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1 INTRODUCTION

1 Introduction

CS4423 Networks is a Semester 2 module onNetwork Science. Modern societies are in many ways highly connected.
Certain aspects of this phenomenon are frequently described as networks. CS4423 is an introduction to this emerging
interdisciplinary subject. We’ll cover several major topics in this module, including:

• Graphs & Graph Theory, and how they relate to networks;

• Representations of networks, including as matrices;

• Computing with networks, using networkx in Python;

• Centrality measures;

• Random graphs;

• Small worlds;

• Models of growing graphs;

Lecture notes & assignments will come in the form of Jupyter notebooks, which allows us to include interactive Python
code with the text.

1.1 Lecturer Contact Information

• Name: Dr Niall Madden.

• School of Mathematical & Statistical Sciences, University of Galway.

• Office: RoomADB-1013, Arás de Brún.

• E-mail: niall.madden@universityofgalway.ie.

• Website: https://www.niallmadden.ie

1.2 Exam Information

First year lecturing, should be similar to old exam papers. Only looked at the past 2 years or so.

1.3 Schedule

Tentative schedule for labs / tutorials:

• Tuesday at 16:00 in AC215;

• Wednesday at 10:00 in CA116a.

There will be some practicals during the semester: Week 3 “Introduction to Python & Jupyter” sessions, later weeks
help with assignments, preparations for exam, etc.

1.4 Assessment

• Two homework assignments. Tentative deadlines: Weeks 5 & 10. Each contribute 10% each to the final grade.

• One in-class test. Probably Week 7 (depending on FYP deadlines). Contributes 10% to the final grade.

• Final exam: 70%.
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1 INTRODUCTION

1.5 Introduction to Networks

Newman (for example) broadly divides the most commonly studied real-world networks into four classes:

1. Technological networks: rely on physical infrastructure. In many cases, this infrastructure has been built
over many decades and forms part of the backbone of modern societies, including roads & other transportation
networks, power grids, and communications networks.

2. Social networks: the vertices of a social network are people (or, at leasts, User IDs), with edges representing
some sort of social interaction. In sociology, the vertices are often called actors, and the edges are called ties.
Social networks are not just online: sociologists have studied social networks long before people started exhibiting
their relations to others online. Traditionally, data about the structure of social networks have been compiled by
interviewing the people involved.

3. Information networks: consist of data itemswhich are linked to each other in some way. Examples include
relational databases. Sets of information (like scientific publications) have been linking to each other (e.g.,
through citations) long before computers were invented, although links in digital form are easier to follow.

TheWWW is probably the most widespread & best-known example of an information network. Its nodes are
web pages containing information in form of text & pictures, and its edges are the hyperlinks, allowing us
to surf or navigate from page to page. Hyperlinks run in one direction only, from the page that contains the
hyperlink to the page that is referenced. Therefore, the WWW is a directed network, a graph where each edge
has a direction.

4. Biological networks:

• Biochemical networks represent molecular-level patterns of interaction & control mechanisms in the
biological cell, including metabolic networks, protein-protein interaction networks, & genetic regulatory
networks.

• A neural network can be represented as a set of vertices, the neurons, connected by two types of directed
edges, one for excitatory inputs and one for inhibitory inputs. (Not to be confused with an artificial neural
network).

• Ecological networks are networks of ecological interactions between species.

In each case, a network connects parts of a system (nodes) by some means (links). Different techniques are used to
display, discover, & measure the structure in each example.

In its simplest form, a network is just a collection of points (called vertices or nodes), some of which are joined
in pairs (called edges or links). Many systems of interest are composed of individual parts that are in some way linked
together: such systems can be regarded as networks, and thinking about them in this way can often lead to new& useful
insights.

Network science studies the patterns of connections between the components of a system. Naturally, the struc-
ture of the networks can have a big impact on the behaviour of the system. A network is a simplified representation of a
complex system by vertices & edges. The scientific study of networks is an interdisciplinary undertaking that combines
ideas frommathematics, computer science, physics, the social sciences, & biology. Between these scientific fields, many
tools have been developed for analysing, modeling, & understanding networks.

1.5.1 Network Measures

Centrality is an example of a useful & important type of network measure; it is concerned with the question of how
important a particular vertex or edge is in a networked system. Different concepts have been proposed to capture mathe-
matically what it means to be central. For example, a simple measure of the centrality of a vertex is its degree, that is, the
number of edges it is part of (or, equivalently, the number of vertices it is adjacent to). Applications of centrality include
determiningwhich entities in a social network have themost influence, orwhich links in a power grid aremost vulnerable.
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2 GRAPHS

Which measurements & calculations give meaningful answers for a particular system depends of course on the specific
nature of the system and the questions one wants to ask.

1.5.2 Network Concepts

Another interesting network concept is the small-world effect, which is concerned with the question of how far apart
two randomly chosen points in a network typically are. Here, distance is usually measured by the number of edges one
would need to cross over when travelling along a path from one vertex to another. In real-world social networks, the
distance between people tends to be rather small.

2 Graphs

A graph can serve as a mathematical model of a network. Later, we will use the networkx package to work with examples
of graphs & networks.

2.1 Example: The Internet (circa 1970)

Figure 1: The Internet (more precisely, ARPANET) in December 1970. Nodes are computers, connected by a link if
they can directly communicate with each other. At the time, only 13 computers participated in that network.

1 UCSB SRI UCLA

2 SRI UCLA STAN UTAH

3 UCLA STAN RAND

4 UTAH SDC MIT

5 RAND SDC BBN

6 MIT BBN LINC

7 BBN HARV

8 LINC CASE

9 HARV CARN

10 CASE CARN

Listing 1: arpa.adj

The following diagram, built from the adjacencies in arpa.adj, contains the same information as in the above figure,
without the distracting details ofUS geography; this is actually an important point, as networks only reflect the topology
of the object being studied.

3



2 GRAPHS

1 H = nx.read_adjlist("../data/arpa.adj")

2 opts = { "with_labels": True, "node_color": 'y' }

3 nx.draw(H, **opts)

Listing 2: arpa.adj

Figure 2: The ARPANetwork as a Graph

2.2 Simple Graphs

A simple graph is a pairG = (X,E) consisting of a finite setX of objects called nodes, vertices, or points and a set of
links or edges E which are each a set of two different vertices.

• We can also writeE ⊆
(
X
2

)
, where

(
X
2

)
(X choose 2) is the set of all 2-element subsets ofX .

• The order of the graphG is denoted as n = |X|, where n is the number of vertices in the graph.

• The size of the graph is denoted asm = |E|, wherem is the number of edges in the graph. Naturally,m ≤
(
n
2

)
.

2.3 Subgraphs & Induced Subgraphs

GivenG = (X,E), a subgraph ofG isH = (Y,EH)with Y ⊆ X andEH ⊆ E ∩
(
Y
s

)
; therefore, all the nodes in

H are also inG and any edge inH was also inG, and is incident only to vertices in Y .

One of the most important subgraphs of G is the induced subgraph on Y ⊆ X : H = (Y,E ∩
(
Y
2

)
); that is,

given a subset Y ofX , we include all possible edges from the original graphG too. Each node has a list of neighbours
which are the nodes it is directly connected to by an edge of the graph.

2.4 Important Graphs

The complete graph on a vertex set X is the graph with edge set
(
X
2

)
. For example, if X = {0, 1, 2, 3}, then

E = {01, 02, 03, 12, 13, 23}

The Petersen graph is a graph on 10 vertices with 15 edges. It can be constructed as the complement of the line graph

4



3 MATRICES OF GRAPHS

of the complete graphK5, that is, as the graph with the vertex setX =
({0,1,2,3,4}

2

)
(the edge set ofK5) and with an

edge between x, y ∈ X whenever x ∩ y = ∅.

A graph is bipartite if we can divide the node setX into two subsetsX1 andX2 such that:

• X1 ∩X2 = ∅ (the sets have no edge in common);

• X1 ∪X2 = X .

For any edge (u1, u2), we have u1 ∈ X1 and u2 ∈ X2; that is, we only ever have edges between nodes from different
sets. Such graphs are very common in Network Science, where nodes in the network represent two different types
of entities; for example, we might have a graph wherein nodes represent students and modules, with edges between
students and modules they were enrolled in, often called an affiliation network.

A complete bipartite graph is a particular bipartite graph wherein there is an edge between every node inX1 and
every node inX2. Such graphs are denotedKm,n, where |X1| = m and |X2| = n.

The path graph with n nodes, denoted Pn, is a graph where two nodes have degree 1, and the other n − 2 have
degree 2.

The cycle graph on n ≥ 3 nodes, denotedCn (slightly informally) is formed by adding an edge between the two nodes
of degree 1 in a path graph.

2.5 New Graphs from Old

The complement of a graphG is a graphH with the same nodes asG but each pair of nodes inH are adjacent if and
only if they are not adjacent inG. The complement of a complete graph is an empty graph.

A graph G can be thought of as being made from “things” that have connection to each other: the “things” are
nodes, and their connections are represented by an edge. However, we can also think of edges as “things” that are
connected to any other edge with which they share a vertex in common. This leads to the idea of a line graph: the line
graph of a graphG, denotedL(G) is the graph where every node inL(G) corresponds to an edge inG, and for every
pair of edges inG that share a node,L(G) has an edge between their corresponding nodes.

3 Matrices of Graphs

There are various was to represent a graph, including the node set, the edge set, or a drawing of the graph; one of the
most useful representations of a graph for computational purposes is as amatrix; the three most important matrix
representations are:

• The adjacency matrix (most important);

• The incidence matrix (has its uses);

• The graph Laplacian (the coolest).

3.1 Adjacency Matrices

The adjacency matrix of a graphG of ordern is a squaren×nmatrixA = (ai,j)with rows& columns corresponding
to the nodes of the graph, that is, we number the nodes 1, 2, . . . , n. Then,A is given by:

ai,j =

{
1 if nodes i and j are joined by an edge,
0 otherwise

Put another way, ai,j is the number of edges between node i and node j. Properties of adjacency matrices include:

•
∑N

i=1

∑N
j=1 ai,j =

∑
u∈X deg(u)where deg(u) is the degree of u.

5



3 MATRICES OF GRAPHS

• All graphs that we’ve seen hitherto are undirected: for all such graphs,A is symmetric. A = AT and, equivalently,
ai,j = aj, i.

• ai,i = 0 for all i.

• In real-world examples,A is usually sparsewhich means that
∑N

i=1

∑N
j=1 ai,j � n2, that is, the vast majority

of the entries are zero. Sparse matrices have huge importance in computational linear algebra: an important idea
is that is much more efficient to just store the location of the non-zero entities in a sparse matrix.

Any matrixM = (mi,j)with the properties that all entries are zero or one and that the diagonal entries are zero (i.e.,
mi,j = 0) is an adjacency matrix of some graph (as long as we don’t mind too much about node labels). In a sense,
every square matrix defines a graph if:

• We allow loops (an edge between a node and itself).

• Every edge has a weight: this is equivalent to the case for our more typical graphs that every potential edge is
weighted 0 (is not in the edge set) or 1 (is in the edge set).

• There are two edges between each node (one in each direction) and they can have different weights.

3.1.1 Examples of Adjacency Matrices

LetG = G(X,E) be the graph withX = {a, b, c, d, e} nodes and edges {a ↔ b, b ↔ c, b ↔ d, c ↔ d, d ↔ e}.
Then:

A =


0 1 0 0 0
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
0 0 0 1 0


The adjacency matrix ofK4 is:

A =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


3.2 Degree

The degree of a node in a simple graph is the number of nodes to which it is adjacent, i.e., its number of neighbours.
For a node v we denote this number deg(v). The degree of a node can serve as a (simple) measure of the importance of a
node in a network. Recall that one of the basic properties of an adjacency matrix is

∑n
i=1

∑n
j=1 ai,j =

∑
u∈X deg(u),

where deg(u) is the degree of u and n is the order of the graph; this relates to a (crude) measure of how connected a
network is: the average degree:

Average degree =
1

n

∑
u∈X

deg(u) =
1

n

n∑
i,j

ai,j

However, if the size of the network (the number of edges) ism, then the total sum of degrees is 2m (since each edge
contributes to the degree count of two nodes), meaning that the average degree is 2m

n .

3.3 Walks

Awalk in a graph is a series of edges (perhaps with some repeated) {u1 ↔ v1, u2 ↔ u2, . . . , up ↔ vp} with the
property that vi = ui+1. If vp = u1, then it is a closed walk. The length of a walk is the number of edges in it.

Adjacencymatrices can be used to enumerate the number of walks of a given length between a pair of vertices. Obviously,
ai,j is the number of walks of length 1 between node i and node j. We can extract that information for node j by
computing the product ofA and ej (column jof the identity matrix).

6



4 CONNECTIVITY & PERMUTATIONS

4 Connectivity & Permutations

4.1 Notation

To start, let’s decide on our notation:

• If we writeA = (ai,j), we mean thatA is a matrix and ai,j is its entry row i, column j.

• We also write such entries as (A)i,j ; the reason for this slightly different notation is to allow us to write, for
example, (A2)i,j is the entry in row i, column j ofB = A2.

• The trace of a matrix is the sum of its diagonal entries, that is, tr(A) =
∑n

i=1 ai,i. (Very standard).

• When we writeA > 0, we mean that all entries ofA are positive.

4.2 Counting Walks

Recall that the adjacency matrix of a graphG of orderN is a square n× nmatrixA = (ai,j)with rows and columns
corresponding to the nodes of the graph. ai,j is set to be the number of edges between nodes i and j. We learned
previously that:

• If ej is the jth column of the identity matrix In, then (Aej)i is the number of walks of length 1 from node i to
node j. Also, it is the same as ai,j .

• Moreover, (A(Aej))i = (A2ej) is the number of walks of length 2 from node i to node j. We can conclude
that, ifB = A2, then bi,j is the number of walks of length 2 between nodes i and j. Note that bi,i is the degree
of node i.

• In fact, ifB = Ak, then bi,j is the number of walks of length k between nodes i and j.

4.3 Paths

A trail is walk with no repeated edges. A cycle is a trail in which the first and last nodes are the same, but no other node
is repeated; a triangle is a cycle of length 3. A path is a walk in which no nodes (and so no edges) are repeated. (The
idea of a path is hugely important in network theory, and we will return to it often).

The length of a path is the number of edges in that path. A path from node u to node v is a shortest path if
there is no path between them that is shorter (although there could be other paths of the same length). Finding shortest
paths in a network is a major topic that we will return to at another time.

• Every path is also a walk.

• If a particular walk is the shortest walk between two nodes then it is also the shortest path between two nodes.

• If k is the smallest natural number of which (Ak)i,j 6= 0, then the shortest walk from node i to node j is of
length k.

• It follows that k is also the length of the shortest path from node i to node j.

For example, consider the following adjacency matrix and its powers:

A =


0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 1
0 0 1 1 0
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4 CONNECTIVITY & PERMUTATIONS

A2 =


1 0 1 0 0
0 2 0 1 1
1 0 3 0 0
0 1 1 2 1
0 1 1 1 2



A3 =


0 2 0 1 1
2 0 4 1 1
0 4 2 4 4
1 1 4 2 3
1 1 4 3 2


We can observe that, whereA is the adjacency matrix of the graphG:

• (A2)i,i is the degree of node i.

• tr(A2) is the degree sum of the nodes inG.

• (A3)i,i 6= 0 if node i is in a triangle.

• tr(A3)
6 is the number of triangles inG.

• IfG is bipartite, then (A3)i,j = 0 for all i, j.

4.4 Connectivity

LetG be a graph andA its adjacency matrix: inG, node i can be reached from node j if there is a path between them.
If node i is reachable from node j, then (Ak)i,j 6= 0 for some k. Also, note that k ≤ n. Equivalently, since each power
ofA is non-negative, we can say that (I +A+A2 +A3 + · · ·+Ak) > 0.

A graph/network is connected if there is a path between every pair of nodes. That is, every node is reachable from every
other node. If a graph is not connected, we say that it is disconnected. Determining if a graph is connected or not is
important; we’ll see later that this is especially important with directed graphs. A graphG of order n is connected if and
only if, for each i, j, there is someK ≤ n for which (Ak)i,j 6= 0.

4.5 Permutation Matrices

We know that the structure of a network is not changed by labelling its nodes. Sometimes, it is useful to re-label the
nodes in order to expose certain properties, such as connectivity. Since we think of the nodes as all being numbered
from 1 to n, this is the same as permuting the numbers of some subset of the nodes.

Figure 3: Example wherein nodes are re-labelled to expose certain properties of the graph

When working with the adjacencymatrix of a graph, such a permutation is expressed in terms of a permutation matrix
P ; this is a 0-1matrix (also known as a Boolean or a binary matrix) where this is a single 1 in every row& column. If the
nodes of a graphG (with adjacency matrixA) are listed as entries in a vector q, then:

8



5 PERMUTATIONS& BIPARTITENETWORKS

• Pq is a permutation of the nodes.

• PAP T is the adjacency matrix of the graph with that node permutation applied.

In many examples, we will have a symmetric P for the sake of simplicity, but in general, P neqP T . However,
P TAP = PAP T and P T = P−1 so PAP T = PAP−1.

A graph with adjacency matrixA is disconnected if and only if there is a permutation matrix P such that

A = P

(
X O
OT Y

)
PAP T = P

(
X O
O Y

)
whereO represents the zero matrix with the same number of rows asX and the same number of columns as Y .

5 Permutations & Bipartite Networks

5.1 Graph Connectivity

Recall that a graph is connected if there is a path between every pair of nodes. If the graph is not connected, we say that
it is disconnected. We now know how to check if a graph is connected by looking at powers of its adjacency matrix.
However, that is not very practical for large networks. Instead, we can determine if a graph is connected by just looking
at the adjacency matrix, provided that we have ordered the nodes properly.

5.2 Connected Components

If a network is not connected, then we can divide it into componentswhich are connected. The number of connected
components is the number of blocks in the permuted adjacency matrix.

Figure 4: Connected components example

9
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6 Bipartite Networks: Colours & Computations

6.1 Class Survey Example

Figure 5: Final survey data

Figure 6: Final survey graph, with order 39 and size 87
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Figure 7: Subgraph of the survey network based on 7 randomly chosen people, with order 16 and size 24

Figure 8: Adjacency matrix where the nodes for people are listed first

11
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Figure 9: B = A2

Since we know from before that (Ak)i,j is the number of walks of length kbetween nodes i and j, we can see that in
this context:

• For the first 7 rows & columns, bi,j is the number of programmes in common between person i and person j.
(This even works for i = j, but the number of programmes a person has in common with themselves is just the
number they watch).

• For the last 9 rows & columns, bi,j is the number of people who watch both programmes i and j.

6.2 Projections

Given a bipartite graphGwhose node set V has parts V1 & V2, and projection ofG onto (for example) V1 is the graph
with:

• Node set V1;

• An edge between a pair of nodes in V1 if they share a common neighbour inG.

In the context of our survey example, a projection onto V1 (people/actors) gives us the graph of people who share a
common programme. To make such a graph:

• LetA be the adjacency matrix ofG.

• LetB be the submatrix ofA2 associated with the nodes in V1.

• LetC be the adjacency matrix with the property:

ci,j =

{
1 bi,j > 0 and i 6= j

0 otherwise

That is, bi,j = 0 or i = j.

• LetGV1 be the graph on V1 with adjacency matrixC . Then,GV1 is the projection of G onto V1.

12
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Figure 10: GV1 computed for our survey data

6.3 Colouring

Figure 11: The original survey graph is more easily digestible if coloured

For any bipartite graph, we can think of the nodes in the two sets as coloured with different colours. For instance,
we can think of nodes inX1 as white nodes and those inX2 as black nodes. A vertex-colouring of a graphGis an

13
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assignment of (finitely many) colours to the nodes ofG such that any two nodes which are connected by an edge have
different colours. A graph is calledN -colourable if it has a vertex colouring with at mostN colours. The chromatic
number of a graphG is the smallestN for which a graphG isN -colourable. The following statements about a graph
G are equivalent:

• G is bipartite;

• G is 2-colourable;

• Each cycle inG has even length.

7 Trees

A cycle in a simple graph provides, for any two nodes on that cycle, at least two different paths from node a to node b.
It can be useful to provide alternative routes for connectivity in case one of the edges should fail, e.g., in an electrical
network.

A graph is called acyclic if it does not contain any cycles. A tree is a simple graph that is connected & acyclic. In
other words, between any two vertices in a tree there is exactly one simple path. Trees can be characterised in many
different ways.

Theorem: Let G = (X,E) be a (simple) graph of order n = |X| and size m = |E|. Then, the following are
equivalent:

• G is a tree (i.e., acyclic & connected);

• G is connected andm = n− 1.

• G is a minimally connected graph (i.e., removing any edge will disconnectG).

• G is acyclic andm = n− 1.

• G is a maximally acyclic graph (i.e., adding any edge will introduce a cycle inG);

• There is a unique path between each pair of nodes inG.

All trees are bipartite: there are a few ways of thinking about this; one is that a graph is bipartite if it has no cycles of
odd length – since a tree has no cycles, it must be bipartite.

7.1 Cayley’s Formula

Theorem: there are exactly nn−2 distinct (labelled) trees on the n-element vertex setX = {0, 1, 2, . . . , n − 1} if
n > 1.

7.1.1 Prüfer Codes

The Prfër code of a tree can be determined (destructively) as follows:

1. Start with a tree T with nodes labelled 0, 1, . . . , n− 1 and an empty list a.

2. Find the leaf node xwith the smallest label (with a “leaf node” being a node of degree 1. Every tree must have at
least two leaf nodes).

3. Append the label of its unique neighbour yto the list a.

4. Remove x (and the edge x ↔ y) from T .

5. Repeat steps 2-3 until T has only two ndoes left. We now have the code as a list of length n− 2.

14
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A tree can be re-constructed from its Prüfer code as the degree of a node x is 1 plus the number of entries x in the
Prüfer code of T . A tree can be computed from a Prüfer code a (where the list a is a list of length n− 2with all entries
numbered 0 to n− 1) as follows:

1. SetG to be a graph with node list [0, 1, 2, . . . , n− 1] and no edges yet.

2. Compute the list of node degrees d from the code.

3. For k = 0, 1, . . . , n− 2:

1. Set y = a[k].
2. Set xto be the node with the smallest degree in d.
3. Add the edge (x, y) toG.
4. Set d[x] = d[x]− 1and d[y] = d[y]− 1 (that is, decrease the degrees of both x and y by one).

4. Finally, connect the remaining two nodes of degrees 1 by an edge.

Since we know now that there is a bijection between labelled trees and Prüfer codes, we can prove Cayley’s theorem
easily:

1. A tree with n nodes has a Prüfer code of length n− 2.

2. There are n choices for each entry in the code.

3. So, there are nn−2 possible codes for a tree with n nodes.

4. So, there are nn−2 possible trees with n nodes.

7.2 Graph & Tree Traversal

Often, one has to search through a network to check properties of nodes such as to find the node with the largest degree.
For large unstructured networks, this can be challenging; fortunately, there are simple & efficient algorithms to achieve
this:

• DFS.

• BFS.

7.2.1 Depth-First Search

Depth-first search (DFS)works by starting at a root node and travelling as far along one of its branches as it can, then
returning to the last unexplored branch. The main data structure needed to implement DFS is a stack, also known as a
Last-In-First-Out (LIFO) queue. Given a rooted tree T with root x, to visit all nodes in the tree:

1. Start with an empty stack S.

2. Push x onto S.

3. While S 6= ∅:

1. Pop node y from the stack.
2. Visit y.
3. Push y’s children onto the stack.

15
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7.2.2 Breadth-First Search

Breadth-first search (BFS)works by starting at a root node and exploring all the neighbouring nodes (on the same
level) first. Next, it searches their neighbours (level 2), etc. The main data structure needed to implement BFS is a
queue, also known as a First-In-First-Out (FIFO) queue. Given a rooted tree T with root x, to visit all nodes in the tree:

• Start with an empty queueQ.

• Push x ontoQ.

• WhileQ 6= ∅:

1. Pop node y fromQ.
2. Visit node y.
3. Push y’s children ontoQ.

Many questions on networks regarding distance & connectivity can be answered by a versatile strategy involving a
subgraph which is a tree and then searching that; such a tree is called spanning tree of the underlying graph.

7.2.3 Graph Diameter

A natural problem arising in many practical applications is the following: given a pair of nodes x, y, find one or all
the paths from x to y with the fewest number of edges possible. This is a somewhat complex measure on a network
(compared to, say, statistics on node degrees) and we will therefore need a more complex procedure, that is, an algorithm,
in order to solve such problems systematically.

Definition: let G = (X,E) be a simple graph and let x, y ∈ X . Let P (x, y) be the set of all paths from x to
y. Then:

• The distance d(x, y) from x to y is

d(x, y) = min{l(p) : p ∈ P (x, y)},

the shortest possible length of a path from x to y, and a shortest path from x to y is a path p ∈ P (x, y) of
length l(p) = d(x, y).

• The diameter diam(G) of the networkG is the length of the longest shortest path between any two nodes:

diam(G) = max{l(p) : p ∈ P (x, y)}

8 Centrality Measures

Key nodes in a network can be identified through centrality measures: a way of assigning “scores” to nodes that
represents their “importance”. However, what it means to be central depends on the context; accordingly, in the context
of network analysis, a variety of different centrality measures have been developed. Measures of centrality include:

• Degree centrality: just the degree of the nodes, important in transport networks for example.

• Eigenvector centrality: defined in terms of properties of the network’s adjacency matrix.

• Closeness centrality: defined in terms of a node’s distance to other nodes in the network.

• Betweenness centrality: defined in terms of shortest paths.
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8.1 Degree Centrality

In a (simple) graphG = (X,E)withX = {0, 1, . . . , n−1} and adjacencymatrixA = (ai,j), the degree centrality
cDi of node i ∈ X is defined as:

cDi = ki =
∑
j

ai,j

where ki is the degree of node i.

In some cases, this measure can be misleading since it depends (among other things) on the order of the graph. A better
measure is the normalised degree centrality: the normalised degree centralityCD

I of node i ∈ X is defined as:

CD
i =

ki
n− 1

=
cDi

n− 1

(
=

degree of centrality of node i
number of potential neighbours of i

)
Note that in a directed graph, one distinguishes between the in-degree and the out-degreeo f a node and defines the
in-degree centrality and the out-degree centrality accordingly.

8.2 Eigenvector Centrality

LetA be a square n× nmatrix. An n-dimensional vector, v, is called an eigenvector ofA if :

Av = λv

for some scalar λwhich is called an eigenvalue ofA.

When A is a real-valued matrix, one usually finds that λ and v are complex-valued. However, if A is symmetric,
then they are real-valued. A may have up to n eigenvalues λ1, λ2, . . . , λn. The spectral radius of A is ρ(A) :=
max(|λ1|, λ2|, . . . , |λn|). If v is an eigenvector associated with the eigenvalue λ, so too is any non-zero multiple of v.

The basic idea of eigenvector centrality is that a node’s ranking in a network should relate to the rankings of the
nodes it is connected to. More specifically, up to to some scalar λ, the centrality cEi of node i should be equal to the
sum of the centralities cEj of its neighbouring nodes j. In terms of the adjacency matrixA = (ai,j), this relationship is
expressed as:

λcEi =
∑
j

ai,jc
E
j

which, in turn, in matrix language is:
λcE = AcE

for the vector cE = (cEi )which then is an eigenvector ofA. So cE is an eigenvector ofA (but which one?).

8.2.1 How to find cE and/or λ

If the network is small, one could use the usual method (although it is almost never a good idea).

1. Find the characteristic polynomial pA(x) ofA as determinant of thematrix xI−A, where I is then×n identity
matrix.

2. Find the roots λ of pA(x) (i.e., scalars λ such that pA(λ) = 0).

3. Find a non-trivial solution of the linear system (λI −A)c = 0 (where 0 stands for an all-0 column vector and
c = (c1, . . . , cn) is a column of unknowns).

For large networks, there is a much better algorithm, such as the Power method, which we will look at later.
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8.2.2 Perron-Frobenius Theory

Presently, we’ll lean that the adjacency matrix always has one eigenvalue which is greater than all the others.

A matrix A is called reducible if, for some simultaneous permutations of its rows and columns, it has the block
form:

A =

(
A1,1 A1,2

o A2,2

)
IfA is not reducible, we say that it is irreducible. The adjacency matrix of a simple graphG is irreducible if and only
ifG is connected.

A matrix A = (ai,j) is non-negative is ai,j≥0 for all i, j. For simplicity, we usually write A ≥ 0. It is impor-
tant to node that adjacency matrices are examples of non-negative matrices. There are similar concepts of, say, positive
matrices, negative matrices, etc. Of particular importance are positive vectors: v = (vi) is positive for if vi > 0 for all
i. We write v ≥ 0.

Theorem: suppose thatA is a square, non-negative, irreduciblematrix. Then:

• A has a real eigenvalue λ = ρ(A) and λ > |λ′| for any other eigenvalue λ′ ofA. λ is called the Perron root of
A.

• λ is a simple root of the characteristic polynomial ofA (so has just one corresponding eigenvector).

• There is an eigenvector, v, associated with λ such that v > 0.

For us, this means:

• The adjacency matrix of a connected graph has an eigenvalue that is positive and greater in magnitude than any
other.

• It has an eigenvector v that is positive.

• vi is the eigenvector centrality of the node i.

8.3 Closeness Centrality

A node x in a network can be regarded as being central if it is close to (many) other nodes, as it can quickly interact
with them. Recalling that d(i, j) is the distance between nodes i and j (i.e., the length of the shortest path between
them). Then, we can use 1

d(i,j) as a measure of “closeness”; in a simple, connected graphG = (X,E) of order n, the
closeness centrality, cCi of node i is defined as:

cCi =
1∑

j∈X d(i, j)
=

1

s(i)

where s(i) is the distance sum for node i. As is usually the case, there is a normalised version of this measure; the
normalised closeness centrality is defined as:

CC
i = (n− 1)cCi =

n− 1∑
j∈X d(i, j)

=
n− 1

s(i)

Note that 0 ≤ CC
i ≤ 1.

The distance matrix of a graph,G, of order n is the n× nmatrixD = (di,j) such that:

di,j = d(i, j)

We’ll return to how to computeD later, but for now we note:

• s(i) is the sum of row i ofD.

• If s is the vector of distance sums, then s = Dewhere e = (1, 1, . . . , 1)T .
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8.4 Betweenness Centrality

In a simple, connected graphG, the betweenness centrality cBi of node i is defined as:

cBi =
∑
j

∑
k

ni(j, k)

n(j, k)
, j 6= k 6= 1

where n(j, k) denotes the number of shortest paths from node j to node k, where ni(j, k) denotes the number of
those shortest paths passing through node i.

In a simple, connected graphG, the normalised betweenness centrality cBi of node i is defined as:

CB
i =

cBi
(n− 1)(n− 2)

9 Random Graphs

A random graph is mathematical model of a family of networks, where certain parameters (like the number of nodes
& edges) have fixed values, but other aspects (like the actual edges) are randomly assigned. Although a random graph
is not a specific object, many of its properties can be described precisely in the form of expected values or probability
distributions.

9.1 Random Samples

Suppose our networkG = (X,E) has |X| = n nodes. Then, we know that the greatest number of edges it can have is:(
n

2

)
=

n!

(n− 2)!2!
=

n(n− 1)

2

Our goal is to randomly select edges on the vertex setX , that is, pick random elements from the set
(
X
2

)
of pairs of

nodes. So, we need a procedure for selectingm fromN objects randomly, in such a way that each of the
(
N
m

)
subsets of

theN objects is an equally likely outcome. We first discuss samplingm values in the range {0, 1, . . . , N − 1}.

1. Suppose that we choose a natural numberN and a real number p ∈ [0, 1].

2. Then, iterate over each element of the set {0, 1 . . . , N − 1}.

3. For each, we pick a random number x ∈ [0, 1].

4. If x < p, we keep that number. Otherwise, remove it from the set.

Whenwe are done, howmany elements do we expect in the set if p = m
N for some chosenm? Andwhat is the likelihood

of there being, say,K elements in the set? Since we are creating random samples, where the size of each is a random
number, k, we expect thatE[k] = Np = m; this is a binomial distribution:

• The probability of a specific subset of sizeK to be chosen is pk(1− p)N−k.

• There are
(
N
k

)
subsets of sizek, so the probabilityP (k) of the sample to have sizek isP (k) =

(
N
k

)
pk(1−p)N−k.

We use the following facts:

• j
(
N
j

)
pi = Np

(
N−1
j−1

)
pi−1.

• (1− p)N−j = (1− p)(N−1)−(j−1).

• (p+ (1− p))r = 1 for all r.
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The expected value is:

E[k] =

N∑
j=1

jP (j) weighted average of j

=
N∑
j=0

j

(
N

j

)
pj(1− p)N−j formula for P (j)

=Np
N−1∑
l=0

(
N − 1

l

)
pl(1− p)(N−1)−l = Np substituting l = k − 1

9.2 Erdös-Rényi Models

9.2.1 Model A: GER(n,m)—Uniformly Selected Edges

Let n ≥ 1, letN =
(
n
2

)
and let 0 ≤ m ≤ N . The modelGER(n,m) consists of the ensemble of graphsG on the n

nodesX = {0, 1, . . . , n− 1}, andM randomly selected edges, chosen uniformly from theN =
(
n
2

)
possible edges.

Equivalently, one can choose uniformly at random one network in the setG(n,m) of all networks on a given set of n
nodes with exactlym edges.

Equivalently, one can choose uniformly at random one network in the setG(n,m) of all networks on a given set of n
nodes with exactlym edges. One could think ofG(n,m) as a probability distribution P : G(n,m) → R that assigns
to each networkG ∈ G(n,m) the same probability

P (G) =

(
N

m

)−
1

whereN =
(
n
2

)
.

Figure 12: Some networks drawn fromGER(20, 15)

9.2.2 Model B: GER(n, p)—Randomly Selected Edges

Let n ≥ 1, letN =
(
n
2

)
and let 0 ≤ p ≤ 1. The modelGER(n, p) consists of the ensemble of graphsG on the n

nodesX = {0, 1, . . . , n− 1}with each of the possibleN =
(
n
2

)
edges chosen with probability p.

20



9 RANDOMGRAPHS

The probability P (G) of a particular graph G = (X,E) with X = {0, 1, . . . , n − 1} and m = |E| edges in
theGER(n, p)model is

P (G) = pm(1− p)N−m

Figure 13: Some networks drawn fromGER(20, 0.5)

Of the two models,GER(n, p) is the more studied. There are many similarities, but they do differ. For example:

• GER(n,m)will havem edges with probability 1.

• A graph inGER(n, p)will havem edges with probability
(
N
m

)
pm(p− 1)N−m.

9.2.3 Properties

We’d like to investigate (theoretically & computationally) the properties of such graphs. For example:

• When might it be a tree?

• Does it contain a tree, or other cycles? If so, howmany?

• When does it contain a small complete graph?

• When does it contain a large component, larger than all other components?

• When does the network form a single connected component?

• How do these properties depend on n andm (or p)?

Denote byGn the set of all graphs the n nodesX = {0, . . . , n− 1}. SetN =
(
n
2

)
the maximal number of edges of a

graphG ∈ G. Regard the ERmodels A & B as probability distributions P : Gn → R

Denote m(G) as the number of edges of a graph G. As we have seen, the probability of a specific graph GER to
be sampled from the modelG(n,m) is:

P (G) =

{(
N
m

)−1
ifm(G) = m,

0 otherwise

And the probability of a specific graphG to be sampled from the modelG(n, p) is

P (G) = nm(1− n)N −m
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9.2.4 Expected Size & Average Degree

Let’s use the following notation:

• ā is the expected value of property a (that is, as the graphs vary across the ensemble produced by the model).

• < a > is the average of property a over all the nodes of a graph.

InG(n,m) the expected size is

m̄ = m

as every graphG inG(n,m) has exactlym edges. The expected average degree is

〈k〉 = 2m

n

as every graph has average degree 2m
n . Other properties ofG(n,m) are less straightforward, and it is easier to work with

theG(n, p).

InG(n,m), the expected size (i.e., expected number of edges) is

m̄ = pN

Also, variance is σ2
m = Np(1− p).

The expected average degree is

〈k〉 = p(n− 1)

with standard deviation σk =
√
p(1− p)(n− 1).

9.2.5 Degree Distribution

The degree distribution p : N0 → R, k 7→ pk of a graphG is defined as

pk =
nk

n

where, for k ≥ 0, nk is the number of nodes of degree k inG. This definition can be extended to ensembles of graphs
with n nodes (like the random graphsG(n,m) andG(n, p)) by setting

pk
n̄k

n

where n̄k denotes the expected value of the random graph nk over the ensemble of graphs.

The degree distribution in a random graphG(n, p) is a binomial distribution:

pk =

(
n− 1

k

)
pk(1− p)n−1−k = bin(n− 1, p, k)

That is, in theG(n, p)model, the probability that a nodes has degree k is pk. Also, the average degree of a randomly
chosen node is

〈k〉 =
n−1∑
k=0

kpk = p(n− 1)
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(with standard deviation σk =
√
p(1− p)(n− 1)).

In general, it is not so easy to compute (
(

n

)
− 1)(k)pk(1− p)n−1−k

However, in the limit n → ∞ with 〈k〉k = p(n − 1) kept constant, the binomial distribution bin(n − 1, p, k) is
well-approximated by the Poisson distribution:

pk = e−λλ
k

k!
= Pois(λ, k)

where λ = p(n− 1).
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