
Table of Contents

• ▪ 0.1 Modules for this notebook

• 1 Random Samples

▪ 1.1 An intuitive approach

• 2 Choosing exactly terms

• 3 Computing

• 4 Computing

▪ 4.1 Our own function

▪ 4.2 The gnp_random_graph() function

• 5 Expected size

• 6 Expected Average Degree

▪ 6.1

• 7 p=p(n)

CS4423-Networks: Week 9 (11+12 March 2025)

Part 2: Computing Random Graphs

Niall Madden, School of Mathematical and Statistical Sciences

University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at https://www.niallmadden.ie/2425-

CS4423/#Week09

This notebook was written by Niall Madden, adapted from notebooks by Angela Carnevale.

Modules for this notebook

m

GER(n, m)

GER(n, p)

GER(n, p)

In [1]: import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": "aqua"} # aqua nodes this week

import random # some random number generators
import statistics # for random, random_choices
import math # for comb (=binomial coef)
import matplotlib.pyplot as plt

file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,m)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#Computing-$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$
file:///home/niall/niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-2.html#$G_{ER}(n,p)$

Random Samples

• Our goal is to randomly select edges on a given vertex set . That is, pick at random elements from

the set of pairs of nodes.

• So we need a procedure

for selecting from objects randomly, in such a way that each of the subsets of the objects is

an equally likely outcome.

• We first discuss sampling values in the range .

An intuitive approach

Maybe the most obvious approach is to select each number in the desired range with probability

.

• Python 's basic random number generator random.random returns a random number in the

(half-open) interval every time it is called.

• Looping with a over range(N) : if the randomly generated number is less than , then we

include the current value of a , if not we don't.

[3, 8]

We'd expect this to return a list of numbers, which it does (on average)

X

()X
2

m N ()N
m

N

m {0, 1, … , N−1}

p = m/N

[0, 1)

p

In [2]: def random_sample_B(N, p):
"""sample elements in range(n) with probability p"""
sample = []
for a in range(N):

if random.random() < p:
sample.append(a)

return sample

In [3]: random_sample_B(10,0.2)

Out[3]:

pN

In [4]: sum_l = 0
N = 10
p = 0.2
for i in range(N):

S = random_sample_B(N,p)
sum_l += len(S)
print(f"Sample {i:2d} has {len(S)} terms")

print(f"Avergae is {sum_l/N}")

Sample 0 has 4 terms
Sample 1 has 0 terms
Sample 2 has 2 terms
Sample 3 has 0 terms
Sample 4 has 2 terms
Sample 5 has 2 terms
Sample 6 has 1 terms
Sample 7 has 4 terms
Sample 8 has 2 terms
Sample 9 has 3 terms
Avergae is 2.0

Let's do that for 10,000 runs:

1.9901

Choosing exactly terms

To randomly select exactly numbers from from , we use a modification of this

procedure [see Knuth: The Art of Computer Programming, Vol. 2, Section 3.4.2, Algorithm S] :

• The number should be selected with probability ,

if items have already been selected.

Let's see a small example.

[1, 3, 4, 9]

Computing

We can easily adapt the above procedure to compute examples of graphs in .

But here we'll use the networkx random graph constructor, gnm_random_graph , to do this.

In [5]: c = 10000
sum(len(random_sample_B(N, p)) for i in range(c))/c

Out[5]:

m

m 0, 1, … , N − 1

a
m−c

N−a

c

In [6]: def random_sample_A(N, m):
sample = []
for a in range(N):

if (N - a) * random.random() < m - len(sample):
sample.append(a)

return sample

In [7]: N = 10
m = 4
print(random_sample_A(N, m))

GER(n, m)

GER(n, m)

In [8]: n = 6
m = 6
G1 = nx.gnm_random_graph(n, m)
nx.draw(G1, **opts)

Computing

Our own function

Here is a simple approach to computing a sample from :

G2 has 22 edges. Expeced number is 21.0

GER(n, p)

GER(n, p)

In [9]: def random_graph_B(n, p):
"""construct a random type B graph

 with n nodes and edge probability p"""
G = nx.empty_graph(n)
for x in range(n):

for y in range(x):
if random.random() < p:

G.add_edge(x, y)
return G

In [10]: n = 15
p = 0.2
N = n*(n-1)/2

In [11]: G2 = random_graph_B(n, p)
nx.draw(G2, **opts)
print(f"G2 has {G2.size()} edges. Expeced number is {p*N}")

The gnp_random_graph() function

The networkx version of this random graph constructor is called gnp_random_graph and should

produce the same random graphs with the same probability (but should be more efficient for large

networks).

G3 has 20 edges. Expeced number is 21.0

In [12]: G3 = nx.gnp_random_graph(n, p)
nx.draw(G3, **opts)
print(f"G3 has {G3.size()} edges. Expeced number is {p*N}")

G4 has 110 edges. Expeced number is 99.0

In [13]: n = 100
p = 0.02
N = n*(n-1)/2
G4 = nx.gnp_random_graph(n, p)
nx.draw(G4, node_size=20)
print(f"G4 has {G4.size()} edges. Expeced number is {p*N}")
plt.savefig("W09-cover.png")

Expected size

We know that any graph drawn from has size (with probability 1).

For the expected size is . Let's check that:

For this selection, average size is 47.96; expected is pN=49.5

Expected Average Degree

In Part 1, we noted that, for , the the expected size of a graph is as every graph

in has exactly edges.

It follows that the expected average degree is , as every graph has average degree .

Let's verify that:

GER(n, m) m

GER(n, p) pN

In [14]: n = 100
N = math.comb(n,2)
p = 0.01
num_trials = 100
sum_of_sizes = 0
for i in range(num_trials):

G = nx.gnp_random_graph(n,p)
sum_of_sizes += G.size()

ave_size = sum_of_sizes/num_trials
print(f"For this selection, average size is {ave_size}; expected is pN={p*N}")

GER(n, m) m̄ = m G

G(n, m) m

⟨k⟩ = 2m
n

2m/n

https://www.niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-1.pdf
https://www.niallmadden.ie/2425-CS4423/W09/CS4423-W09-Part-1.pdf

Get the degree sequence:

[4, 3, 2, 1, 4, 2, 2, 5, 4, 1]

Compute the mean value, and compare with .

Averge degree is 2.8, and 2m/n = 2.8

In [15]: n = 10
m = 14
G = nx.gnm_random_graph(n,m)
nx.draw(G, **opts)

In [16]: degree_sequence = [d for n, d in G.degree()]
print(degree_sequence)

< k >= 2m/n

In [17]: mean_deg = statistics.mean(degree_sequence)
print(f"Averge degree is {mean_deg}, and 2m/n = {2*m/n}")

We learned in Part 1 that the degree distribution in a random graph in is a \Emph{binomial

distribution}

That is, in the model, the probability that a node has degree is .

Let's check some examples.

In Part 1, we considered an example for Q3(c) of the 2023/24 exam paper: suppose one constructed a

graph on 120 nodes by tossing a (fair, 6-sided) die once for each possible edge, adding the edge only

if the die shows 3 or 6. Then pick a node at random in this graph. What is the probability that this node

has degree 50?

Set and and make a graph

From the theory:

GER(n, p)

GER(n, p)

pk = ()pk(1 − p)n−1−k.
n − 1

k

GER(n, p) k pk

G

n p

In [18]: n = 120
p = 1.0/3.0
G = nx.gnp_random_graph(n,p)

In [19]: nx.draw(G, node_size=3, alpha=0.1)

0.01055531314836434

In practice:

0.0

These numbers may not agree terribly well... let's check for all , and plot

<matplotlib.legend.Legend at 0x7f5449557380>

That looks reasonable, but would be more convincing if we averaged over a number of randomly drawn

graphs:

In [20]: k=50
p50 = math.comb(n-1,k)*(p**k)*(1-p)**(n-1-k)
print(p50)

In [21]: def count_k_in_G(G,k):
count = 0
for i in range(n):

if (G.degree(i) == k):
count +=1

return(count)
print(count_k_in_G(G,50)/n)

k

In [22]: P1 = [math.comb(n-1,k)*(p**k)*(1-p)**(n-1-k) for k in range(n)]
p2 = [count_k_in_G(G,k)/n for k in range(n)]

plt.plot(P1, marker='o', linestyle='--', color='b', label='theory')
plt.plot(p2, marker='x', linestyle='--', color='r', label='compute')
plt.legend()

Out[22]:

[<matplotlib.lines.Line2D at 0x7f5451b74890>]

p=p(n)

In a way, it does not make sense to compare with . If and are very

different, the resulting graphs can have different structures.

Lets look at 2 examples. In both we have , but we'll have and .

In [23]: P1 = [math.comb(n-1,k)*(p**k)*(1-p)**(n-1-k) for k in range(n)]
P2 = np.zeros(n)
num_draws = 10
for run in range(num_draws):

G = nx.gnp_random_graph(n,p)
P2 = P2 + [count_k_in_G(G,k)/n/num_draws for k in range(n)]

plt.plot(P1, marker='o', linestyle='--', color='b', label='theory')
plt.plot(P2, marker='x', linestyle='--', color='r', label='compute')

Out[23]:

GER(n1, p) GER(n2, p) n1 n2

p = 0.05 n1 = 100 n2 = 20

In [24]: n1 = 100
p = 0.05
G1 = nx.gnp_random_graph(n1,p)
nx.draw(G1, node_size=40)

In [25]: n2 = 20
G2 = nx.gnp_random_graph(n2,p)
nx.draw(G2, node_size=40)

