of vertices are adjacent. This family of
graphs is VERY important. They are denoted Kn – the complete graph on n
vertices.



Part 2: Types of Graphs Bipartite graphs (14/45)

If it is possible to partition the vertex set, V , into two disjoint sets, V1 and V2,
such that there are no edges between any two vertices in the same set, then the
graph is BIPARTITE.



Part 2: Types of Graphs Bipartite graphs (15/45)

When the bipartite graph is such that every vertex in V1 is connected to every
vertex in V2 (and vice versa) the graph is a COMPLETE BIPARTITE
GRAPH. If |V1| = m, and |V2| = n, we denote it Km,n.



Part 2: Types of Graphs Subgraphs (16/45)

We say that G1 = (V1, E1) is a SUBGRAPH of G2 = (V2, E2) provided
V1 ⊂ V2, and E1 ⊂ E2.



Part 2: Types of Graphs Subgraphs (17/45)

We say that G1(V1, E1) is an INDUCED SUBGRAPH of G2 = (V2, E2)
provided that V1 ⊂ V2 and E2 contains all edges of E1 which join edges in V1 .



Part 2: Types of Graphs Named graphs (18/45)

Some graphs are used more than others, and get special names. We already
had

Kn – the complete graph on n vertices.
Km,n – The complete bipartite graph with sets of m and n vertices.

Other important ones include

Cn – The cycle on n vertices.
Pn – The path on n vertices.



Part 2: Types of Graphs Named graphs (19/45)

And there are some graphs that are named after people. The most famous is
the Petersen Graph.



Part 2: Types of Graphs Named graphs (20/45)

Two personal favourites are the Square Grid Graph and Triangular Grid Graph.



Part 2: Types of Graphs Named graphs (21/45)

MA284
Week 8: Definitions, and Planar Graphs

END OF PART 2



Part 3: Planar graphs (22/45)

MA284
Week 8: Definitions, and Planar Graphs

Start of ...

PART 3: Planar graphs



Part 3: Planar graphs (23/45)

Planar graph
If you can sketch a graph so that none of its edges cross, then it is a planar
graph.

Example: The Graph K2,3 is planar:

These graphs are equal . The sketch on the right (see annotated notes) is a
planar representation of the graph.



Part 3: Planar graphs Faces, edges and vertices (24/45)

When a planar graph is drawn without edges crossing, the edges and vertices of
the graph divide the plane into regions.
Each region is called a face.

Example: the planar representation of K2,3 has 3 faces (because the “outside”
region counts as a face).



Part 3: Planar graphs Faces, edges and vertices (25/45)

The number of faces does not change no matter how you draw the graph, as
long as no edges cross.
Example: Give a planar representation of K4, and count how many faces it has.



Part 3: Planar graphs Faces, edges and vertices (26/45)

More examples: Count the number of edges, faces and vertices in the cycle
graphs C3, C4 and C5. What about Ck ?



Part 3: Planar graphs Faces, edges and vertices (27/45)

MA284
Week 8: Definitions, and Planar Graphs

END OF PART 3



Part 4: Euler’s formula (28/45)

MA284
Week 8: Definitions, and Planar Graphs

Start of ...

PART 4: Euler’s formula for planar graphs

Planar graphs are very special in many ways. One of those ways is that there is
a relationship between the number of faces, edges and vertices.



Part 4: Euler’s formula (29/45)

Presently, we’ll study a famous formula relating the number of vertices, edges
and faces in a planar graph.

First, let’s try to discover it.

Example: Count the number of vertices, edges and faces of K2,4.



Part 4: Euler’s formula (30/45)

Example: Count the number of vertices, edges and faces of P2, C3, K4,
Dickie-bow...



Part 4: Euler’s formula (31/45)

We have produced a list of some planar graphs and counted their vertices,
edges, and faces. There is a pattern...

Euler’s formula for planar graphs
For any (connected) planar graph with v vertices, e edges and f faces,
we have

v − e + f = 2

Outline of proof:



Part 4: Euler’s formula (32/45)

(Proof continued).



Part 4: Euler’s formula (33/45)

Example (Application of Euler’s formula)
Is it possible for a connected planar graph to have 5 vertices, 7 edges and 3
faces? Explain.



Part 4: Euler’s formula (34/45)

MA284
Week 8: Definitions, and Planar Graphs

END OF PART 4



Part 5: Non-planar graphs (35/45)

MA284
Week 8: Definitions, and Planar Graphs

Start of ...

PART 5: Non-planar graphs



Part 5: Non-planar graphs (36/45)

Of course, most graphs do not have a planar representation. We have already
met two that (we think) cannot be drawn so no edges cross: K5 and K3,3:

However, it takes a little work to prove that these are non-planar. While,
through trial and error, we can convince ourselves these graphs are not planar,
a proof is still required.

For this, we can use Euler’s formula for planar graphs to prove they are not
planar.



Part 5: Non-planar graphs K5 (37/45)

Theorem (Theorem 4.3.1 in textbook)
K5 is not planar.

The proof is by contradiction:



Part 5: Non-planar graphs K3,3 (38/45)

Theorem (K3,3 is not planar)
This is Theorem 4.2.2 in the text-book. Please read the proof there.

The proof for K3,3 is somewhat similar to that for K5, but also uses the fact
that a bipartite graph has no 3-edge cycles.

This also means we have solved (negatively) the Utilities (Water-Power-Gas)
problem from last week.



Part 5: Non-planar graphs Every other non-planar graph (39/45)

To understand the importance of K5 and K3,3, we first need the concept of
homeomorphic graphs.

Recall that a graph G1 is a subgraph of G if it can be obtained by deleting
some vertices and/or edges of G .

A SUBDIVISION of an edge is obtained by “adding” a new vertex of degree 2
to the middle of the edge.

A SUBDIVISION of a graph is obtained by subdividing one or more of its edges.

Example:



Part 5: Non-planar graphs Every other non-planar graph (40/45)

Closely related: SMOOTHING of the pair of edges {a, b} and {b, c}, where b
is a vertex of degree 2, means to remove these two edges, and add {a, c}.

Example:



Part 5: Non-planar graphs Every other non-planar graph (41/45)

The graphs G1 and G2 are HOMEOMORPHIC if there is some subdivision of
G1 which is isomorphic to some subdivision of G2.

Examples:



Part 5: Non-planar graphs Every other non-planar graph (42/45)

There is a celebrated theorem due to Kazimierz Kuratowski. The proof is
beyond what we can cover in this module. But if you are interested in
Mathematics, read up in it: it really is a fascinating result.

Theorem (Kuratowski’s theorem)
A graph is planar if and only if it does not contain a subgraph that is
homeomorphic to K5 or K3,3.

What this really means is that every non-planar graph has some smoothing
that contains a copy of K5 or K3,3 somewhere inside it.

Example
The Petersen graph is not planar https:
//upload.wikimedia.org/wikipedia/commons/0/0d/Kuratowski.gif

http://www-history.mcs.st-and.ac.uk/Biographies/Kuratowski.html
https://upload.wikimedia.org/wikipedia/commons/0/0d/Kuratowski.gif
https://upload.wikimedia.org/wikipedia/commons/0/0d/Kuratowski.gif


Part 5: Non-planar graphs Every other non-planar graph (43/45)

MA284
Week 8: Definitions, and Planar Graphs

END OF PART 5



Exercises (44/45)

Most of these questions are taken from Levin’s Discrete Mathematics.

Q1. Is it possible for two different (non-isomorphic) graphs to have the same number
of vertices and the same number of edges? What if the degrees of the vertices in
the two graphs are the same (so both graphs have vertices with degrees 1, 2, 2,
3, and 4, for example)? Draw two such graphs or explain why not.

Q2. Try to prove that K3,3 is non-planar using exactly the same reasoning as that
used to prove K5 is non-planar. What does wrong? (The purpose of this exercise
is to show that noting that K3,3 has no 3-cycles is key. Also, we want to know
that K5 and K3,3 are non-planar for different reasons).

Q3. Is it possible for a planar graph to have 6 vertices, 10 edges and 5 faces? Explain.

Q4. The graph G has 6 vertices with degrees 2,2,3,4,4,5. How many edges does G
have? Could G be planar? If so, how many faces would it have. If not, explain.

Q5. Euler’s formula (v − e + f = 2) holds for all connected planar graphs. What if a
graph is not connected? Suppose a planar graph has two components. What is
the value of v − e + f now? What if it has k components?

Q6. Prove that any planar graph with v vertices and e edges satisfies e ≤ 3v − 6.

Q7. Which of the graphs below are bipartite? Justify your answers.

http://discretetext.oscarlevin.com


Exercises (45/45)

Q8. For which n ≥ 3 is the graph Cn bipartite?

Q9. For each of the following, try to give two different unlabeled graphs with the
given properties, or explain why doing so is impossible.

(a) Two different trees with the same number of vertices and the same number
of edges. (A tree is a connected graph with no cycles).

(b) Two different graphs with 8 vertices all of degree 2.
(c) Two different graphs with 5 vertices all of degree 4.
(d) Two different graphs with 5 vertices all of degree 3.

1
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Part 1: Non-planar graphs (2/46)

MA284
Week 9: Convex Polyhedra

Start of ...

PART 1: Non-Planar graphs



Part 1: Non-planar graphs Euler’s formula (3/46)

Recall: Planar graph

If you can sketch a graph so that none of its edges cross, then it is
a PLANAR graph.
When a planar graph is drawn without edges crossing, the edges
and vertices of the graph divide the plane into regions. We will
call each region a FACE . The “exterior” of the graph is considered
a face.

Euler’s formula for planar graphs

For any (connected) planar graph with v vertices, e edges and f
faces, we have

v − e + f = 2



Part 1: Non-planar graphs Euler’s formula (4/46)

Example

Give a planar representation of the following graph, and verify that Eu-
ler’s Formula Holds.

a

b

c

d

e

f



Part 1: Non-planar graphs Euler’s formula (5/46)

Of course, most graphs do not have a planar representation. We have already
met two that (we think) cannot be drawn so no edges cross: K5 and K3,3:

However, it takes a little work to prove that these are non-planar. While,
through trial and error, we can convince ourselves these graphs are not planar,
a proof is still required.

For this, we can use Euler’s formula for planar graphs to prove they are not
planar.



Part 1: Non-planar graphs K5 (6/46)

Theorem (Theorem 4.3.1 in textbook)
K5 is not planar. (The proof is by contradiction).



Part 1: Non-planar graphs K3,3 (7/46)

Theorem (K3,3 is not planar)
This is Theorem 4.2.2 in the text-book. Please read the proof there.

The proof for K3,3 is somewhat similar to that for K5, but also uses the fact
that a bipartite graph has no 3-edge cycles.

This also means we have solved (negatively) the Utilities (Water-Power-Gas)
problem from Week 7.



Part 1: Non-planar graphs Every other non-planar graph (8/46)

The understand the importance of K5 and K3,3, we first need the concept of
homeomorphic graphs.

Recall that a graph G1 is a subgraph of G if it can be obtained by deleting
some vertices and/or edges of G .

A SUBDIVISION of an edge is obtained by “adding” a new vertex of degree 2
to the middle of the edge.

A SUBDIVISION of a graph is obtained by subdividing one or more of its edges.

Example:



Part 1: Non-planar graphs Every other non-planar graph (9/46)

Closely related: SMOOTHING of the pair of edges {a, b} and {b, c}, where b
is a vertex of degree 2, means to remove these two edges, and add {a, c}.

Example:



Part 1: Non-planar graphs Every other non-planar graph (10/46)

The graphs G1 and G2 are HOMEOMORPHIC if there is some subdivision of
G1 is isomorphic to some subdivision of G2.

Examples:



Part 1: Non-planar graphs Every other non-planar graph (11/46)

There is a celebrated theorem due to Kazimierz Kuratowski. The proof is
beyond what we can cover in this module. But if you are interested in
Mathematics, read up in it: it really is a fascinating result.

Theorem (Kuratowski’s theorem)
A graph is planar if and only if it does not contain a subgraph that is
homeomorphic to K5 or K3,3.

What this really means is that every non-planar graph has some smoothing
that contains a copy of K5 or K3,3 somewhere inside it.

Example
The Petersen graph is not planar https:
//upload.wikimedia.org/wikipedia/commons/0/0d/Kuratowski.gif

http://www-history.mcs.st-and.ac.uk/Biographies/Kuratowski.html
https://upload.wikimedia.org/wikipedia/commons/0/0d/Kuratowski.gif
https://upload.wikimedia.org/wikipedia/commons/0/0d/Kuratowski.gif


Part 1: Non-planar graphs Every other non-planar graph (12/46)

MA284
Week 9: Convex Polyhedra

END OF PART 1



Part 2: Polyhedra (13/46)

MA284
Week 9: Convex Polyhedra

Start of ...

PART 2: Polyhedra



Part 2: Polyhedra (14/46)

A polyhedron is a geometric solid made up of flat polygonal faces joined at
edges and vertices.
A convex polyhedron, is one where any line segment connecting two points on
the interior of the polyhedron must be entirely contained inside the polyhedron.

Examples:

Source: WikiMedia Uniform polyhedron-43-s012.png, Truncatedhexahedron.jpg and
Excavated truncated cube.png



Part 2: Polyhedra Graphs of Polyhedra (15/46)

A remarkable, and important fact, is that every convex polyhedron can be
projected onto the plane without edges crossing.

Example:



Part 2: Polyhedra Graphs of Polyhedra (16/46)

Example:



Part 2: Polyhedra Graphs of Polyhedra (17/46)

Example: the dodecahedron



Part 2: Polyhedra Graphs of Polyhedra (18/46)

Exercise

Give a planar projection of each of the following polyhedra.



Part 2: Polyhedra Euler’s formula for convex polyhedra (19/46)

Now that we know every convex polyhedron can be represented as a planar
graph, we can apply Euler’s formula.

Euler’s formula for polyhedra

If a convex polyhedron has v vertices, e edges and f faces, then

v − e + f = 2

Example: the tetrahedron.



Part 2: Polyhedra Euler’s formula for convex polyhedra (20/46)

Example: the cube

Example: the octahedron



Part 2: Polyhedra Euler’s formula for convex polyhedra (21/46)

We now have two very powerful tools for studying convex polyhedra:

Euler’s formula: If a convex polyhedron has v vertices, e edges and f
faces, then v − e + f = 2
(The Handshaking Lemma) The sum of the vertex degrees is 2|E |: let
G = (V ,E) be a graph, with vertices V = v1, v2, . . . , vn. Let deg(vi ) be
the “degree of vi ”. Then

deg(v1) + deg(v2) + · · ·+ deg(vn) = 2|E |.

Example (See textbook, Section 4.2 (Polyhedra))
Show that there is no convex polyhedron with 11 vertices, all of degree 3?



Part 2: Polyhedra Euler’s formula for convex polyhedra (22/46)

See textbook, Example 4.2.3

Show that there is no convex polyhedron consisting of
3 triangles,
6 pentagons, and
5 heptagons (7-sided polygons).



Part 2: Polyhedra Euler’s formula for convex polyhedra (23/46)

MA284
Week 9: Convex Polyhedra

END OF PART 2



Part 3: Platonic solids (24/46)

MA284
Week 9: Convex Polyhedra

Start of ...

PART 3: Platonic Solids

Regular polyhedra - they are surprisingly few of them!



Part 3: Platonic solids (25/46)

A POLYGON is a two-dimensional object. It is regular if all its sides are the
same length:



Part 3: Platonic solids (26/46)

A polyhedron with the following properties is called REGULAR if

All its faces are identical regular polygons.
All its vertices have the same degree.

The convex regular polyhedra are also called Platonic Solids. Examples:



Part 3: Platonic solids How many are there? (27/46)

There are exactly 5 regular polyhedra

This fact can be proven using Euler’s formula.
For full details, see the proof in the text book.
Here is the basic idea: we will only look at the case of polyhedra with
triangular faces.



Part 3: Platonic solids How many are there? (28/46)

[All images here courtesy of Wikipedia]



Part 3: Platonic solids How many are there? (29/46)

MA284
Week 9: Convex Polyhedra

END OF PART 3



Part 4: Vertex Colouring (30/46)

MA284
Week 9: Convex Polyhedra

Start of ...

PART 4: Vertex Colouring



Part 4: Vertex Colouring (31/46)

[From textbook, p184]. Here is a map of the (fictional) country “Euleria”.
Colour it so that adjacent regions are coloured differently. What is the fewest
colours required?



Part 4: Vertex Colouring (32/46)

There are maps that can be coloured with

A single colour:

Two colours (e.g., the island of Ireland):

Three colours:

Four colours:



Part 4: Vertex Colouring The Four Colour Theorem (33/46)

It turns out that the is no map that needs more than 4 colours. This is the
famous Four Colour Theorem, which was originally conjectured by the
British/South African mathematician and botanist, Francis Guthrie who at the
time was a student at University College London.

He told one of his mathematics lecturers, Augustus de Morgan, who, on 23
October, 1852, wrote to friend William Rowan Hamilton, who was in Dublin:

https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Francis_Guthrie


Part 4: Vertex Colouring The Four Colour Theorem (34/46)

From https://en.wikipedia.org/wiki/Four_color_theorem
de Morgan writes to Hamilton, 23 October, 1852..

https://en.wikipedia.org/wiki/Four_color_theorem


Part 4: Vertex Colouring The Four Colour Theorem (35/46)

From https://en.wikipedia.org/wiki/Four_color_theorem
de Morgan writes to Hamilton, 23 October, 1852..

A student of mine asked me to day to give him a reason for a fact which I
did not know was a fact and do not yet. He says that if a figure be any how
divided and the compartments differently coloured so that figures with any
portion of common boundary line are differently coloured-four colours may
be wanted, but not more-the following is his case in which four are wanted.
Query: cannot a necessity for five or more be invented... What do you say?
And has it, if true been noticed?
My pupil says he guessed it in colouring a map of England... The more I
think of it, the more evident it seems. If you retort with some very simple
case which makes me out a stupid animal, I think I must do as the Sphynx
did...

De Morgan needn’t have worried: a proof was not produced until 1976. It is
very complicated, and relies heavily on computer power.

https://en.wikipedia.org/wiki/Four_color_theorem


Part 4: Vertex Colouring The Four Colour Theorem (36/46)

To get a sense of why it might be true, try to draw a map that needs 5
colours.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our interest is not in trying to prove the Four Colour Theorem, but in how it is
related to Graph Theory.



Part 4: Vertex Colouring The Four Colour Theorem (37/46)

If we think of a map as a way of showing which regions share borders, then we
can represent it as a graph, where

A vertex in the graph corresponds to a region in the map;
There is an edge between two vertices in the graph if the corresponds
regions share a border.

Example:

GY
MO

RN
SO

LM



Part 4: Vertex Colouring Chromatic Number (38/46)

Colouring regions of a map corresponds to colouring vertices of the graph.
Since neighbouring regions in the map must have different colours, so too
adjacent vertices in the graph must have different colours.

More precisely

Vertex Colouring: An assignment of colours to the vertices of a graph is called
a VERTEX COLOURING .

Proper Colouring: If the vertex colouring has the property that adjacent
vertices are coloured differently, then the colouring is called
PROPER.

Lots different proper colourings are possible. If the graph as v vertices, the
clearly at most v colours are needed. However, usually, we need far fewer.



Part 4: Vertex Colouring Chromatic Number (39/46)

Examples:



Part 4: Vertex Colouring Chromatic Number (40/46)

CHROMATIC NUMBER
The smallest number of colours needed to get a proper vertex colouring if a
graph G is called the CHROMATIC NUMBER of the graph, written χ(G).

Example: Determine the Chromatic Number of the graphs C2, C3, C4 and C5.



Part 4: Vertex Colouring Chromatic Number (41/46)

Example: Determine the Chromatic Number of the Kn and Kp,q for any n, p, q.



Part 4: Vertex Colouring Chromatic Number (42/46)

In general, calculating χ(G) is not easy. There are some ideas that can help.
For example, it is clearly true that, if a graph has v vertices, then

1 ≤ χ(G) ≤ v .

If the graph happens to be complete, then χ(G) = v . If it is not complete the
we can look at cliques in the graph.

Clique: A CLIQUE is a subgraph of a graph all of whose vertices are
connected to each other.



Part 4: Vertex Colouring Chromatic Number (43/46)

The CLIQUE NUMBER of a graph, G , is the number of vertices in the largest
clique in G .

From the last example, we can deduce that

LOWER BOUND: The chromatic number of a graph is at least its
clique number.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can also get a useful upper bound. Let ∆(G) denote the largest degree of
any vertex in the graph, G ,

UPPER BOUND: χ(G) ≤ ∆(G) + 1.

Why? This is called Brooks’ Theorem, and is Thm 4.5.5 in the text-book:
http://discrete.openmathbooks.org/dmoi3/sec_coloring.html

http://discrete.openmathbooks.org/dmoi3/sec_coloring.html


Part 4: Vertex Colouring Chromatic Number (44/46)

MA284
Week 9: Convex Polyhedra

END OF PART 4



Exercises (45/46)

Most of these questions are taken from Levin’s Discrete Mathematics.

Q1. Try to prove that K3,3 is non-planar using exactly the same reasoning as that
used to prove K5 is non-planar. What does wrong? (The purpose of this exercise
is to show that noting that K3,3 has no 3-cycles is key. Also, we want to know
that K5 and K3,3 are non-planar for different reasons).

Q2. Is it possible for a planar graph to have 6 vertices, 10 edges and 5 faces? Explain.

Q3. The graph G has 6 vertices with degrees 2,2,3,4,4,5. How many edges does G
have? Could G be planar? If so, how many faces would it have. If not, explain.

Q4. Euler’s formula (v − e + f = 2) holds for all connected planar graphs. What if a
graph is not connected? Suppose a planar graph has two components. What is
the value of v − e + f now? What if it has k components?

Q5. Prove that any planar graph with v vertices and e edges satisfies e ≤ 3v − 6.

Q6. Which of the graphs below are bipartite? Justify your answers.

Q7. For which n ≥ 3 is the graph Cn bipartite?

http://discretetext.oscarlevin.com


Exercises (46/46)

Q8. For each of the following, try to give two different unlabeled graphs with the
given properties, or explain why doing so is impossible.

(a) Two different trees with the same number of vertices and the same number
of edges. (A tree is a connected graph with no cycles).

(b) Two different graphs with 8 vertices all of degree 2.
(c) Two different graphs with 5 vertices all of degree 4.
(d) Two different graphs with 5 vertices all of degree 3.

Q9. Give a planar projection of each of the following polyhedra.

Q10. Show that there is only one regular convex polygon with square faces.

Q11. Show that there is only one regular convex polygon with pentagonal faces.

Q12. Could there be a regular polygon with faces that have more than 5 sides? Explain
your answer.
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Part 1: Vertex Colouring (2/48)
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PART 1: Vertex Colouring



Part 1: Vertex Colouring (3/48)

[From textbook, p184]. Here is a map of the (fictional) country “Euleria”.
Colour it so that adjacent regions are coloured differently. What is the fewest
colours required?



Part 1: Vertex Colouring (4/48)

There are maps that can be coloured with

A single colour:

Two colours (e.g., the island of Ireland):

Three colours:

Four colours:



Part 1: Vertex Colouring The Four Colour Theorem (5/48)

It turns out that the is no map that needs more than 4 colours. This is the
famous Four Colour Theorem, which was originally conjectured by the
British/South African mathematician and botanist, Francis Guthrie who at the
time was a student at University College London.

He told one of his mathematics lecturers, Augustus de Morgan, who, on 23
October, 1852, wrote to friend William Rowan Hamilton, who was in Dublin:

https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Francis_Guthrie


Part 1: Vertex Colouring The Four Colour Theorem (6/48)

From https://en.wikipedia.org/wiki/Four_color_theorem
de Morgan writes to Hamilton, 23 October, 1852..

https://en.wikipedia.org/wiki/Four_color_theorem


Part 1: Vertex Colouring The Four Colour Theorem (7/48)

From https://en.wikipedia.org/wiki/Four_color_theorem
de Morgan writes to Hamilton, 23 October, 1852..

A student of mine asked me to day to give him a reason for a fact which I
did not know was a fact and do not yet. He says that if a figure be any how
divided and the compartments differently coloured so that figures with any
portion of common boundary line are differently coloured-four colours may
be wanted, but not more-the following is his case in which four are wanted.
Query: cannot a necessity for five or more be invented... What do you say?
And has it, if true been noticed?
My pupil says he guessed it in colouring a map of England... The more I
think of it, the more evident it seems. If you retort with some very simple
case which makes me out a stupid animal, I think I must do as the Sphynx
did...

De Morgan needn’t have worried: a proof was not produced until 1976. It is
very complicated, and relies heavily on computer power.

https://en.wikipedia.org/wiki/Four_color_theorem


Part 1: Vertex Colouring The Four Colour Theorem (8/48)

To get a sense of why it might be true, try to draw a map that needs 5
colours.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our interest is not in trying to prove the Four Colour Theorem, but in how it is
related to Graph Theory.



Part 1: Vertex Colouring The Four Colour Theorem (9/48)

MA284
Week 10: Colouring Graphs; Eulerian and Hamiltonian Graphs

END OF PART 1



Part 2: Colouring Graphs (10/48)

MA284
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PART 2: Colouring Graphs

Our interest is not in trying to prove the Four Colour Theorem, but in how it is
related to Graph Theory



Part 2: Colouring Graphs (11/48)

If we think of a map as a way of showing which regions share borders, then we
can represent it as a graph, where

A vertex in the graph corresponds to a region in the map;
There is an edge between two vertices in the graph if the corresponding
regions share a border.

Example:

GY
MO

RN
SO

LM



Part 2: Colouring Graphs Chromatic Number (12/48)

Colouring regions of a map corresponds to colouring vertices of the graph.
Since neighbouring regions in the map must have different colours, so too
adjacent vertices in the graph must have different colours.

More precisely

Vertex Colouring: An assignment of colours to the vertices of a graph is called
a VERTEX COLOURING .

Proper Colouring: If the vertex colouring has the property that adjacent
vertices are coloured differently, then the colouring is called
PROPER.

Lots of different proper colourings are possible. If the graph has v vertices,
then clearly at most v colours are needed. However, usually, we need far fewer.



Part 2: Colouring Graphs Chromatic Number (13/48)

Examples:



Part 2: Colouring Graphs Chromatic Number (14/48)

CHROMATIC NUMBER
The smallest number of colours needed to get a proper vertex colouring of a
graph G is called the CHROMATIC NUMBER of the graph, written χ(G).

Example: Determine the Chromatic Number of the graphs C2, C3, C4 and C5.



Part 2: Colouring Graphs Chromatic Number (15/48)

Example: Determine the Chromatic Number of the Kn and Kp,q for any n, p, q.



Part 2: Colouring Graphs Chromatic Number (16/48)

In general, calculating χ(G) is not easy. There are some ideas that can help.
For example, it is clearly true that, if a graph has v vertices, then

1 ≤ χ(G) ≤ v .

If the graph happens to be complete, then χ(G) = v . If it is not complete the
we can look at cliques in the graph.

Clique: A CLIQUE is a subgraph of a graph all of whose vertices are
connected to each other.



Part 2: Colouring Graphs Chromatic Number (17/48)

The CLIQUE NUMBER of a graph, G , is the number of vertices in the largest
clique in G .

From the last example, we can deduce that

LOWER BOUND: The chromatic number of a graph is at least its
clique number.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can also get a useful upper bound. Let ∆(G) denote the largest degree of
any vertex in the graph, G ,

UPPER BOUND: χ(G) ≤ ∆(G) + 1.

Why? This is called Brooks’ Theorem, and is Thm 4.5.5 in the text-book:
http://discrete.openmathbooks.org/dmoi3/sec_coloring.html

http://discrete.openmathbooks.org/dmoi3/sec_coloring.html


Part 2: Colouring Graphs Chromatic Number (18/48)

MA284
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END OF PART 2
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Part 3: Algorithms for χ(G) Greedy algorithm (20/48)

In general, finding a proper colouring of a graph is hard .

There are some algorithms that are efficient, but not optimal. We’ll look at
two:

1. The Greedy algorithm.
2. The Welsh-Powell algorithm.

The Greedy algorithm is simple and efficient, but the result can depend on the
ordering of the vertices.

Welsh-Powell is slightly more complicated, but can give better colourings.



Part 3: Algorithms for χ(G) Greedy algorithm (21/48)

The GREEDY ALGORITHM
1. Number all the vertices. Number your colours.
2. Give a colour to vertex 1.
3. Take the remaining vertices in order. Assign each one the lowest numbered

colour, that is different from the colours of its neighbours.

Example: Apply the GREEDY ALGORITHM to colouring the following graph
(the cubical graph, Q3):

https://en.wikipedia.org/wiki/Cube


Part 3: Algorithms for χ(G) Welsh-Powell Algorithm (22/48)

Welsh-Powell Algorithm
1. List all vertices in decreasing order of their degree (so largest degree is first).

If two or more have the same degree, list those any way.
2. Colour the first listed vertex (with first unused colour).
3. Work down the list, giving that colour to all vertices not connected to one

previously coloured.
4. Cross coloured vertices off the list, and return to the start of the list.

Example: Colour this graph using both GREEDY and WELSH-POWELL:

2
4

3

5

1



Part 3: Algorithms for χ(G) Applications (23/48)

Example
Seven one-hour exams, e1, e2, . . . e7, must be timetabled. There are students
who must sit

(i) e1 and e5,
(ii) e1 and e7,

(iii) e2, e3, and e6,
(iv) e2, e4, and e7,

(v) e3, e5, and e6,
(vi) e4 and e5

Model this situation as a vertex colouring problem, and find a scheduling that
avoids timetable clashes and uses the minimum number of hours.



Part 3: Algorithms for χ(G) Applications (24/48)

MA284
Week 10: Colouring Graphs; Eulerian and Hamiltonian Graphs

END OF PART 3
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Part 4: Eulerian Paths and Circuits (26/48)

We originally motivated the study of Graph Theory with the Königsberg
bridges problem: find a route through the city that crosses every bridge once
and only once:

We’ll now return to this problem, and show that there is no solution. First we
have to re-phrase this problem in the setting of graph theory.



Part 4: Eulerian Paths and Circuits (27/48)

Recall (from Week 8) that a PATH in a graph is a sequence of adjacent
vertices in a graph.

Eulerian Path
An EULERIAN PATH (also called an Euler Path and an Eulerian trail) in a
graph is a path which uses every edge exactly once.

Example:

a

b

e

c

f

d



Part 4: Eulerian Paths and Circuits (28/48)

Recall from Week 8 that a circuit is a path that begins and ends at that same
vertex, and no edge is repeated...

Eulerian Circuit
An EULERIAN CIRCUIT (also called an Eulerian cycle) in a graph is an
Eulerian path that starts and finishes at the same vertex.
If a graph has such a circuit, we say it is Eulerian.

Example 1 (K5):
a

b

c

d

e



Part 4: Eulerian Paths and Circuits (29/48)

Example 2: Find an Eulerian circuit in this graph:

a

b

c

d

e

f



Part 4: Eulerian Paths and Circuits (30/48)

Of course, not every graph as an Eulerian circuit, or, indeed, and Eulerian path.

Here are some extreme examples:



Part 4: Eulerian Paths and Circuits (31/48)

It is possible to come up with a condition that guarantee that a graph has an
Eulerian path, and, addition, one that ensures that it has an Eulerian circuit.

To begin with, we’ll reason that the following graph could not have an Eulerian
circuit, although it does have an Eulerian path:

abc

df

g h



Part 4: Eulerian Paths and Circuits (32/48)

Suppose, first, the we have a graph that does have an Eulerian circuit. Then
for every edge in the circuit that “exits” a vertex, there is another that “enters”
that vertex. So every vertex must have even degree.
Example (W3)



Part 4: Eulerian Paths and Circuits (33/48)

In fact, a stronger statement is possible.

A graph has an EULERIAN CIRCUIT if and only if every vertex has even
degree.

Example: Show that the following graph has an Eulerian circuit

a d

e

f

g

b

c



Part 4: Eulerian Paths and Circuits (34/48)

Next suppose that a graph does not have an Eulerian circuit, but does have
an Eulerian Path. Then the degree of the “start” and “end” vertices must be
odd, and every other vertex has even degree.
Example:

c

b d

a



Part 4: Eulerian Paths and Circuits (35/48)

To summarise:

Eulerian Paths and Circuits
A graph has an EULERIAN CIRCUIT if and only if the degree of every
vertex is even.
A graph has an EULERIAN PATH if and only if it has either zero or two
vertices with odd degree.

Example: The Königsberg bridge graph does not have an Eulerian path:



Part 4: Eulerian Paths and Circuits (36/48)

Example (MA284, 2020/21 Semester 1 Exam)
Let G = (V ,E), where V = {a, b, c, d , e, f , g}, and
E = {{a, b}, {a, g}, {b, c}, {b, d}, {b, g}, {c, d}, {d , e}, {e, f }, {e, g}, {f , g}.
Does G admit an Eulerian Path and/or Circuit? If it does, exhibit one. If not,
explain why.



Part 4: Eulerian Paths and Circuits (37/48)

MA284
Week 10: Colouring Graphs; Eulerian and Hamiltonian Graphs

END OF PART 4
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Part 5 Hamiltonian Paths and Cycles (39/48)

Next we’ll look at a closely related problem: finding paths through a graph that
visit every vertex exactly once.

These are called HAMILTONIAN PATH, and are named after the (very
famous) William Rowan Hamilton, the Irish mathematician, who invented a
board-game based on the idea.

Hamilton’s Icosian Game (Library of the Royal Irish Academy)

Try playing online: https://www.geogebra.org/m/u3xggkcj

https://www.geogebra.org/m/u3xggkcj


Part 5 Hamiltonian Paths and Cycles (40/48)

Definition (HAMILTONIAN PATH)
A path in a graph that visits every vertex exactly once is called a
HAMILTONIAN PATH.



Part 5 Hamiltonian Paths and Cycles (41/48)

Hamiltonian Cycles
Recall that a CYCLE is a path that starts and finishes at the same vertex, but
no other vertex is repeated.
A HAMILTONIAN CYCLE is a cycle which visits the start/end vertex twice,
and every other vertex exactly once.
A graph that has a Hamiltonian cycle is called a HAMILTONIAN GRAPH.

Examples:



Part 5 Hamiltonian Paths and Cycles (42/48)

This is the graph based on Hamilton’s Icosian game. We’ll find a Hamilton
path. Can you find a Hamilton cycle?



Part 5 Hamiltonian Paths and Cycles (43/48)

Important examples of Hamiltonian Graphs include:

cycle graphs;
complete graphs;
graphs of the platonic solids.



Part 5 Hamiltonian Paths and Cycles (44/48)

In general, the problem of finding a Hamiltonian path or cycle in a large graph
is hard (it is known to be NP-complete). However, there are two relatively
simple sufficient conditions to testing if a graph is Hamiltonian.

1. Ore’s Theorem
A graph with v vertices, where v ≥ 3, is Hamiltonian if, for every pair of
non-adjacent vertices, the sum of their degrees ≥ v .

http://www-history.mcs.st-andrews.ac.uk/Biographies/Ore.html


Part 5 Hamiltonian Paths and Cycles (45/48)

2. Dirac’s Theorem
A (simple) graph with v vertices, where v ≥ 3, is Hamiltonian if every vertex
has degree ≥ v/2.

Example
Determine whether or not the graph illustrated below is Hamiltonian, and if so,
give a Hamiltonian cycle:

a

bc

ef

d

https://en.wikipedia.org/wiki/Gabriel_Andrew_Dirac


Part 5 Hamiltonian Paths and Cycles (46/48)

MA284
Week 10: Colouring Graphs; Eulerian and Hamiltonian Graphs

END OF PART 5



Exercises (47/48)

Q1. (Textbook) What is the smallest number of colors you need to properly color the
vertices of K4,5? That is, find the chromatic number of the graph.

Q2. Determine the chromatic number of each of the following graphs, and give a
colouring for that achieves it.

(i) (ii) (iii)

Q3. For each of the following graphs, determine if it has an Eulerian path and/or
circuit. If not, explain why; otherwise give an example.

(a) Kn, with n even.
(b) G1 = (V1,E1) with V1 = {a, b, c, d , e, f },

E1 = {{a, b}, {a, f }, {c, b}, {e, b}, {c, e}, {d , c}, {d , e}, {b, f }}.
(c) G2 = (V2,E2) with V2 = {a, b, c, d , e, f },

E2 = {{a, b}, {a, f }, {c, b}, {e, b}, {c, e}, {d , c}, {d , e}, {b, f }, {b, d}}.



Exercises (48/48)

Q4. For each of the following graphs, determine if it has an Eulerian path and/or
Eulerian circuit. If so, give an example; if not, explain why.

G1 = G2 =

a

b h

c

e

f

d

g

ji

Q5. Given a graph G = (V ,E), its compliment is the graph that has the same vertex
set, V , but which has an edge between a pair of vertices if and only if there is no
edge between those vertices in G.
Sketch of of the following graphs, and their complements:

(i) K4, (ii) C4, (iii) P4, (iv) P5.

Q6. Which of the following graphs are isomorphic to their own complement
(“self-complementary”)?

(i) K4, (ii) C4, (iii) P4, (iv) P5.

Q7. Show that K3,3 has Hamiltonian, but K2,3 is not.
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1 Part 1: Trees
Another classification
A property of trees
Recognising trees from quite a long
way away

2 Part 2: Applications
Chemistry
Decision Trees

3 Part 3: Spanning Trees
Minimum spanning trees
Other stuff

4 Exercises

See also Section 4.2 of Levin’s Discrete Mathematics.

http://discretetext.oscarlevin.com
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Part 1: Trees (3/31)

There’s an important class of graphs that do not contain circuits: TREES.
The mathematical study of trees dates to at least 1857, when Arthur Cayley
used them to study certain chemical compounds.

They are used in many mathematical models of decision making (such as Chess
programmes), and in designing algorithms for data encoding and transmission.

Definition: ACYCLIC/FOREST

A graph that has no circuits is called ACYCLIC or a “forest”.



Part 1: Trees (4/31)

Definition: TREE

A TREE is a connected, acyclic graph.

Examples:



Part 1: Trees (5/31)

Which of the following are graphs of trees?



Part 1: Trees (6/31)

Which of the following are graphs of trees?



Part 1: Trees Another classification (7/31)

Another characterisation of trees

A graph is a tree if and only if there is a unique path between any two
vertices.



Part 1: Trees A property of trees (8/31)

If T is a tree, then e = v − 1
If T is a tree (i.e., a connected acyclic graph) with v vertices, then it has v − 1
edges. (We will see that the converse of this statement is also true).

(See also Prop 4.2.4 in the textbook).



Part 1: Trees Recognising trees from quite a long way away (9/31)

It can be difficult to determine if a very large graph is a tree just by inspection.
If we know it has no cycles, then we need to verify that it is connected. The
following result (the converse of the previous one) can be useful.

If e = v − 1, then T is a tree
If graph with v vertices has no cycles, and has e = v − 1 edges, then it is a tree.



Part 1: Trees Recognising trees from quite a long way away (10/31)

Example
The following graph has no cycles. Determine how many components it has.
Is it a tree?



Part 1: Trees Recognising trees from quite a long way away (11/31)

MA284
Week 11: Trees

END OF PART 1
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Part 2: Applications Chemistry (13/31)

There are many, many applications, of trees in mathematics, computer science,
and the applied sciences. As already mentioned, the mathematical study of
trees began in Chemistry.

Example: Saturated hydrocarbon isomers

Saturated hydrocarbon isomers(alkane) are of the form CnH2n+2. They
have n carbon atoms, and 2n + 2 hydrogen atoms. The carbon atoms
can bond with 4 other atoms, and the hydrogens with just one. Show
that the graph of all such isomers are trees.

https://en.wikipedia.org/wiki/Alkane


Part 2: Applications Chemistry (14/31)
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Part 2: Applications Decision Trees (15/31)

A DECISION TREE is a graph where each node represents a possibility, and
each branch/edge from that node is a possible outcome.

Example

Pancho and Lefty played a chess match in which there were no drawn
games. The first player to win three games in a row or a total of four
games won the match.
Pancho won the first game and the person who won the second game
also won the third game.
Construct an appropriate tree diagram to find the number of ways
in which the match may have proceeded .

(PTO)



Part 2: Applications Decision Trees (16/31)



Part 2: Applications Decision Trees (17/31)

Puzzle
You have eight identical-looking coins, but one is a counterfeit and lighter than
the rest. You have a balance scale. Show that you can find the counterfeit one
with just two weighing.
How many weighings are needed for nine coins? And ten?



Part 2: Applications Decision Trees (18/31)

MA284
Week 11: Trees

END OF PART 2
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Part 3: Spanning Trees (20/31)

Consider the road system shown below

GALWAY

ATHENRY

CLAREGALWAY

ORANMORE

TUAMHEADFORD

SPIDDAL

MOYCULLEN

Suppose there has been severe flooding, and Galway County Council can only
keep a small number of roads open? Which ones should they choose, so that
one can travel between any pair of towns?



Part 3: Spanning Trees (21/31)

Definition: SPANNING TREE

Given a (simple) graph G , a SPANNING TREE of G is a subgraph of
G that

is a tree, and
contains every vertex of G .

GALWAY

ATHENRY

CLAREGALWAY

ORANMORE

TUAMHEADFORD

SPIDDAL

MOYCULLEN

GALWAY

CLAREGALWAY

ATHENRY

TUAM

ORANMORE

HEADFORD

SPIDDAL

MOYCULLEN

Lots of other spanning trees are possible, and there are numerous ways of
finding them...



Part 3: Spanning Trees (22/31)

Lots of other spanning trees are possible, and there are numerous ways of
finding them. Here are two:

Algorithm 1

(i) Identify a cycle in the graph
(ii) Delete an edge in that cycle, taking care not to disconnect the

graph.
(iii) Keep going until all cycles have been removed.

GALWAY

ATHENRY

CLAREGALWAY

ORANMORE

TUAMHEADFORD

SPIDDAL

MOYCULLEN



Part 3: Spanning Trees (23/31)

Algorithm 2

(i) Start with just the vertices of the graph (no edges).
(ii) Add an edge from the original graph, as long as it does not form

a cycle.
(iii) Stop when the graph is connected.

GALWAY

ATHENRY

CLAREGALWAY

ORANMORE

TUAMHEADFORD

SPIDDAL

MOYCULLEN



Part 3: Spanning Trees (24/31)

Example
Find a spanning tree in the connected graph illustrated below:

a

b

c

e

f

d



Part 3: Spanning Trees Minimum spanning trees (25/31)

For many applications, we need to consider a wider class of graphs: weighted
graphs. We won’t go into details, but we’ll see this with a slight modification
of our initial example.

Suppose that one can estimate how long it would take to fix a section of road,
as shown by the weights on the edges.
Which ones should we fix, so that one can travel between any pair of towns as
soon as possible?

GALWAY ATHENRY
1

CLAREGALWAY

2

ORANMORE

6

TUAM

4

5

3

7

6

HEADFORD

5

4

SPIDDAL
3

MOYCULLEN

2
1



Part 3: Spanning Trees Minimum spanning trees (26/31)

A minimum spanning tree is a spanning tree with the minimum possible total
edge weight. Minimum spanning trees exist and there are various algorithms to
find them.

Algorithm: Kruskal’s

(i) Start with just the vertices;
(ii) Add the edge with the least weight that does not form a cycle.
(iii) Keep going until the graph is connected.

GALWAY ATHENRY
1

CLAREGALWAY

2

ORANMORE

6

TUAM

4

5

3

7

6

HEADFORD

5

4

SPIDDAL
3

MOYCULLEN

2
1



Part 3: Spanning Trees Minimum spanning trees (27/31)

Algorithm: Prim’s algorithm

(i) Choose a(ny) vertex from the original graph.
(ii) Add the edge incident to that vertex that has least weight and

does not create a cycle.
(iii) Stop when you reached all the vertices of the original graph.

GALWAY ATHENRY
1

CLAREGALWAY

2

ORANMORE

6

TUAM

4

5

3

7

6

HEADFORD

5

4

SPIDDAL
3

MOYCULLEN

2
1



Part 3: Spanning Trees Minimum spanning trees (28/31)

There’s a lot of maths involved in planning public transport, roads and all that.

Here’s an article on The Maths of public transport in Galway , by my colleague
Michael Mc Gettrick:

https://www.rte.ie/brainstorm/2020/0204/
1113099-the-maths-of-public-transport/

https://www.rte.ie/brainstorm/2020/0204/1113099-the-maths-of-public-transport/
https://www.rte.ie/brainstorm/2020/0204/1113099-the-maths-of-public-transport/


Part 3: Spanning Trees Other stuff (29/31)

There are many other applications of trees that, regrettably, we do not have
time to cover. The most important of these include

minimum spanning trees.
the study of search algorithms modelled as trees;
decision tress (like the puzzle from Slide 17);
compiler syntax;
Financial modelling: e.g., binomial methods for option pricing;
The “Good Will Hunting” Problem (draw all homomorphically irreducible
trees with v = 10 vertices).



Exercises (30/31)

Q1. (See Exer 1 in §4.2 of text). Which of the following graphs are trees?
(a) G = (V , E) with with V = {a, b, c, d , e} and

E = {{a, b}, {a, e}, {b, c}, {c, d}, {d , e}}.
(b) G = (V , E), with with V = {a, b, c, d , e} and

E = {{a, b}, {b, c}, {c, d}, {d , e}}.
(c) G = (V , E) with V = {a, b, c, d , e} and E = {{a, b}, {a, c}, {a, d}, {a, e}}.
(d) G = (V , E) with V = {a, b, c, d , e} and E = {{a, b}, {a, c}, {d , e}}.

Q2. (See Q2 in Section 4.2 of text-book). For each degree sequence below, decide
whether it must always, must never, or could possibly be a degree sequence for a
tree. Remember, a degree sequence lists out the degrees (number of edges
incident to the vertex) of all the vertices in a graph in non-increasing order.
(a) (4, 1, 1, 1, 1)
(b) (3, 3, 2, 1, 1)
(c) (2, 2, 2, 1, 1)
(d) (4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1).



Exercises (31/31)

Q3. Give at least 3 different spanning trees of the graph shown below.

a

b

c

d

e

f

Q4. Give a minimum spanning tree of the weighted graph shown below.

a

b

1
c

2

4

d

3

e

5

f
4

3

2
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(2/33)Assignments...

Assignment 4 is still open. Deadline is 5pm, Thursday 24 November
(note slight extension).

Assignment 5 is due: Deadline is 5pm Tuesday, 25 November 2022.



Part 1: Matrices (3/33)

MA284
Week 12: Matrices and Review

Start of ...

PART 1: Matrices

In this short section we study other ways to represent matrices mathematically.
These have important applications in computing with graphs and networks.



Part 1: Matrices Adjacency Matrix (4/33)

In a practical setting, a graph must be stored in some computer-readable
format. One of the most common is an adjacency matrix. If the graph has n
vertices, labelled {1, 2, . . . , n}, then the adjacency matrix is an n × n binary
matrix, A, with entries

ai,j =

{
1 vertex i is adjacent to j
0 otherwise.

2
4

3

5

1 
0 0 0 0 1
0 0 1 1 0
0 1 0 1 1
0 1 1 0 1
1 0 1 1 0





Part 1: Matrices Adjacency Matrix (5/33)

Properties of the adjacency matrix

The adjacency matrix of a graph is symmetric.
If B = Ak , then bi,j is the number of paths of length k from vertex
i to vertex j.
We can work out if a graph is connected by looking at the
eigenvalues of A.
If the graphs G and H are isomorphic, and have adjacency
matrices AG and AH , respectively, then there is a permutation
matrix, P, such that PAGP−1 = AH .

Unfortunately, we don’t have time to prove these properties, but reviewing
some examples can still be very instructive.



Part 1: Matrices Adjacency Matrix (6/33)

Example

Sketch a graph represented by the following adjacency matrix.
0 1 0 1 0
1 0 0 1 0
0 0 0 1 0
1 1 1 0 0
0 0 0 0 0


1. What is the order of the graph?
2. How many edges does the graph has?
3. Is the graph a pseudograph (i.e., a graph with loops), a

multigraph, or a simple graph?
4. What is the degree of Vertex 2?
5. What is the degree of Vertex 4?



Part 1: Matrices Adjacency Matrix (7/33)

In the previous example, you were asked to determine if the graph was simple,
or a multigraph, or had loops.

The adjacency matrix idea is easily extended to allow for the last two cases:

For a multigraph, aij is the number of edges joining vertices i and j.
For a pseudograph (graph with loops), aii = 1 means there is an edge from
a vertex to itself. vertices i and j.

Example

Give the adjacency matrix of the Konigsberg Bridges graph:



Part 1: Matrices Incidence matrix (8/33)

Graphs can also be represented by an Incidence matrix

If the graph has v vertices, and e edges, then it is an v × e binary matrix.
The rows represent vertices
The columns represent edges.
If the matrix is B = (bi,j ) then bik = 1 means that vertex i is incident to
edge j.

Example

Give the incidence matrix of the following graph:

1

2

e13
e2

4
e3

e5 e6



Part 1: Matrices Incidence matrix (9/33)

MA284
Week 12: Matrices and Review

END OF PART 1



Part 2: Distance Matrices (10/33)

MA284
Week 12: Matrices and Review

Start of ...

PART 2: Distance Matrices

In this section we quantify how “far” two vertices are from each other in a
graph



Part 2: Distance Matrices (11/33)

Recall that a path is a sequence of edges from one vertex to another. Usually,
there are multiple paths between any pair of vertices.

Definition: DISTANCE

The distance between two vertices, u and v , in a connected graph is
the length of a shortest path between u and v , and is written d(u, v).
(Warning: notation is easily confused with the degree of a vertex.)
(This is also called geodesic distance or shortest-path distance).

Usually we represent all the distances between vertices in a graph as a matrix:

2
4

3

5

1
1 2 3 4 5

1 0 3 2 2 1
2 3 0 1 1 2
3 2 1 0 1 1
4 2 1 1 0 1
5 1 2 1 1 0



Part 2: Distance Matrices (12/33)

One we have the idea of distance we can then define

Eccentricity of a vertex: the greatest distance between that vertex and
any other in the graph.
Radius of a graph: the minimum eccentricity of any vertex.
Diameter of a graph: the maximum eccentricity of any vertex. So this is
also the maximum entry in the distance matrix.

Example

Consider the following graph.
Write down the distance
matrix for this graph,
Use the distance matrix to
determine the eccentricity of
each vertex.
Determine the radius and
diameter of the graph.

1 2

3

6

4

5

7

8
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Part 2: Distance Matrices (14/33)

MA284
Week 12: Matrices and Review

END OF PART 2
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MA284
Week 12: Matrices and Review

Start of ...

PART 3: Additional Topics



Part 3: Additional Topics (16/33)

Other topics in combinatorics and graph theory that we have not yet covered.
The most interesting (to my mind are):

[ie Dr Niall Madden’s preference - I might speak about music tomorrow but I’ll
leave these notes here in case students are interested in the software Niall used
to prepare these slides.]

1. Directed Graphs
2. Visualisation of graphs;
3. Algorithms, like determining if a graph is connected, or finding the

shortest path between two vertices...
4. The Graph Laplacian;
5. Centrality analysis.
6. and many, many, more...

We’ll finish now with a short presentation on the first 4 of these.



Part 3: Additional Topics Directed graphs (17/33)

Graphs often represent networks, such as the road network we had earlier, or
social networks. So far, we have had that, if vertex a is adjacent to vertex b,
then b is adjacent to a.

In many situations, this is not reasonable:

a city road system might have a one-way system;
on a social network, you might follow someone who does not follow you
back.

a

b

c

e

f

d

d

f

e

b

c

a



Part 3: Additional Topics Directed graphs (18/33)

Definition: Directed Graph (=Digraph)

A directed graph (also called a “digraph”) is one where the edge set is
composed of ordered pairs, called “directed edges” (“arcs”). If (a, b) ∈
E , we say “there is a directed edge from vertex a to vertex b”.
When sketching the graph, we indicate the direction of the edge by an
arrow.

1. The number of directed edges starting at vertex a is the out degree of a.
2. The number of directed edges ending at vertex a is the in degree of a.
3. The adjacency matrix is not usually symmetric.



Part 3: Additional Topics Directed graphs (19/33)

Example: Graph of a tournament (2021 Senior Men’s 6 Nations Rugby). A
directed edge from Team A to Team B means Team A beat Team B. In this
case, the graph is used only to summarise the outcome. However, various
algorithms for ranking teams use methods based on graphs.



Part 3: Additional Topics Computer tools for graphs (20/33)

Because graphs are key to understanding and analysing networks of any type,
there are numerous computational tools for working with graphs.

Ones that I have used in the course of this module – mainly for generating
images are

Graphviz, which combines a language called “dot” with a set of tools for
converting these graphs to images.
SageMath, a free computer algebra system, and
NetworkX, a Python-based system for analysing graphs and networks.

https://en.wikipedia.org/wiki/Graphviz
http://www.sagemath.org/
https://networkx.github.io/


Part 3: Additional Topics Graphviz (21/33)

Graphviz

Making K5

1 graph {
1 -- {2 3 4 5};

3 2 -- {3 4 5};
3 -- {4 5};

5 4 -- {5};
}

To generate a image from this you can either install GraphViz on your own
computer, or use an online tool such as http://www.webgraphviz.com/ or
https://dreampuf.github.io/GraphvizOnline

http://www.webgraphviz.com/
https://dreampuf.github.io/GraphvizOnline


Part 3: Additional Topics SageMath (22/33)

SageMath

G = graphs . CompleteBipartiteGraph (3, 3)
2 G.show ()

H = G. complement ()
4 H.show ()

You can do a lot more than this with Sage, including applying numerous
algorithms for, say, computing the Chromatic Number of a graph, or finding a
minimum spanning tree.

You can install sage on your own computer, or use an online version such as
https://sagecell.sagemath.org/ or https://cocalc.com/

https://sagecell.sagemath.org/
https://cocalc.com/


Part 3: Additional Topics NetworkX (23/33)

NetworkX

import matplotlib . pyplot as plt
2 import networkx as nx

G = nx. balanced_tree (2 ,3)
4 nx.draw(G), plt.show ()

As with SageMath , NetworkX has great capabilities in interacting with graphs,
and visualising them,



Part 3: Additional Topics R + igraph (24/33)

R with the igraph library

library ( igraph )
2 tree <- make_tree (64 , 4, mode=" undirected ")

plot(tree , vertex .size =6, vertex . label =NA)



Part 3: Additional Topics R + igraph (25/33)

MA284
Week 12: Matrices and Review

END OF PART 3
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PART 4: Review



Part 4: Review (27/33)

Th set of topics that we studied includes:

1. The additive and multiplicative principles;

2. Sets; the Principle of Inclusion/Exclusion (PIE) and its applications;

3. Binomial Coefficients (& lattice paths, bit-strings, & Pascal’s triangle);

4. Permutations and Combinations;

5. Stars and Bars, and the NNI Equations and Inequalities;

6. Algebraic V Combinatorial Proofs;

7. Derangements;

8. Counting functions;



Part 4: Review (28/33)

9. Graph Theory: motivation and basic definitions;

10. Isomorphisms between graphs.

11. Important families of graphs (Cycle graphs, Kn, Kn,n, etc.)

12. Planar & non-planar graphs; chromatic numbers, Euler’s formula,

13. Convex polyhedra, and Platonic solids;

14. Graph Colouring; Greedy and Welsh-Powell algorithms;

15. Eulerian and Hamiltonian graphs;

16. Trees, including spanning trees, and decision trees.

17. Matrices of Graphs.



Part 4: Review The Exam (29/33)

There are 8 questions on the final MA284 exam: you should attempt all eight.
4 questions are worth 13 marks, and 4 are worth 12.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tips:

The questions on the exam are roughly in the order in which we covered
the topics in class.
4 questions are on combinatorics, and 4 are on graph theory.
The Principles of Addition, Multiplication, and Inclusion/Exclusion are
essential to most of the combinatorics questions.
Good idea to review the homework exercises.
For graph theory, you need to know how to

sketch a graph given the edge and vertex sets;
determine if the graph is, e.g., bipartite, planar, connected, ...
find an Eulerian path/circuit.
compute the chromatic number
calculate the radius and diameter.
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Thank you! (31/33)

I’m especially grateful to Drs Niall Madden in particular and Angela Carnevale
who pitched a very interesting cross-section of discrete maths as a syllabus and

who prepared such wonderful slides.

Good luck with your exams and I hope you’ve enjoyed studying this introduction
to discrete maths. We have plenty more graph theory in some of our final year

modules eg Networks and in some Applied Maths modules eg Modelling.



Exercises (32/33)

Q1. Write down the adjacency for each of the following graphs.

(a) G = (V , E) with with V = {a, b, c, d , e} and
E = {{a, b}, {a, e}, {b, c}, {c, d}, {d , e}}.

(b) K5
(c) C5
(d) K3,3

Q2. Determine if the following matrices represent adjacency matrices of simple
connected graphs. If not, explain why.

(a)

(
1 1 1
1 1 1
1 1 1

)

(b)

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


(c)

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0





Exercises (33/33)

Q3. Write down the distance matrix for the followingt graph, and use it to determine
the eccentricity of each vertex. Determine the radius and diameter of the graph.

abc

df

g h


